tbResList Print — HT HydroxyTyrosol

Filters: qv=376, qv2=%, rfv=%

Product

HT HydroxyTyrosol
Description: <p><b>Hydroxytyrosol (HT; 3,4-dihydroxyphenylethanol)</b> = phenolic compound from extra-virgin olive oil (EVOO) and olives; also formed from oleuropein metabolism. Small, water-soluble catechol with high antioxidant capacity.<br>
<b>Primary mechanisms (conceptual rank):</b><br>
1) Direct ROS scavenging + lipid peroxidation inhibition (membrane protection).<br>
2) NRF2 activation → endogenous antioxidant enzymes (HO-1, NQO1, GCLC).<br>
3) Anti-inflammatory modulation (↓ NF-κB, ↓ COX-2, ↓ iNOS).<br>
4) Mitochondrial protection / biogenesis support (model-dependent; PGC-1α linkage reported).<br>
5) Anti-proliferative / pro-apoptotic signaling in cancer (dose- and model-dependent).<br>
<b>PK / bioavailability:</b> well absorbed; rapid phase II metabolism (glucuronide/sulfate conjugates); short plasma half-life; free aglycone concentrations modest vs many in-vitro studies.<br>
<b>In-vitro vs systemic exposure:</b> many cell studies use ≥10–100 µM; typical dietary/EVOO intake yields lower transient plasma levels (conjugated forms predominate).<br>
<b>Clinical evidence status:</b> strongest data in cardiometabolic/vascular endpoints; oncology evidence largely preclinical; neuroprotection mechanistically plausible with limited RCT data.</p>


<b>Hydroxytyrosol <b> is mostly only available from olive oil and leaves, but is available as a common supplement.<br>
Hydroxytyrosol & oleuropein show the most consistent direct anti-CSC activity in multiple models (breast, colon, prostate).<br>
<pre>
Hydroxytyrosol is potent against CSC phenotypes.

Mechanisms:
-Blocks EMT, reducing transition into CSC-like states
-Inhibits Notch signaling
-Reduces CD44+ / CD24– CSC markers
-Inhibits hypoxia-driven stemness (HIF-1α suppression)

Hydroxytyrosol is especially active in:
-Breast CSCs
-Melanoma CSC-like cells
-Gastric CSC models
</pre>


<h3>Hydroxytyrosol (HT) — Cancer-Relevant Pathways</h3>
<table>
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells</th>
<th>Normal Cells</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>ROS tone / lipid peroxidation</td>
<td>↓ (low–mod dose); ↑ (high concentration only)</td>
<td>↓</td>
<td>P→R</td>
<td>Antioxidant; membrane protection</td>
<td>Catechol scavenger; at higher concentrations may induce pro-oxidant stress in tumors (model-dependent).</td>
</tr>

<tr>
<td>2</td>
<td>NRF2 axis</td>
<td>↑ (context-dependent)</td>
<td>↑</td>
<td>R→G</td>
<td>Endogenous antioxidant induction</td>
<td>↑ HO-1/NQO1; protective in normal tissues; could support tumor stress resistance (context-dependent).</td>
</tr>

<tr>
<td>3</td>
<td>NF-κB / COX-2 inflammation</td>
<td>↓</td>
<td>↓</td>
<td>R→G</td>
<td>Anti-inflammatory</td>
<td>Reduces pro-tumor inflammatory signaling; consistent with Mediterranean diet data.</td>
</tr>

<tr>
<td>4</td>
<td>Mitochondrial function</td>
<td>↔ / ↓ proliferation (model-dependent)</td>
<td>↑ (protective)</td>
<td>R→G</td>
<td>Bioenergetic stabilization</td>
<td>Reported support of mitochondrial integrity in normal cells; may impair cancer cell proliferation via metabolic stress.</td>
</tr>

<tr>
<td>5</td>
<td>Apoptosis (caspase activation)</td>
<td>↑ (high concentration only)</td>
<td>↔ / ↓</td>
<td>R→G</td>
<td>Pro-apoptotic in select tumors</td>
<td>Observed at supra-physiologic exposures in vitro.</td>
</tr>

