tbResList Print — Ba Baicalein

Filters: qv=38, qv2=%, rfv=%

Product

Ba Baicalein
Description: <b>Baicalein</b> is a flavone, a type of flavonoid, originally isolated from the roots of Scutellaria baicalensis and Scutellaria lateriflora. It is also a constituent of Oroxylum indicum and thyme.<br>
Baicalein, a flavonoid found in several medicinal plants (notably Scutellaria baicalensis), has been investigated for its anticancer properties. Its activities involve modulation of multiple cellular pathways, including those that regulate cell proliferation, apoptosis, metastasis, and oxidative stress. Here are some of the key pathways and mechanisms implicated in its anticancer effects:<br>
-Apoptosis and Cell Cycle Regulation<br>
-Reactive Oxygen Species
<a href="tbResList.php?&qv=38&tsv=275&wNotes=on&word=ROS↑">ROS↑ </a> Generation and Oxidative Stress
(Context and dose dependent)<br>
- ROS↑ related:
<a href="tbResList.php?&qv=38&tsv=197&wNotes=on&word=MMP↓">MMP↓</a>(ΔΨm),
<a href="tbResList.php?&qv=38&tsv=103&wNotes=on&word=ER Stress">ER Stress↑</a>,
<a href="tbResList.php?&qv=38&tsv=38&wNotes=on&word=Ca+2↑">Ca+2↑</a>,
<a href="tbResList.php?&qv=38&tsv=77&wNotes=on&word=Cyt‑c">Cyt‑c↑</a>,
<a href="tbResList.php?&qv=38&tsv=42&wNotes=on&word=Casp3↑">Caspase-3↑</a>,
<a href="tbResList.php?&qv=38&tsv=45&wNotes=on&word=Casp9↑">Caspase-9↑</a>,
<a href="tbResList.php?&qv=38&tsv=82&wNotes=on&word=DNAdam↑">DNA damage↑</a>,
<br>


-Baicalein’s effects on ROS are context-dependent. In some cancer cells, it promotes ROS production to a degree that overwhelms the antioxidant defenses. Elevated ROS levels can damage cellular components and promote apoptosis, essentially tipping the balance toward cell death.<br>
-Conversely, in normal cells, baicalein may exhibit antioxidant properties and reduce
<a href="tbResList.php?&qv=38&tsv=275&wNotes=on&word=ROS↓">ROS↓ </a>
under conditions of oxidative stress, highlighting its dual role.<br>

- May Lowers AntiOxidant defense in Cancer Cells:
<a href="tbResList.php?&qv=38&tsv=226&wNotes=on&word=NRF2↓">NRF2↓</a>,
<a href="tbResList.php?&qv=38&tsv=137&wNotes=on&word=GSH↓">GSH↓</a>,
<a href="tbResList.php?&qv=38&tsv=597&wNotes=on&word=HO-1↓">HO-1↓</a>
<br>

- Raises
<a href="tbResList.php?&qv=38&tsv=1103&wNotes=on&word=antiOx↑">AntiOxidant</a>
defense in Normal Cells:
<a href="tbResList.php?&qv=38&tsv=226&wNotes=on&word=NRF2↑">NRF2↑</a>,
<a href="tbResList.php?&qv=38&tsv=298&wNotes=on&word=SOD↑">SOD↑</a>,
<a href="tbResList.php?&qv=38&tsv=137&wNotes=on&word=GSH↑">GSH↑</a>,
<a href="tbResList.php?&qv=38&tsv=46&wNotes=on&word=Catalase↑">Catalase↑</a>,
<a href="tbResList.php?&qv=38&tsv=597&wNotes=on&word=HO-1↑">HO-1↑</a>,
<br>

-<a href="tbResList.php?&qv=38&tsv=181&wNotes=on&exSp=open&word=MAPK">MAPK, </a>
<a href="tbResList.php?&qv=38&tsv=105&wNotes=on&exSp=open&word=ERK">ERK </a>
Pathway: <br>
-PI3K/Akt Pathway: Inhibition of the
<a href="tbResList.php?&qv=38&tsv=252&wNotes=on&exSp=open&word=PI3K">PI3K, </a>
<a href="tbResList.php?&qv=38&tsv=4&wNotes=on&exSp=open&word=Akt">Akt </a>
pathway by baicalein.<br>
-<a href="tbResList.php?&qv=38&tsv=214&wNotes=on&exSp=open&word=NF-kB">NF-κB </a>
Pathway: Baicalein can inhibit <br>
-Inhibition of Metastasis and Invasion: Baicalein can downregulate
<a href="tbResList.php?&qv=38&tsv=204&wNotes=on&exSp=open&word=MMPs">MMPs, </a>
<a href="tbResList.php?&qv=38&tsv=201&wNotes=on&exSp=open&word=MMP2">MMP2, </a>
<a href="tbResList.php?&qv=38&tsv=203&wNotes=on&exSp=open&word=MMP9">MMP9 </a><br>
-Angiogenesis Suppression:
<a href="tbResList.php?&qv=38&tsv=334&wNotes=on&exSp=open&word=VEGF">VEGF</a><br>
-Baicalein is a well-known inhibitor of
<a href="tbResList.php?&qv=38&tsv=1126&wNotes=on&exSp=open&word=12LOX">12-lipoxygenase</a><br>
-inhibitor of <a href="tbResList.php?&qv=38&tsv=129&wNotes=on&exSp=open&word=Glycolysis">Glycolysis↓</a> and
<a href="tbResList.php?&qv=38&tsv=143&wNotes=on&exSp=open&word=Hif1a">HIF-1α↓</a>,
<a href="tbResList.php?&qv=38&tsv=772&wNotes=on&exSp=open&word=PKM2">PKM2↓</a>,
<a href="tbResList.php?&qv=38&tsv=35&wNotes=on&exSp=open&word=cMyc">cMyc↓</a>,
<a href="tbResList.php?&qv=38&tsv=246&wNotes=on&exSp=open&word=PDK1">PDK1↓</a>,
<a href="tbResList.php?&qv=38&tsv=566&wNotes=on&exSp=open&word=GLUT">GLUT1↓</a>,
<a href="tbResList.php?&qv=38&tsv=175&wNotes=on&exSp=open&word=LDH">LDHA↓</a>,
<a href="tbResList.php?&qv=38&tsv=773&wNotes=on&exSp=open&word=HK2">HK2↓</a>
<br>
- promoting
<a href="tbResList.php?&qv=38&tsv=267&wNotes=on&exSp=open&word=PTEN">PTEN</a><br>



