tbResList Print — Uro Urolithin

Filters: qv=383, qv2=%, rfv=%

Product

Uro Urolithin
Description: <b>Urolithins</b> are gut microbiota–derived dibenzopyran-6-one metabolites formed from ellagitannins → ellagic acid. They are the bioactive, systemically relevant forms responsible for most of the anticancer, mitochondrial, and signaling effects attributed to pomegranate and berry consumption.<br>

Ellagic acid itself is largely confined to the gut lumen; urolithins are what reach circulation and tissues.<br>
<br>
Urolithin A (UA), Most studied; mitophagy, anticancer, anti-inflammatory<br>
<pre>
Humans fall into urolithin metabotypes:
Metabotype Description Approx. Population
A Produces UA (best profile) ~40%
B Produces UB ± UA ~25–30%
0 Non-producer ~30%

ROS Modulation (Context-Dependent)
Cancer cells:
-Mild ROS ↑ or redox stress → apoptosis, growth arrest
Normal cells:
-ROS ↓, improved mitochondrial efficiency

This duality is why urolithins are less chemo-antagonistic than classic antioxidants.

Anticancer Signaling
↓ PI3K/AKT/mTOR
↓ Wnt/β-catenin
↓ NF-κB, STAT3
Cell-cycle arrest (G1/S)

Unlike sulforaphane or NAC, urolithins:
-Do not strongly upregulate NRF2 in cancer cells
-May normalize NRF2 signaling in normal cells
</pre>

Direct Urolithin A Supplements: Bypass microbiome dependency<br>
<br>


Urolithin A–type activity — Cancer vs Normal Cell Effects
<table>
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells</th>
<th>Normal Cells</th>
<th>Label</th>
<th>Primary Interpretation</th>
<th>Notes</th>
</tr>

<tr>
<td>1</td>
<td>Mitophagy / mitochondrial quality control (PINK1–Parkin axis)</td>
<td>↑ mitophagy → loss of mitochondrial reserve</td>
<td>↑ mitophagy → improved mitochondrial fitness</td>
<td>Driver</td>
<td>Mitochondrial pruning and quality enforcement</td>
<td>Urolithins selectively stress cancer cells by removing dysfunctional mitochondria while rejuvenating normal-cell mitochondrial pools</td>
</tr>

<tr>
<td>2</td>
<td>Mitochondrial metabolism / bioenergetics</td>
<td>↓ metabolic flexibility; ↓ ATP resilience</td>
<td>↑ oxidative efficiency</td>
<td>Driver</td>
<td>Energy stress vs optimization</td>
<td>Cancer cells are less able to compensate for enforced mitochondrial turnover</td>
</tr>

<tr>
<td>3</td>
<td>Reactive oxygen species (ROS)</td>
<td>↑ ROS (secondary to mitochondrial stress)</td>
<td>↓ ROS</td>
<td>Secondary</td>
<td>Metabolism-linked redox shift</td>
<td>ROS changes arise from altered mitochondrial populations, not direct redox cycling</td>
</tr>

<tr>
<td>4</td>
<td>AMPK / mTOR nutrient-sensing axis</td>
<td>↑ AMPK; ↓ mTOR signaling</td>
<td>↑ AMPK (adaptive)</td>
<td>Secondary</td>
<td>Catabolic pressure and growth restraint</td>
<td>Energy-sensing pathways reinforce growth suppression in metabolically stressed tumor cells</td>
</tr>

<tr>
<td>5</td>
<td>Cell cycle regulation</td>
<td>↓ proliferation / ↑ arrest</td>
<td>↔ spared</td>
<td>Phenotypic</td>
<td>Cytostatic growth limitation</td>
<td>Growth inhibition reflects bioenergetic insufficiency rather than direct CDK inhibition</td>
</tr>

<tr>
<td>6</td>
<td>Inflammatory signaling (NF-κB / cytokines)</td>
<td>↓ pro-tumor inflammation</td>
<td>↓ inflammatory tone</td>
<td>Secondary</td>
<td>Anti-inflammatory modulation</td>
<td>Reduced inflammation contributes to chemopreventive and microenvironmental effects</td>
</tr>

<tr>
<td>7</td>
<td>NRF2 antioxidant response</td>
<td>↑ NRF2 (adaptive, secondary)</td>
<td>↑ NRF2 (protective)</td>
<td>Adaptive</td>
<td>Redox homeostasis reinforcement</td>
<td>NRF2 activation reflects improved mitochondrial quality and reduced oxidative burden rather than a cytotoxic mechanism</td>
</tr>