<tr>
<td>6</td>
<td>Ferroptosis axis</td>
<td>↓ (anti-lipid-ROS bias)</td>
<td>↓</td>
<td>P→R</td>
<td>Inhibits lipid oxidation</td>
<td>Strong antioxidant property may counter ferroptotic strategies (context-dependent).</td>
</tr>

<tr>
<td>7</td>
<td>Clinical Translation Constraint</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Exposure limitations</td>
<td>Rapid metabolism; plasma free HT lower than many in-vitro doses; best considered dietary adjunct.</td>
</tr>

</table>

<p><b>TSF Legend:</b> P: 0–30 min | R: 30 min–3 hr | G: &gt;3 hr</p>





<h3>Hydroxytyrosol (HT) — Cancer Stemness / EMT Axis (Addendum)</h3>
<table>
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells</th>
<th>Normal Cells</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>EMT (Epithelial–Mesenchymal Transition)</td>
<td>↓ (model-/dose-dependent)</td>
<td>↔</td>
<td>R→G</td>
<td>Reduces EMT-associated transcription (e.g., Snail, Twist)</td>
<td>Reported attenuation of mesenchymal phenotype; relevance strongest in breast and melanoma models; mostly in-vitro.</td>
</tr>

<tr>
<td>2</td>
<td>CSC markers (CD44<sup>+</sup>/CD24<sup>–</sup>)</td>
<td>↓ (model-dependent)</td>
<td>↔</td>
<td>G</td>
<td>Reduces stemness-associated phenotype</td>
<td>Observed reduction in CSC-like populations in breast cancer models; requires supra-physiologic exposure in many studies.</td>
</tr>

<tr>
<td>3</td>
<td>Notch signaling</td>
<td>↓ (model-dependent)</td>
<td>↔</td>
<td>R→G</td>
<td>Stemness pathway inhibition</td>
<td>Downregulation of Notch pathway components reported; central to CSC maintenance; not universally replicated across tumor types.</td>
</tr>

<tr>
<td>4</td>
<td>HIF-1α / hypoxia-driven stemness</td>
<td>↓ (preclinical)</td>
<td>↔</td>
<td>R→G</td>
<td>Suppresses hypoxia adaptation</td>
<td>Reduced HIF-1α signaling may attenuate hypoxia-induced CSC traits; data strongest in gastric and breast models.</td>
</tr>

<tr>
<td>5</td>
<td>Tumor-type specificity</td>
<td>Breast, Melanoma, Gastric (preclinical)</td>
<td>—</td>
<td>—</td>
<td>CSC-like cell sensitivity</td>
<td>Evidence largely limited to cell-line and xenograft systems; translational dosing gap remains significant.</td>
</tr>

</table>

<p><b>TSF Legend:</b> P: 0–30 min | R: 30 min–3 hr | G: &gt;3 hr</p>





<br>
<h3>Hydroxytyrosol (HT) — Alzheimer’s Disease–Relevant Axes</h3>
<table>
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cells (neurons/glia)</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>Lipid peroxidation / neuronal membrane protection</td>
<td>↓</td>
<td>P</td>
<td>Neuroprotective antioxidant</td>
<td>Protects against oxidative membrane injury; aligns with AD oxidative stress hypothesis.</td>
</tr>

<tr>
<td>2</td>
<td>NRF2 activation</td>
<td>↑</td>
<td>R→G</td>
<td>Endogenous antioxidant upregulation</td>
<td>Supports neuronal resilience under oxidative stress.</td>
</tr>

<tr>
<td>3</td>
<td>Neuroinflammation (NF-κB)</td>
<td>↓</td>
<td>R→G</td>
<td>Microglial modulation</td>
<td>Reduces pro-inflammatory cytokines in models.</td>
</tr>

<tr>
<td>4</td>
<td>Mitochondrial integrity</td>
<td>↑</td>
<td>R→G</td>
<td>Bioenergetic stabilization</td>
<td>Improves mitochondrial function in neuronal models; may reduce apoptotic susceptibility.</td>
</tr>