-<a href="tbResList.php?&qv=38&tsv=1106&wNotes=on">chemo-sensitization</a>,
<a href="tbResList.php?qv=38&tsv=1171&wNotes=on">chemoProtective</a>,
<a href="tbResList.php?&qv=38&tsv=1107&wNotes=onS">RadioSensitizer</a>,
<a href="tbResList.php?qv=38&tsv=1185&wNotes=on">RadioProtective</a>,
<a href="tbResList.php?&qv=38&tsv=1105&wNotes=on">neuroprotective</a>,
<a href="tbResList.php?qv=38&tsv=557&wNotes=on">Cognitive</a>,
<a href="tbResList.php?qv=38&tsv=1175&wNotes=on">Renoprotection</a>,
<a href="tbResList.php?qv=38&tsv=1179&wNotes=on">Hepatoprotective</a>,
<a href="tbResList.php?&qv=38&tsv=1188&wNotes=on&exSp=open&word=cardioP">cardioProtective</a>,
<br>

<!-- SELECTIVE: -->
- Selectivity:
<a href="tbResList.php?qv=38&tsv=1110&wNotes=on">Cancer Cells vs Normal Cells</a>
<br>


-low <a href="tbResList.php?&qv=38&tsv=792&wNotes=on&exSp=open&word= BioAv">bioavailability</a> but
<a href="https://www.mcsformulas.com/vitamins-supplements/baicalein-pro-liposomal/">liposomal</a>
may improve bioavailability<br>
<br>
In summary, baicalein affects cancer cells by modulating multiple pathways—promoting apoptosis, causing cell cycle arrest, generating or modulating ROS levels, inhibiting survival and proliferative signaling (such as MAPK, PI3K/Akt, and NF-κB pathways), and reducing angiogenesis and metastasis.<br>
<br>
Many animal studies, doses have been reported in the range of approximately 10 to 200 mg/kg body weight.<br>
For example, some studies exploring anticancer or anti-inflammatory effects in rodent models have used doses around 50–100 mg/kg.<br>
However, these doses do not directly translate to human dosages.<br>
Some human studies or formulations (where they are used as nutraceuticals or supplements) may suggest dosing in the range of a few hundred milligrams per day of the extract, but it is often not standardized to a specific amount of baicalein or baicalin.<br>
-mix with oil?<br>
<br>
-ic50 cancer cells 10-30uM, normal cells 50-100uM<br>
-Animal studies, 10 to 100 mg/kg.<br>
-Reported to induce apoptosis, cause cell cycle arrest, inhibit angiogenesis, and modulate various signaling pathways (e.g., STAT3, NF-κB, MAPK).<br>
<br>

<!-- Baicalein (Ba) — Time-Scale Flagged Pathway Table (web-page ready) -->
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells</th>
<th>Normal Cells</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>ROS (tumor-selective oxidative stress)</td>
<td>↑ ROS (P→R); can progress to cytotoxic stress (G)</td>
<td>↔ or ↓ ROS under oxidative challenge (R→G)</td>
<td>P, R, G</td>
<td>Stress amplifier</td>
<td>Baicalein can act as a pro-oxidant in many tumor contexts while behaving as an antioxidant in non-malignant or stressed-normal contexts; net direction is dose/model dependent.</td>
</tr>

<tr>
<td>2</td>
<td>Mitochondrial membrane potential (ΔΨm) / mitochondrial integrity</td>
<td>↓ ΔΨm (R); downstream commitment to death programs (G)</td>
<td>↔ preserved</td>
<td>R, G</td>
<td>Mitochondrial failure threshold</td>
<td>Loss of ΔΨm is a common convergence point after sustained oxidative / stress signaling and precedes cytochrome-c release and caspase activation.</td>
</tr>

<tr>
<td>3</td>
<td>Cytochrome-c release → Caspase-9/3 activation (intrinsic apoptosis)</td>
<td>↑ Cyt-c, ↑ Caspase-9, ↑ Caspase-3 (G)</td>
<td>↔ minimal activation</td>
<td>G</td>
<td>Apoptosis execution</td>
<td>Typically appears after upstream redox/mitochondrial stress has crossed a commitment threshold; aligns with intrinsic apoptotic signaling.</td>
</tr>

<tr>
<td>4</td>
<td>ER stress / UPR + Ca²⁺ dysregulation</td>
<td>↑ ER stress, ↑ Ca²⁺ signaling (R→G)</td>
<td>↔ buffered homeostasis</td>
<td>R, G</td>
<td>Stress-to-death coupling</td>
<td>ER stress and Ca²⁺ transfer can amplify mitochondrial dysfunction; sustained stress favors pro-death UPR signaling.</td>
</tr>

<tr>
<td>5</td>
<td>DNA damage / oxidative injury markers</td>
<td>↑ DNA damage (R→G)</td>
<td>↔ or efficiently repaired (G)</td>
<td>R, G</td>
<td>Checkpoint stress</td>
<td>Often interpreted as a downstream consequence of sustained ROS and impaired redox buffering rather than a primary “direct DNA” effect.</td>
</tr>