<tr>
<td>8</td>
<td>Apoptosis sensitivity</td>
<td>↑ sensitivity to apoptosis (stress-context dependent)</td>
<td>↓ apoptosis</td>
<td>Phenotypic</td>
<td>Threshold-dependent cell death</td>
<td>Apoptosis occurs when mitochondrial and energetic stress exceed adaptive capacity</td>
</tr>

</table>


Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

GPx↑, 1,   MDA↓, 1,   ROS↑, 5,   ROS↓, 2,   SOD↑, 1,  

Mitochondria & Bioenergetics

MMP↓, 2,   mtDam↓, 1,   XIAP↓, 1,  

Core Metabolism/Glycolysis

cMyc↑, 1,   cMyc↓, 1,   SIRT1↑, 1,   Warburg↓, 1,  

Cell Death

Akt↓, 4,   p‑Akt↓, 2,   Apoptosis↑, 12,   Apoptosis↓, 1,   BAX↑, 3,   Bcl-2↓, 3,   Casp↑, 2,   Casp3↑, 2,   cl‑Casp3↑, 1,   Casp9↑, 1,   Cyt‑c↑, 1,   Hippo↑, 1,   MAPK↓, 1,   MDM2↑, 2,   MDM2↓, 1,   NOXA↑, 1,   p38↑, 1,   PUMA↑, 1,   survivin↓, 1,   TumCD↑, 1,  

Kinase & Signal Transduction

p‑p70S6↓, 1,  

Transcription & Epigenetics

other↝, 1,   tumCV↓, 3,  

Protein Folding & ER Stress

ER Stress↑, 1,  

Autophagy & Lysosomes

TumAuto↝, 1,   TumAuto↑, 3,  

DNA Damage & Repair

P53↑, 6,   P53↝, 1,   p53 Wildtype↑, 1,   PARP↑, 2,  

Cell Cycle & Senescence

cycD1/CCND1↓, 1,   P21↑, 5,   TumCCA↑, 8,   TumCCA↓, 1,  

Proliferation, Differentiation & Cell State

EMT↓, 3,   ERK↓, 2,   FOXO1↑, 2,   IGF-1↓, 1,   p‑mTOR↓, 1,   mTOR↓, 2,   PI3K↓, 4,   RAS↓, 1,   STAT3↓, 1,   TumCG↓, 8,   Wnt↓, 2,  

Migration

E-cadherin↑, 3,   ER-α36↝, 1,   MMP2?, 1,   MMP2↓, 2,   MMP9↓, 3,   MMP9?, 1,   N-cadherin↓, 3,   Snail↓, 3,   Treg lymp↓, 1,   TumCA↑, 1,   TumCI↓, 4,   TumCMig↓, 7,   TumCP↓, 10,   TumMeta↓, 2,   Vim↓, 3,   β-catenin/ZEB1↓, 1,  

Angiogenesis & Vasculature

angioG↓, 1,   TAMS↓, 1,  

Immune & Inflammatory Signaling

COX2↓, 2,   IL1β↓, 2,   IL6↓, 3,   Imm↑, 1,   Inflam↓, 2,   NF-kB↓, 3,   NK cell↑, 1,   PD-1↓, 1,   TNF-α↓, 1,  

Cellular Microenvironment

TIM-3↓, 1,  

Hormonal & Nuclear Receptors

AR↓, 2,  

Drug Metabolism & Resistance

BioAv↝, 1,   BioAv↑, 3,   ChemoSen↑, 4,   ChemoSen↝, 1,   ChemoSen↓, 1,   Dose↑, 1,   eff↓, 2,   eff↑, 4,   Half-Life↝, 1,   RadioS↑, 1,   selectivity↑, 3,  

Clinical Biomarkers

AR↓, 2,   GutMicro↑, 2,   IL6↓, 3,   NOS2↓, 1,  

Functional Outcomes

AntiAge↑, 1,   AntiCan↓, 1,   AntiCan↑, 1,   AntiTum↑, 1,   chemoP↑, 2,   OS↑, 1,   toxicity↓, 1,  
Total Targets: 108

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↓, 2,   antiOx↑, 6,   Catalase↑, 4,   Ferroptosis↓, 1,   GPx↑, 4,   GSH↑, 1,   GSR↑, 3,   H2O2↓, 1,   HO-1↑, 1,   lipid-P↓, 6,   Nrf1↑, 1,   NRF2↑, 4,   PARK2↑, 5,   ROS↓, 11,   ROS?, 1,   SIRT3↑, 2,   SOD↑, 5,   VDAC1↓, 1,  