<tr>
<td>5</td>
<td>Aβ toxicity modulation</td>
<td>↓ (preclinical)</td>
<td>G</td>
<td>Reduces amyloid-induced oxidative injury</td>
<td>Animal/cell evidence; limited direct human AD trials.</td>
</tr>

<tr>
<td>6</td>
<td>Clinical Translation Constraint</td>
<td>—</td>
<td>—</td>
<td>Dietary-level evidence</td>
<td>Human data strongest for Mediterranean diet patterns; isolated HT supplementation lacks large AD RCTs.</td>
</tr>

</table>

<p><b>TSF Legend:</b> P: 0–30 min | R: 30 min–3 hr | G: &gt;3 hr</p>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

antiOx↑, 1,   Catalase↓, 1,   Ferroptosis↑, 1,   GPx4↓, 1,   GSH↓, 1,   Iron↑, 1,   lipid-P↑, 1,   NOX4↑, 1,   NQO1↑, 1,   NRF2↓, 1,   ROS↑, 7,   SIRT3↓, 1,   SOD2↓, 1,  

Mitochondria & Bioenergetics

MMP↓, 3,   MPT↑, 1,  

Core Metabolism/Glycolysis

FASN↓, 1,   PPARγ↑, 1,  

Cell Death

p‑Akt↓, 2,   Akt↑, 1,   Akt↓, 4,   Apoptosis↑, 7,   BAD↑, 1,   Bak↑, 1,   BAX↑, 2,   Bax:Bcl2↑, 1,   Bcl-2↓, 2,   Casp↑, 1,   Casp3↑, 2,   Casp9↑, 2,   Cyt‑c↑, 1,   Fas↑, 1,   Ferroptosis↑, 1,   JNK↑, 1,   Mcl-1↓, 1,   p27↑, 2,   PPP2R1A↑, 1,   survivin↓, 1,  

Transcription & Epigenetics

tumCV↓, 1,  

Protein Folding & ER Stress

CHOP↑, 2,   ER Stress↑, 3,   UPR↑, 3,  

DNA Damage & Repair

DNAdam↑, 1,   P53↑, 2,   cl‑PARP↑, 1,   PARP↑, 1,   γH2AX↑, 1,  

Cell Cycle & Senescence

CDK2↓, 1,   CDK4↓, 1,   cycD1/CCND1↓, 3,   cycE/CCNE↓, 1,   P21↑, 2,   TumCCA↑, 4,  

Proliferation, Differentiation & Cell State

CD44↓, 2,   CSCs↓, 6,   EMT↓, 3,   FOXO3↓, 1,   HDAC2↓, 1,   HDAC3↓, 1,   p‑LRP6↓, 1,   LRP6↓, 2,   mTOR↓, 2,   PI3K↓, 1,   p‑STAT3↓, 1,   STAT3↓, 2,   TumCG↓, 2,   Wnt↓, 3,  

Migration

E-cadherin↑, 1,   MMP2↓, 2,   MMP9↓, 1,   MMPs↓, 1,   N-cadherin↓, 1,   Slug↓, 2,   SMAD2↓, 1,   SMAD3↓, 1,   Snail↓, 3,   TGF-β↓, 2,   TumCI↓, 2,   TumCMig↓, 3,   TumCP↓, 4,   Twist↓, 1,   Vim↓, 2,   Zeb1↓, 2,   β-catenin/ZEB1↓, 3,  

Angiogenesis & Vasculature

angioG↓, 2,   Hif1a↓, 2,   VEGF↓, 2,   VEGFR2↓, 1,  

Immune & Inflammatory Signaling

NF-kB↓, 3,   p65↓, 1,   TLR1↑, 1,   TNF-α↓, 1,  

Hormonal & Nuclear Receptors

AR↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 2,   ChemoSen↑, 1,   eff↓, 1,   Half-Life↝, 1,   RadioS↑, 1,   selectivity↑, 5,  

Clinical Biomarkers

AR↓, 1,  

Functional Outcomes

AntiCan↑, 2,   AntiTum↑, 1,   chemoP↑, 2,  
Total Targets: 102

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 2,   Catalase↑, 1,   GSH↑, 1,   MDA↓, 1,   NRF2↑, 1,   ROS↓, 2,   SOD↑, 1,  