<tr>
<td>6</td>
<td>Antioxidant defense balance (NRF2, GSH, HO-1; SOD/Catalase)</td>
<td>↓ NRF2 / ↓ GSH / ↓ HO-1 (R→G)</td>
<td>↑ NRF2 / ↑ GSH / ↑ HO-1; ↑ SOD/Catalase (R→G)</td>
<td>R, G</td>
<td>Selectivity gate</td>
<td>Reported divergence suggests tumors may fail to mount sufficient antioxidant adaptation while normal cells compensate; magnitude varies by model and baseline redox state.</td>
</tr>

<tr>
<td>7</td>
<td>PI3K → AKT survival axis</td>
<td>↓ PI3K/AKT signaling (R→G)</td>
<td>↔ limited effect</td>
<td>R, G</td>
<td>Survival suppression</td>
<td>Reduced pro-survival signaling increases vulnerability to stress-induced apoptosis and can contribute to cell-cycle effects.</td>
</tr>

<tr>
<td>8</td>
<td>MAPK / ERK pathway modulation</td>
<td>MAPK/ERK modulation (often ↓ ERK tone) (P→R→G)</td>
<td>↔ context-dependent</td>
<td>P, R, G</td>
<td>Signal re-wiring</td>
<td>MAPK readouts often shift early (phosphorylation) and can later reshape gene programs; direction can vary across tumor types and dosing.</td>
</tr>

<tr>
<td>9</td>
<td>NF-κB signaling</td>
<td>↓ NF-κB activity (R→G)</td>
<td>↔</td>
<td>R, G</td>
<td>Anti-survival / anti-inflammatory transcription</td>
<td>NF-κB suppression reduces pro-survival stress responses and inflammatory tone; may support chemo-/radio-sensitization in some settings.</td>
</tr>

<tr>
<td>10</td>
<td>Glycolysis / hypoxia program (HIF-1α; PKM2, PDK1, GLUT1, LDHA, HK2; c-Myc)</td>
<td>↓ Glycolysis and associated nodes; ↓ HIF-1α / ↓ c-Myc (G)</td>
<td>↔</td>
<td>G</td>
<td>Metabolic constraint</td>
<td>Best interpreted as a gene-regulatory / adaptation-level effect; specific node changes are model dependent even when “glycolysis suppression” is observed.</td>
</tr>

<tr>
<td>11</td>
<td>Invasion / metastasis programs (MMP2/MMP9 and related MMPs)</td>
<td>↓ MMP2 / ↓ MMP9 (G)</td>
<td>↔</td>
<td>G</td>
<td>Anti-invasive phenotype</td>
<td>Usually reflected in later expression/phenotype assays (migration/invasion) rather than immediate signaling events.</td>
</tr>

<tr>
<td>12</td>
<td>Angiogenesis signaling (VEGF)</td>
<td>↓ VEGF (G)</td>
<td>↔</td>
<td>G</td>
<td>Anti-angiogenic support</td>
<td>Typically manifests as reduced VEGF expression/secretion and downstream angiogenic behavior over longer observation windows.</td>
</tr>

<tr>
<td>13</td>
<td>12-lipoxygenase (12-LOX / 12/15-LOX) inhibition</td>
<td>↓ 12-LOX activity (P→R)</td>
<td>↔</td>
<td>P, R</td>
<td>Direct enzymatic target</td>
<td>Often treated as a relatively “direct” biochemical interaction compared with downstream transcriptional programs.</td>
</tr>

<tr>
<td>14</td>
<td>PTEN (tumor suppressor axis)</td>
<td>↑ PTEN (G)</td>
<td>↔</td>
<td>G</td>
<td>Brake on PI3K/AKT</td>
<td>PTEN increases are generally best treated as gene-regulatory/adaptation-level outcomes that reinforce PI3K/AKT suppression.</td>
</tr>
</table>

<p><b>Time-Scale Flag (TSF):</b> P / R / G</p>
<ul>
<li><b>P</b>: 0–30 min (primary/physical–chemical effects; direct enzymatic or rapid signaling shifts)</li>
<li><b>R</b>: 30 min–3 hr (redox signaling and acute stress-response signaling)</li>
<li><b>G</b>: &gt;3 hr (gene-regulatory adaptation and phenotype-level outcomes)</li>
</ul>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

Copper↑, 1,   Fenton↑, 1,   Ferroptosis↑, 1,   GPx1↑, 1,   GPx1↓, 1,   GPx4↓, 2,   GSH↓, 2,   H2O2↑, 2,   HK1↓, 1,   HO-1↓, 1,   NRF2↓, 1,   p‑NRF2↓, 1,   Prx6↑, 2,   ROS↑, 23,   ROS?, 1,   ROS↓, 2,   ROS↝, 1,   ROS⇅, 2,   i-ROS↑, 2,   SOD1↑, 1,   SOD1↓, 1,   SOD2↑, 1,   SOD2↓, 1,   TrxR↓, 1,  

Mitochondria & Bioenergetics

CDC25↓, 1,   p‑MEK↓, 1,   MMP↓, 12,   XIAP↓, 3,  

Core Metabolism/Glycolysis

12LOX↓, 8,   12LOX?, 1,   ALDOA↓, 1,   AMPK↑, 3,   Cav1↓, 1,   cMyc↓, 6,   ECAR↓, 1,   ENO1↓, 1,   GLS↓, 1,   GlucoseCon↓, 3,   GlutMet↓, 1,   Glycolysis↓, 10,   GPI↓, 1,   HK2↓, 6,   lact/pyru↓, 1,   lactateProd↓, 2,   LDH?, 1,   LDHA↓, 6,   p‑PDK1↓, 1,   PDK1↓, 5,   PFK1↓, 1,   PKM2↓, 5,   PPARγ↑, 1,   PPARγ↓, 1,   SIRT1↑, 1,   TPI↓, 1,  