Mitochondria & Bioenergetics

ATP↑, 2,   mt-ATP↑, 1,   mitResp↑, 1,   MMP↑, 1,   PGC-1α↑, 1,   PINK1↑, 2,  

Core Metabolism/Glycolysis

AMPK↑, 4,   CREB↑, 1,   LDL↓, 1,   SIRT1↑, 4,   SIRT1↓, 1,  

Cell Death

p‑Akt↓, 1,   Akt↓, 1,   Apoptosis↓, 5,   BAX↑, 1,   Bcl-2↓, 1,   Bcl-2↑, 1,   Casp3↑, 1,   Ferroptosis↓, 1,   MAPK↓, 2,  

Autophagy & Lysosomes

ATG5↑, 1,   Beclin-1↑, 1,   DYRK1A↓, 2,   LC3‑Ⅱ/LC3‑Ⅰ↑, 1,   lysosome↑, 1,   MitoP↑, 5,   MitoP↓, 1,   p62↓, 2,   p62↑, 1,  

DNA Damage & Repair

DNAdam↓, 1,  

Proliferation, Differentiation & Cell State

mTOR↑, 1,   mTOR↓, 2,   neuroG↑, 4,   p‑PI3K↓, 1,   PI3K↓, 1,   PTEN↑, 1,   tyrosinase↓, 1,  

Migration

Ca+2↓, 1,   Cartilage↑, 2,  

Angiogenesis & Vasculature

VEGF↓, 1,  

Barriers & Transport

BBB↑, 4,   BBB↓, 1,  

Immune & Inflammatory Signaling

COX2↓, 2,   CRP↓, 1,   CTSZ↓, 1,   CTSZ↝, 1,   IL1α↓, 1,   IL1β↓, 3,   IL2↓, 1,   IL6↓, 3,   Inflam↓, 14,   MCP1↓, 1,   MIP‑1α↓, 1,   NF-kB↓, 2,   TNF-α↓, 5,  

Synaptic & Neurotransmission

BDNF↑, 3,   MAOA↓, 1,   monoA↓, 1,   p‑tau↓, 6,   tau↓, 2,  

Protein Aggregation

Aβ↓, 13,   BACE↓, 2,   BACE↑, 1,   NLRP3↓, 3,  

Drug Metabolism & Resistance

BioAv↝, 3,   BioAv↑, 5,   BioAv↓, 2,   Dose↝, 2,   eff↓, 1,   eff↑, 3,   Half-Life↝, 1,   Half-Life↑, 1,  

Clinical Biomarkers

CRP↓, 1,   GutMicro↑, 4,   IL6↓, 3,  

Functional Outcomes

cardioP↑, 3,   cognitive↑, 11,   memory↑, 11,   motorD↑, 3,   neuroP↑, 16,   OS↑, 2,   radioP↑, 1,   RenoP↑, 1,   Risk↓, 3,   Strength↑, 4,   toxicity↓, 4,  
Total Targets: 104