Proliferation, Differentiation & Cell State

NOTCH↓, 1,   Wnt↓, 1,  

Immune & Inflammatory Signaling

Inflam↓, 3,  

Drug Metabolism & Resistance

BioAv↓, 3,   BioAv↝, 1,   Half-Life↓, 1,  

Functional Outcomes

chemoP↑, 1,   toxicity∅, 1,  
Total Targets: 15

Research papers

Year Title Authors PMID Link Flag
2025Hydroxytyrosol, a Component of Olive Oil for Breast Cancer Prevention in Women at High Risk of CancerAkshjot PuriPMC11774573https://pmc.ncbi.nlm.nih.gov/articles/PMC11774573/0
2025The anti-cancer potential of hydroxytyrosolhttps://www.hzfoodic.com/news/potential-of-hydroxytyrosol/0
2025Hydroxytyrosol induced ferroptosis through Nrf2 signaling pathway in colorectal cancer cellsWeipeng Lihttps://www.nature.com/articles/s41598-025-04415-40
2024Unlocking the effective alliance of β-lapachone and hydroxytyrosol against triple-negative breast cancer cellsJesús Calahorrahttps://www.sciencedirect.com/science/article/pii/S07533322240032380
2024Hydroxytyrosol in cancer research: recent and historical insights on discoveries and mechanisms of actionAjay Kumarhttps://colab.ws/articles/10.1186%2Fs43094-024-00700-70
2021Comparative Cytotoxic Activity of Hydroxytyrosol and Its Semisynthetic Lipophilic Derivatives in Prostate Cancer CellsAntonio J. León-Gonzálezhttps://www.mdpi.com/2076-3921/10/9/13480
2020The Hydroxytyrosol Induces the Death for Apoptosis of Human Melanoma CellsFrancesca CostantiniPMC7662312https://pmc.ncbi.nlm.nih.gov/articles/PMC7662312/0
2019Hydroxytyrosol inhibits cancer stem cells and the metastatic capacity of triple-negative breast cancer cell lines by the simultaneous targeting of epithelial-to-mesenchymal transition, Wnt/β-catenin and TGFβ signaling pathwaysMarina Cruz-Lozanohttps://pubmed.ncbi.nlm.nih.gov/30460610/0
2019Hydroxytyrosol inhibits cancer stem cells and the metastatic capacity of triple-negative breast cancer cell lines by the simultaneous targeting of epithelial-to-mesenchymal transition, Wnt/ß-catenin and TGFß signalingGarcía-Rivashttps://research.tec.mx/vivo-tec/display/AcademicArticleSCO_850568926420
2018Hydroxytyrosol Induces Apoptosis, Cell Cycle Arrest and Suppresses Multiple Oncogenic Signaling Pathways in Prostate Cancer CellsHaseeb ZubairPMC6125781https://pmc.ncbi.nlm.nih.gov/articles/PMC6125781/0
2018Hydroxytyrosol: Bioavailability, toxicity, and clinical applicationsMaría Robles-Almazanhttps://www.sciencedirect.com/science/article/abs/pii/S09639969173082200
2014Hydroxytyrosol induces apoptosis in human colon cancer cells through ROS generationLijuan Sun24953710https://pubmed.ncbi.nlm.nih.gov/24953710/0
2014Hydroxytyrosol, a natural molecule from olive oil, suppresses the growth of human hepatocellular carcinoma cells via inactivating AKT and nuclear factor-kappa B pathwaysBaolei Zhaohttps://www.sciencedirect.com/science/article/abs/pii/S03043835140006640
2006Dihydroxyphenylethanol induces apoptosis by activating serine/threonine protein phosphatase PP2A and promotes the endoplasmic reticulum stress response in human colon carcinoma cellsCécile Guichard16524888https://pubmed.ncbi.nlm.nih.gov/16524888/0
2024Use of Oleuropein and Hydroxytyrosol for Cancer Prevention and Treatment: Considerations about How Bioavailability and Metabolism Impact Their Adoption in Clinical RoutineFrancesco GervasiPMC10968586https://pmc.ncbi.nlm.nih.gov/articles/PMC10968586/0