Cell Death

p‑Akt↓, 9,   Akt↓, 7,   Apoptosis↑, 22,   ASK1↑, 1,   BAX↑, 13,   BAX↓, 1,   Bax:Bcl2↑, 5,   Bcl-2↓, 14,   Bcl-xL↓, 5,   BID↑, 3,   cl‑BID↑, 1,   Casp2↑, 1,   Casp3↑, 18,   cl‑Casp3↑, 1,   cl‑Casp3↓, 1,   Casp7↑, 1,   Casp8↑, 6,   Casp9↑, 13,   Casp9?, 1,   cl‑Casp9↑, 1,   cl‑Casp9↓, 1,   cFLIP↓, 3,   Chk2↑, 1,   Cyt‑c↑, 11,   DR4↑, 1,   DR4∅, 1,   DR5↑, 9,   FADD↑, 3,   Fas↑, 1,   FasL↑, 4,   Ferroptosis↑, 1,   IAP1↓, 1,   IAP2↓, 1,   JNK↑, 2,   MAPK↓, 2,   Mcl-1↓, 2,   MDM2↓, 1,   necrosis↑, 2,   p27↑, 2,   p38↑, 1,   survivin↓, 4,   TRAIL↑, 1,   TumCD↑, 1,  

Kinase & Signal Transduction

PAK↓, 1,  

Transcription & Epigenetics

other↓, 1,   other?, 1,   tumCV↓, 4,  

Protein Folding & ER Stress

CHOP↑, 4,   ER Stress↑, 4,   IRE1↑, 1,   PERK↑, 1,   UPR↑, 1,  

Autophagy & Lysosomes

Beclin-1↑, 1,   BNIP3?, 1,   BNIP3↑, 2,   LC3A↑, 1,   p62↓, 2,   TumAuto↑, 4,  

DNA Damage & Repair

CHK1↓, 1,   DNAdam↑, 4,   DNMTs↓, 1,   p16↑, 1,   P53↑, 5,   cl‑PARP↑, 9,   PARP↑, 2,   PCNA↓, 1,   p‑γH2AX↑, 1,   γH2AX↝, 1,  

Cell Cycle & Senescence

CDK1↓, 1,   CDK4↓, 4,   Cyc↓, 1,   cycA1/CCNA1↑, 1,   CycB/CCNB1↓, 1,   cycD1/CCND1↓, 5,   cycE/CCNE↑, 2,   P21↑, 3,   Securin↓, 1,   TumCCA↑, 14,   TumCCA↓, 1,  

Proliferation, Differentiation & Cell State

ALDH↓, 1,   CD24↓, 1,   CSCs↓, 2,   EMT↓, 2,   ERK↓, 2,   ERK↑, 1,   Gli1↓, 2,   GSK‐3β↓, 1,   HDAC1↓, 1,   HDAC10↑, 1,   HDAC10↓, 1,   HDAC8↓, 1,   HH↓, 1,   p‑mTOR↓, 7,   mTOR↓, 4,   mTORC1↓, 1,   NOTCH↓, 1,   OCT4↓, 1,   p‑PI3K↓, 1,   PI3K↓, 4,   PTEN↑, 7,   Shh↓, 2,   Smo↓, 1,   SOX2↓, 1,   STAT3↓, 4,   TOP2↓, 1,   TumCG↓, 10,   TumCG↑, 1,   Wnt?, 1,   Wnt↓, 2,   ZFX↓, 2,  

Migration

Ca+2↑, 6,   Ca+2↓, 1,   CAFs/TAFs↓, 1,   E-cadherin↑, 3,   GLI2↓, 1,   Ki-67↓, 1,   MMP2↓, 9,   MMP9↓, 8,   MMPs↓, 3,   N-cadherin↓, 3,   ROCK1↓, 2,   Snail↓, 2,   TGF-β↓, 1,   TIMP1↓, 2,   TIMP2↓, 2,   TumCI↓, 4,   TumCMig↓, 5,   TumCP↓, 12,   TumMeta↓, 1,   Twist↓, 1,   uPA↓, 2,   Vim↓, 5,   Zeb1↓, 1,   ZEB2↓, 1,   ZO-1↑, 1,   β-catenin/ZEB1↓, 2,  

Angiogenesis & Vasculature

angioG↓, 1,   HIF-1↓, 1,   Hif1a↓, 13,   LOX1↓, 1,   VEGF↑, 1,   VEGF↓, 7,   VEGFR2↓, 1,  

Barriers & Transport

GLUT1↓, 3,   GLUT3↓, 1,   P-gp↓, 3,  

Immune & Inflammatory Signaling

COX2↓, 1,   p‑IKKα↓, 3,   IKKα↑, 1,   IL1β↓, 1,   IL2↓, 1,   IL6↓, 2,   Inflam↓, 3,   p‑IκB↓, 1,   IκB↑, 1,   JAK2↓, 1,   MCP1↓, 1,   NF-kB↓, 11,   p65↓, 1,   PD-L1↓, 3,   PGE2↓, 1,   RANTES↓, 1,   T-Cell↑, 1,  

Hormonal & Nuclear Receptors

AR↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 6,   BioAv↑, 3,   BioAv↝, 2,   BioEnh↑, 2,   ChemoSen↑, 12,   Dose∅, 2,   Dose↝, 2,   Dose?, 1,   eff↓, 11,   eff↑, 6,   eff↝, 2,   Half-Life↓, 1,   MRP1↓, 1,   P450↓, 1,   RadioS↑, 6,   selectivity↑, 7,  

Clinical Biomarkers

AR↓, 1,   GutMicro↑, 1,   IL6↓, 2,   Ki-67↓, 1,   LDH?, 1,   PD-L1↓, 3,  

Functional Outcomes

AntiCan↑, 1,   AntiCan↓, 1,   AntiTum↑, 1,   cardioP↑, 2,   chemoP↑, 1,   cognitive↑, 1,   hepatoP↑, 1,   RenoP↑, 1,   toxicity↝, 1,   toxicity↓, 1,   TumVol↓, 1,   TumW↓, 1,  