Research papers

Year Title Authors PMID Link Flag
2026Dietary Urolithin B Suppresses Lung Tumorigenesis Correlating with Autophagy Induction and Gut Microbiota RemodelingJiacheng Sunhttps://www.sciencedirect.com/science/article/abs/pii/S00223166250082600
2025Urolithin A increases the natural killer activity of PBMCs in patients with prostate cancerVladimir Rogovskiihttps://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2024.1503317/full0
2025Neuroprotective Effect of Urolithin A against Cerebellum Changes in Streptozotocin-Induced Alzheimer’s Disease Rat ModelMona Taghizade Salarihttps://alz-journals.onlinelibrary.wiley.com/doi/full/10.1002/alz.0878820
2025Urolithin-A Derivative UAS03 Improves Cognitive Deficits and Memory by Activating Nrf2 Pathways to Alleviate Oxidative Stress and NeuroinflammationDipan Maity40227891https://pubmed.ncbi.nlm.nih.gov/40227891/0
2025Urolithin A in Central Nervous System Disorders: Therapeutic Applications and ChallengesQiang Zhanghttps://www.mdpi.com/2227-9059/13/7/15530
2025Neuroprotective effect of Urolithin A via downregulating VDAC1-mediated autophagy in Alzheimer's diseaseBensi Zhanghttps://www.sciencedirect.com/science/article/pii/S00651281250006250
2025Urolithins–gut Microbial Metabolites with Potential Health BenefitsMaria Trapalihttps://openmedicinalchemistryjournal.com/VOLUME/19/ELOCATOR/e18741045375825/FULLTEXT/0
2025Urolithin A Enhances Tight Junction Protein Expression in Endothelial Cells Cultured In Vitro via Pink1-Parkin-Mediated Mitophagy in Irradiated AstrocytesGengxin Luhttps://link.springer.com/article/10.1007/s12031-024-02302-70
2025Evaluation and comparison of the anti-proliferative and anti-metastatic effects of urolithin A and urolithin B against esophageal cancer cells: an in vitro and in silico studyMaryam ShojaeePMC12314155https://pubmed.ncbi.nlm.nih.gov/40742486/0
2025Urolithins: Emerging natural compound targeting castration-resistant prostate cancer (CRPC)Ajit Kumar Navinhttps://www.sciencedirect.com/science/article/pii/S07533322250025250
2025Urolithin A suppressed osteosarcoma cell migration and invasion via targeting MMPs and AKT1Abdolreza AhmadiAbdolreza Ahmadi0
2025Unveiling the potential of Urolithin A in Cancer Therapy: Mechanistic Insights to Future Perspectives of NanomedicineVinita KarumuruPMC12188533https://pmc.ncbi.nlm.nih.gov/articles/PMC12188533/0
2024Urolithin A exerts anti-tumor effects on gastric cancer via activating autophagy-Hippo axis and modulating the gut microbiotaYixiao Qiaohttps://link.springer.com/article/10.1007/s00210-024-03043-50
2024Urolithin A improves Alzheimer’s disease cognition and restores mitophagy and lysosomal functionsYujun Houhttps://www.biorxiv.org/content/10.1101/2024.01.30.577986v10
2024Urolithin-A Promotes CD8+ T Cell–mediated Cancer Immunosurveillance via FOXO1 ActivationPierpaolo Ginefrahttps://aacrjournals.org/cancerrescommun/article/4/5/1189/745142/Urolithin-A-Promotes-CD8-T-Cell-mediated-Cancer0
2024Activation of the Gut–Brain Interaction by Urolithin A and Its Molecular BasisDaiki Kubotahttps://www.mdpi.com/2072-6643/16/19/33690
2024Urolithin A, induces apoptosis and autophagy crosstalk in Oral Squamous Cell Carcinoma via mTOR /AKT/ERK1/2 pathwayViji Remadevihttps://www.sciencedirect.com/science/article/abs/pii/S09447113240038050
2024Urolithin A inhibits breast cancer progression via activating TFEB-mediated mitophagy in tumor macrophagesBowen ZhengPMC11954813https://pmc.ncbi.nlm.nih.gov/articles/PMC11954813/0
2024Urolithin A improves Alzheimer's disease cognition and restores mitophagy and lysosomal functionsYujun HouPMC11180933https://pmc.ncbi.nlm.nih.gov/articles/PMC11180933/0
2024Urolithin A Inhibits Anterior Basolateral Amygdala to Ventral Hippocampal CA1 Circuit to Ameliorate Amyloid-β-Impaired Social AbilityRui Xionghttps://pubmed.ncbi.nlm.nih.gov/38759018/0
2023A review of pomegranate supplementation: A promising remedial avenue for Alzheimer's diseaseAman UllahPMC10700657https://pmc.ncbi.nlm.nih.gov/articles/PMC10700657/0
2023Urolithin A exhibits a neuroprotective effect against Alzheimer’s disease by inhibiting DYRK1A activityHuang-Ju TuPMC10281726https://pmc.ncbi.nlm.nih.gov/articles/PMC10281726/0