Infection & Microbiome

Sepsis↓, 1,  
Total Targets: 253

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 8,   antiOx↓, 1,   Catalase↑, 2,   Ferroptosis↓, 3,   GPx4∅, 1,   GSH↑, 2,   HO-1↑, 3,   HO-1∅, 1,   lipid-P↓, 2,   MDA↓, 3,   MPO↓, 1,   p‑NRF2↑, 2,   NRF2↑, 4,   NRF2∅, 1,   NRF2↓, 1,   ROS↓, 15,   ROS∅, 3,   ROS?, 1,   SOD↑, 2,   uricA↓, 1,  

Mitochondria & Bioenergetics

MMP↑, 3,  

Core Metabolism/Glycolysis

12LOX↓, 5,   ACSL4∅, 1,   ALAT↓, 2,   p‑AMPK↑, 1,   AMPK↑, 1,   CRM↑, 1,   Glycolysis↓, 1,   HK2↓, 1,   PFK1↓, 1,   PKM2↓, 1,  

Cell Death

Akt↓, 1,   Akt↑, 2,   p‑Akt↑, 1,   Apoptosis↓, 2,   Apoptosis↑, 1,   BAX↓, 2,   Bax:Bcl2↓, 1,   Bcl-2↑, 1,   Casp3∅, 1,   Casp9∅, 1,   Cyt‑c∅, 2,   DR4↓, 1,   Fas↓, 1,   Ferroptosis↓, 3,   iNOS↓, 3,   iNOS↑, 1,   JNK↓, 2,   MAPK↓, 2,   p38↓, 1,  

DNA Damage & Repair

DNAdam↓, 1,   P53↓, 1,   PARP∅, 1,  

Proliferation, Differentiation & Cell State

ERK↑, 2,   ERK↓, 1,   FOXO3?, 1,   p‑GSK‐3β↑, 1,   PI3K↓, 1,   p‑STAT1↓, 1,   p‑STAT3↓, 2,   STAT3↓, 1,  

Migration

p‑Ca+2↓, 1,   MMP2↓, 1,   MMP9↓, 1,  

Angiogenesis & Vasculature

Hif1a↓, 2,   NO↓, 2,   VEGF↓, 1,  

Barriers & Transport

BBB↑, 1,  

Immune & Inflammatory Signaling

COX2↓, 3,   IL1↓, 1,   IL10↑, 1,   IL1β↓, 2,   IL6↓, 3,   IL6↑, 1,   Inflam↓, 6,   p‑JAK1↓, 1,   p‑JAK2↓, 2,   MCP1↓, 1,   NF-kB↓, 6,   PGE2↓, 2,   TLR2↓, 1,   TNF-α↓, 4,   TNF-α↑, 1,  

Synaptic & Neurotransmission

BDNF↑, 1,   tau↓, 1,   p‑tau↓, 1,  

Protein Aggregation

β-Amyloid↓, 2,  

Drug Metabolism & Resistance

BioAv↝, 4,   BioAv↓, 1,   BioEnh↑, 1,   Dose↝, 2,   eff↑, 5,  

Clinical Biomarkers

ALAT↓, 2,   AST↓, 2,   GutMicro↑, 1,   IL6↓, 3,   IL6↑, 1,  

Functional Outcomes

AntiCan↓, 1,   cardioP↑, 4,   cognitive↑, 2,   hepatoP↑, 7,   neuroP↑, 10,   radioP↑, 1,   RenoP↑, 4,   toxicity∅, 2,   toxicity↓, 2,  
Total Targets: 106

Research papers

Year Title Authors PMID Link Flag
2025Baicalein: unveiling the multifaceted marvel of hepatoprotection and beyondAshish Dogra40126088https://pubmed.ncbi.nlm.nih.gov/40126088/0
2025The Role of HK2 in Tumorigenesis and Development: Potential for Targeted Therapy with Natural ProductsKeren HePMC11843137https://pmc.ncbi.nlm.nih.gov/articles/PMC11843137/0
2025Modulation of Neuroinflammation in Poststroke Rehabilitation: The Role of 12/15-Lipoxygenase Inhibition and BaicaleinAmir Tajbakhsh, PhDhttps://www.ahajournals.org/doi/abs/10.1161/STROKEAHA.124.0490480
2025Baicalein and baicalin in cancer therapy: Multifaceted mechanisms, preclinical evidence, and translational challengesXavier Capóhttps://www.sciencedirect.com/science/article/abs/pii/S00937754250006970
2025Study on the Molecular Mechanism of Baicalin Phosphorylation of Tau Protein Content in a Cell Model of Intervention Cognitive ImpairmentJuncheng Lihttps://www.tandfonline.com/doi/full/10.2147/NDT.S4823620
2024Research Progress of Scutellaria baicalensis in the Treatment of Gastrointestinal CancerLankang Wang, MDhttps://journals.sagepub.com/doi/10.1177/153473542413020490
2024Baicalin and baicalein in modulating tumor microenvironment for cancer treatment: A comprehensive review with future perspectivesRuolei Wanghttps://www.sciencedirect.com/science/article/pii/S10436618230038820
2024Baicalein suppresses inflammation and attenuates acute lung injury by inhibiting glycolysis via HIF‑1α signalingZhongyou Liuhttps://www.spandidos-publications.com/10.3892/mmr.2024.133830
2024Molecular targets and therapeutic potential of baicalein: a reviewKavita MunjalPMC11168303https://pmc.ncbi.nlm.nih.gov/articles/PMC11168303/0
2024Baicalein alleviates cisplatin-induced acute kidney injury by inhibiting ALOX12-dependent ferroptosisShanshan Guo38805781https://pubmed.ncbi.nlm.nih.gov/38805781/0
2024The most recent progress of baicalein in its anti-neoplastic effects and mechanismsChenjing Leihttps://www.sciencedirect.com/science/article/pii/S07533322240074670
2024Significance of flavonoids targeting PI3K/Akt/HIF-1α signaling pathway in therapy-resistant cancer cells – A potential contribution to the predictive, preventive, and personalized medicineAlena Mazurakovahttps://www.sciencedirect.com/science/article/pii/S20901232230006680
2024Baicalein Alleviates Arsenic-induced Oxidative Stress through Activation of the Keap1/Nrf2 Signalling Pathway in Normal Human Liver CellsQi Wang36959142https://pubmed.ncbi.nlm.nih.gov/36959142/0
2024Scutellaria baicalensis and its flavonoids in the treatment of digestive system tumorsKangning Zhaohttps://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2024.1483785/full0
2024Synergistic antitumor activity of baicalein combined with almonertinib in almonertinib-resistant non-small cell lung cancer cells through the reactive oxygen species-mediated PI3K/Akt pathwayTeng ChenPMC11322074https://pmc.ncbi.nlm.nih.gov/articles/PMC11322074/0
2024Baicalein triggers ferroptosis in colorectal cancer cells via blocking the JAK2/STAT3/GPX4 axisJian-qin Laihttps://www.nature.com/articles/s41401-024-01258-z0
2024Baicalin and Baicalein Enhance Cytotoxicity, Proapoptotic Activity, and Genotoxicity of Doxorubicin and Docetaxel in MCF-7 Breast Cancer CellsJoanna Bernasinska-SlomczewskaPMC11173533https://pmc.ncbi.nlm.nih.gov/articles/PMC11173533/0
2024Baicalein induces apoptosis by inhibiting the glutamine-mTOR metabolic pathway in lung cancerJingyang LiPMC11785570https://pmc.ncbi.nlm.nih.gov/articles/PMC11785570/0
2024Exploring baicalein: A natural flavonoid for enhancing cancer prevention and treatmentMadhu Hegdehttps://www.sciencedirect.com/science/article/pii/S24058440241684050
2024Potential therapeutic effects of baicalin and baicaleinKamyar SabryPMC11210699https://pmc.ncbi.nlm.nih.gov/articles/PMC11210699/0
2023Tumor cell membrane-coated continuous electrochemical sensor for GLUT1 inhibitor screeningJiaqian Zhaohttps://www.sciencedirect.com/science/article/pii/S20951779230008250
2023Baicalein and luteolin inhibit ischemia/reperfusion-induced ferroptosis in rat cardiomyocyteI-Chieh Wanghttps://www.sciencedirect.com/science/article/abs/pii/S01675273220189390
2023Baicalein as Promising Anticancer Agent: A Comprehensive Analysis on Molecular Mechanisms and Therapeutic PerspectivesA K M Helal MorshedPMC10093079https://pmc.ncbi.nlm.nih.gov/articles/PMC10093079/0
2023Baicalein Induces G2/M Cell Cycle Arrest Associated with ROS Generation and CHK2 Activation in Highly Invasive Human Ovarian Cancer CellsTzu-Chao Chuanghttps://www.researchgate.net/publication/367297544_Baicalein_Induces_G2M_Cell_Cycle_Arrest_Associated_with_ROS_Generation_and_CHK2_Activation_in_Highly_Invasive_Human_Ovarian_Cancer_Cells0
2022Baicalein May Act as a Caloric Restriction Mimetic Candidate to Improve the Antioxidant Profile in a Natural Rodent Model of AgingShambhoo Sharan Tripathi35316094https://pubmed.ncbi.nlm.nih.gov/35316094/0
2022Baicalein Inhibits the Progression and Promotes Radiosensitivity of Esophageal Squamous Cell Carcinoma by Targeting HIF-1ADongli GuoPMC9346416https://pmc.ncbi.nlm.nih.gov/articles/PMC9346416/0
2022The effect of a static magnetic field and baicalin or baicalein interactions on amelanotic melanoma cell cultures (C32)Agnieszka Synowiec‑Wojtarowiczhttps://www.researchgate.net/publication/357987947_The_effect_of_a_static_magnetic_field_and_baicalin_or_baicalein_interactions_on_amelanotic_melanoma_cell_cultures_C320
2022The Multifaceted Role of Baicalein in Cancer Management through Modulation of Cell Signalling PathwaysArshad Husain Rahmanihttps://www.mdpi.com/1420-3049/27/22/80230
2022Natural compounds targeting glycolysis as promising therapeutics for gastric cancer: A reviewMaoyuan ZhaoPMC9684197https://pmc.ncbi.nlm.nih.gov/articles/PMC9684197/0
2022Natural Baicalein-Rich Fraction as Radiosensitizer in Combination with Bismuth Oxide Nanoparticles and Cisplatin for Clinical RadiotherapyNoor Nabilah Talik SisinPMC9448000https://pmc.ncbi.nlm.nih.gov/articles/PMC9448000/0
2021Baicalein resensitizes tamoxifen‐resistant breast cancer cells by reducing aerobic glycolysis and reversing mitochondrial dysfunction via inhibition of hypoxia‐inducible factor‐1αYan ChenPMC8567056https://pmc.ncbi.nlm.nih.gov/articles/PMC8567056/0
2021Baicalin Inhibits EMT through PDK1/AKT Signaling in Human Nonsmall Cell Lung CancerJia ChenPMC8639265https://pmc.ncbi.nlm.nih.gov/articles/PMC8639265/0
2021Potential of baicalein in the prevention and treatment of cancer: A scientometric analyses based reviewElika Vermahttps://www.sciencedirect.com/science/article/pii/S17564646210030910
2021Baicalein inhibits heparin-induced Tau aggregation by initializing non-toxic Tau oligomer formationShweta Kishor Sonawanehttps://biosignaling.biomedcentral.com/articles/10.1186/s12964-021-00704-30
2021Flavonoids Targeting HIF-1: Implications on Cancer MetabolismMarek SamecPMC7794792https://pmc.ncbi.nlm.nih.gov/articles/PMC7794792/0
2020Baicalein and Baicalin Promote Melanoma Apoptosis and Senescence via Metabolic InhibitionLan HuanPMC7477299https://pmc.ncbi.nlm.nih.gov/articles/PMC7477299/0
2020Baicalein ameliorates ionizing radiation-induced injuries by rebalancing gut microbiota and inhibiting apoptosisMeifang Wanghttps://www.sciencedirect.com/science/article/abs/pii/S00243205203121690
2020Baicalein inhibits KB oral cancer cells by inducing apoptosis via modulation of ROSS. Vijayhttps://www.researchgate.net/publication/371719819_Baicalein_inhibits_KB_oral_cancer_cells_by_inducing_apoptosis_via_modulation_of_ROS0
2020Radiotherapy Increases 12-LOX and CCL5 Levels in Esophageal Cancer Cells and Promotes Cancer Metastasis via THP-1-Derived MacrophagesSi MiPMC7415441https://pmc.ncbi.nlm.nih.gov/articles/PMC7415441/0
2020Baicalin, a Potent Inhibitor of NF-κB Signaling Pathway, Enhances Chemosensitivity of Breast Cancer Cells to Docetaxel and Inhibits Tumor Growth and Metastasis Both In Vitro and In VivoAnqi ZengPMC7311669https://pmc.ncbi.nlm.nih.gov/articles/PMC7311669/0
2020Baicalein attenuates cardiac hypertrophy in mice via suppressing oxidative stress and activating autophagy in cardiomyocytesBing-yan LiuPMC8115069https://pmc.ncbi.nlm.nih.gov/articles/PMC8115069/0
2019Activation of the Nrf2/HO-1 signaling pathway contributes to the protective effects of baicalein against oxidative stress-induced DNA damage and apoptosis in HEI193 Schwann cellsJae Yeob JeongPMC6332480https://pmc.ncbi.nlm.nih.gov/articles/PMC6332480/0
2019Baicalein, as a Prooxidant, Triggers Mitochondrial Apoptosis in MCF-7 Human Breast Cancer Cells Through Mobilization of Intracellular Copper and Reactive Oxygen Species GenerationZheng-Hong LiuPMC6910096https://pmc.ncbi.nlm.nih.gov/articles/PMC6910096/0
2019Hepatoprotective Effect of Baicalein Against Acetaminophen-Induced Acute Liver Injury in MiceHong-Chao Zhouhttps://www.mdpi.com/1420-3049/24/1/1310
2019Baicalein and baicalin promote antitumor immunity by suppressing PD-L1 expression in hepatocellular carcinoma cellsMengyun Ke31437792https://pubmed.ncbi.nlm.nih.gov/31437792/0
2018Baicalein induces apoptosis and autophagy of breast cancer cells via inhibiting PI3K/AKT pathway in vivo and vitroWanjun YanPMC6248272https://pmc.ncbi.nlm.nih.gov/articles/PMC6248272/0
2018Baicalein Enhances the Oral Bioavailability and Hepatoprotective Effects of Silybin Through the Inhibition of Efflux Transporters BCRP and MRP2Peng XuPMC6212553https://pmc.ncbi.nlm.nih.gov/articles/PMC6212553/0
2018Baicalein sensitizes hepatocellular carcinoma cells to 5-FU and Epirubicin by activating apoptosis and ameliorating P-glycoprotein activityJun Lihttps://www.sciencedirect.com/science/article/abs/pii/S07533322173353820
2017Therapeutic potentials of baicalin and its aglycone, baicalein against inflammatory disordersBiswanath Dindahttps://www.sciencedirect.com/science/article/abs/pii/S02235234173015380
2017Downregulation of ZFX is associated with inhibition of prostate cancer progression by baicaleinWenhui Zhuhttps://tcr.amegroups.org/article/view/161700
2017Baicalein decreases uric acid and prevents hyperuricemic nephropathy in miceXiaolu MengPMC5522264https://pmc.ncbi.nlm.nih.gov/articles/PMC5522264/0
2017Baicalein as a potent neuroprotective agent: A reviewKandhasamy Sowndhararajanhttps://www.sciencedirect.com/science/article/abs/pii/S07533322173401430
2017Inhibiting reactive oxygen species-dependent autophagy enhanced baicalein-induced apoptosis in oral squamous cell carcinomaBo Lihttps://www.researchgate.net/publication/313457079_Inhibiting_reactive_oxygen_species-dependent_autophagy_enhanced_baicalein-induced_apoptosis_in_oral_squamous_cell_carcinoma0
2017Baicalein: A review of its anti-cancer effects and mechanisms in Hepatocellular CarcinomaBeibei Bie28747003https://pubmed.ncbi.nlm.nih.gov/28747003/0
2017Anticancer properties of baicalein: a reviewYing GaoPMC5166718https://pmc.ncbi.nlm.nih.gov/articles/PMC5166718/0
2016The Fascinating Effects of Baicalein on Cancer: A ReviewHui Liuhttps://www.mdpi.com/1422-0067/17/10/16810
2016Cardioprotective effects of baicalein on heart failure via modulation of Ca2 + handling proteins in vivo and in vitroFali Zhaohttps://www.sciencedirect.com/science/article/abs/pii/S00243205153012960
2016The Traditional Chinese Medicine Baicalein Potently Inhibits Gastric Cancer CellsJiasheng MuPMC4749366https://pmc.ncbi.nlm.nih.gov/articles/PMC4749366/0
2016Baicalein induces apoptosis via ROS-dependent activation of caspases in human bladder cancer 5637 cellsEun-Ok Choihttps://www.researchgate.net/publication/304990724_Baicalein_induces_apoptosis_via_ROS-dependent_activation_of_caspases_in_human_bladder_cancer_5637_cells0
2016Baicalein Induces Caspase-dependent Apoptosis Associated with the Generation of ROS and the Activation of AMPK in Human Lung Carcinoma A549 CellsHong Jae Kim26971531https://pubmed.ncbi.nlm.nih.gov/26971531/0
2016Baicalein Induces Caspase‐dependent Apoptosis Associated with the Generation of ROS and the Activation of AMPK in Human Lung Carcinoma A549 CellsCheol Whee Parkhttps://www.researchgate.net/publication/298335734_Baicalein_Induces_Caspase-dependent_Apoptosis_Associated_with_the_Generation_of_ROS_and_the_Activation_of_AMPK_in_Human_Lung_Carcinoma_A549_Cells0
2015Baicalein, a Component of Scutellaria baicalensis, Attenuates Kidney Injury Induced by Myocardial Ischemia and ReperfusionChang-Chi Laihttps://www.semanticscholar.org/paper/Baicalein%2C-a-Component-of-Scutellaria-baicalensis%2C-Lai-Huang/16b5487109c26bdc67412a5813367ab73d5b35950
2015Baicalein inhibits prostate cancer cell growth and metastasis via the caveolin-1/AKT/mTOR pathwayZhaoxin GuoPMC4502300https://pmc.ncbi.nlm.nih.gov/articles/PMC4502300/0
2015Baicalein Decreases Hydrogen Peroxide‐Induced Damage to NG108‐15 Cells via Upregulation of Nrf2Chao‐Hung Yeh25557231https://pubmed.ncbi.nlm.nih.gov/25557231/0
2015Baicalein induces human osteosarcoma cell line MG-63 apoptosis via ROS-induced BNIP3 expressionFangfan Yehttps://www.researchgate.net/publication/271389262_Baicalein_induces_human_osteosarcoma_cell_line_MG-63_apoptosis_via_ROS-induced_BNIP3_expression0
2015Baicalein reverses hypoxia-induced 5-FU resistance in gastric cancer AGS cells through suppression of glycolysis and the PTEN/Akt/HIF-1α signaling pathwayFenglin Chen25333894https://pubmed.ncbi.nlm.nih.gov/25333894/0
2015Baicalein, a Bioflavonoid, Prevents Cisplatin-Induced Acute Kidney Injury by Up-Regulating Antioxidant Defenses and Down-Regulating the MAPKs and NF-κB PathwaysBidya Dhar SahuPMC4519041https://pmc.ncbi.nlm.nih.gov/articles/PMC4519041/0
2014Baicalein Induces Apoptosis and Autophagy via Endoplasmic Reticulum Stress in Hepatocellular Carcinoma CellsZhongxia Wanghttps://onlinelibrary.wiley.com/doi/10.1155/2014/7325160
2014Inhibition of 12/15 lipoxygenase by baicalein reduces myocardial ischemia/reperfusion injury via modulation of multiple signaling pathwaysLina Song24248985https://pubmed.ncbi.nlm.nih.gov/24248985/0
2013Baicalein reduces lipopolysaccharide-induced inflammation via suppressing JAK/STATs activation and ROS productionZhilin Qi23743662https://pubmed.ncbi.nlm.nih.gov/23743662/0
2013Baicalein induces apoptosis via a mitochondrial-dependent caspase activation pathway in T24 bladder cancer cellsHong-Liang Li23064738https://pubmed.ncbi.nlm.nih.gov/23064738/0
2012Hepatoprotective effects of baicalein against CCl4-induced acute liver injury in miceHai-Li Huanghttps://www.wjgnet.com/1007-9327/full/v18/i45/6605.htm0
2012Proteomic analysis of the effects of baicalein on colorectal cancer cellsWen-Shih Huang22539432https://pubmed.ncbi.nlm.nih.gov/22539432/0
2012Baicalein – An Intriguing Therapeutic Phytochemical in Pancreatic CancerGraham DonaldPMC3678518https://pmc.ncbi.nlm.nih.gov/articles/PMC3678518/0
2011Studies on the Inhibitory Mechanisms of Baicalein in B16F10 Melanoma Cell ProliferationW.-H. Hsuhttps://www.researchgate.net/publication/286217027_Studies_on_the_Inhibitory_Mechanisms_of_Baicalein_in_B16F10_Melanoma_Cell_Proliferation0
2010Common Botanical Compounds Inhibit the Hedgehog Signaling Pathway in Prostate CancerAnna SlusarzPMC4546096https://aacrjournals.org/cancerres/article/70/8/3382/562551/Common-Botanical-Compounds-Inhibit-the-Hedgehog0
2010Baicalein inhibits melanogenesis through activation of the ERK signaling pathwayXiaohong Li20428797https://pubmed.ncbi.nlm.nih.gov/20428797/0
2008The role of Ca2+ in baicalein-induced apoptosis in human breast MDA-MB-231 cancer cells through mitochondria- and caspase-3-dependent pathwayJau-Hong Leehttps://pubmed.ncbi.nlm.nih.gov/18630529/0
2008Baicalein Overcomes Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand Resistance via Two Different Cell-Specific Pathways in Cancer Cells but not in Normal CellsHiroya Taniguchihttps://aacrjournals.org/cancerres/article/68/21/8918/541808/Baicalein-Overcomes-Tumor-Necrosis-Factor-Related0
2007Baicalein inhibition of hydrogen peroxide-induced apoptosis via ROS-dependent heme oxygenase 1 gene expressionHui-Yi Linhttps://www.sciencedirect.com/science/article/pii/S01674889070008940
2006Baicalein and 12/15-Lipoxygenase in the Ischemic BrainKlaus van Leyen, PhDhttps://www.ahajournals.org/doi/10.1161/01.STR.0000249004.25444.a50
2004Baicalein induces apoptosis through ROS-mediated mitochondrial dysfunction pathway in HL-60 cellsJianwu Wang15375593https://pubmed.ncbi.nlm.nih.gov/15375593/0
2003Comparison of metabolic pharmacokinetics of baicalin and baicalein in ratsMiao-Ying Lai12631413https://pubmed.ncbi.nlm.nih.gov/12631413/0
2023Targeting Breast Cancer Stem CellsLu ZhangPMC9830502https://pmc.ncbi.nlm.nih.gov/articles/PMC9830502/0
2010The effect of dietary polyphenols on the epigenetic regulation of gene expression in MCF7 breast cancer cellsJarosław Paluszczak19840838https://pubmed.ncbi.nlm.nih.gov/19840838/0