2023Urolithin A exhibits a neuroprotective effect against Alzheimer's disease by inhibiting DYRK1A activityHuang-Ju TuPMC10281726https://pmc.ncbi.nlm.nih.gov/articles/PMC10281726/0
2023Urolithin A: A promising selective estrogen receptor modulator and 27-hydroxycholesterol attenuator in breast cancerRavindran Vini37345359https://pubmed.ncbi.nlm.nih.gov/37345359/0
2023Urolithin A in Health and Diseases: Prospects for Parkinson’s Disease ManagementOlga WojciechowskaPMC10376282https://pmc.ncbi.nlm.nih.gov/articles/PMC10376282/0
2023Urolithin A suppresses tumor progression and induces autophagy in gastric cancer via the PI3K/Akt/mTOR pathwayYingjing Zhang36477869https://pubmed.ncbi.nlm.nih.gov/36477869/0
2023Urolithins: A Prospective Alternative against Brain AgingLei Anhttps://www.mdpi.com/2072-6643/15/18/38840
2022Study on the biological mechanism of urolithin a on nasopharyngeal carcinoma in vitroYang YangPMC9377270https://pmc.ncbi.nlm.nih.gov/articles/PMC9377270/0
2022A Combination Therapy of Urolithin A+EGCG Has Stronger Protective Effects than Single Drug Urolithin A in a Humanized Amyloid Beta Knockin Mice for Late-Onset Alzheimer's DiseaseSudhir KshirsagarPMC9454743https://pmc.ncbi.nlm.nih.gov/articles/PMC9454743/0
2022The Therapeutic Potential of Urolithin A for Cancer Treatment and PreventionVladimir Rogovskiihttps://www.researchgate.net/publication/361069135_The_therapeutic_potential_of_urolithin_A_for_cancer_treatment_and_prevention0
2022A Synergistic Combination of DHA, Luteolin, and Urolithin A Against Alzheimer’s DiseaseDona P W JayatungaPMC8890506https://pmc.ncbi.nlm.nih.gov/articles/PMC8890506/0
2022Urolithin A reduces amyloid-beta load and improves cognitive deficits uncorrelated with plaque burden in a mouse model of Alzheimer's diseaseJosué Ballesteros-ÁlvarezPMC9886708https://pmc.ncbi.nlm.nih.gov/articles/PMC9886708/0
2021Impact of the Natural Compound Urolithin A on Health, Disease, and AgingDavide D’Amicohttps://www.sciencedirect.com/science/article/pii/S14714914210011800
2021Urolithins: The Gut Based Polyphenol Metabolites of Ellagitannins in Cancer Prevention, a ReviewSami A. Al-Harbihttps://www.frontiersin.org/journals/nutrition/articles/10.3389/fnut.2021.647582/full0
2021Therapeutic Potential of Mitophagy-Inducing Microflora Metabolite, Urolithin A for Alzheimer's DiseaseDona Pamoda W Jayatungahttps://pmc.ncbi.nlm.nih.gov/articles/PMC8617978/0
2021Urolithin A Inhibits Epithelial–Mesenchymal Transition in Lung Cancer Cells via P53-Mdm2-Snail PathwayFeng ChengPMC8139733https://pmc.ncbi.nlm.nih.gov/articles/PMC8139733/0
2021Urolithin A induces cell cycle arrest and apoptosis by inhibiting Bcl-2, increasing p53-p21 proteins and reactive oxygen species production in colorectal cancer cellsMohammad S El-WetidyPMC8065090https://pmc.ncbi.nlm.nih.gov/articles/PMC8065090/0
2021Direct supplementation with Urolithin A overcomes limitations of dietary exposure and gut microbiome variability in healthy adults to achieve consistent levels across the populationAnurag Singhhttps://www.nature.com/articles/s41430-021-00950-10
2020Urolithin A suppresses high glucose-induced neuronal amyloidogenesis by modulating TGM2-dependent ER-mitochondria contacts and calcium homeostasisHyun Jik Leehttps://www.nature.com/articles/s41418-020-0593-10
2020Urolithin A induces prostate cancer cell death in p53-dependent and in p53-independent mannerYasir I Mohammed Saleem31177307https://pubmed.ncbi.nlm.nih.gov/31177307/0
2020The Metabolite Urolithin-A Ameliorates Oxidative Stress in Neuro-2a Cells, Becoming a Potential Neuroprotective AgentGuillermo CásedasPMC7070385https://pmc.ncbi.nlm.nih.gov/articles/PMC7070385/0
2020The gut microbiota metabolite urolithin A, but not other relevant urolithins, induces p53-dependent cellular senescence in human colon cancer cellsJuan Antonio Giménez-Bastidahttps://www.sciencedirect.com/science/article/abs/pii/S02786915203014840
2019Urolithin A attenuates memory impairment and neuroinflammation in APP/PS1 miceZhuo Gonghttps://link.springer.com/article/10.1186/s12974-019-1450-30
2018Urolithin A, a novel natural compound to target PI3K/AKT/mTOR pathway in pancreatic cancerTulasigeri M TotigerPMC63638540
2018The effects of urolithins on the response of prostate cancer cells to non-steroidal antiandrogen bicalutamideIwona J Stanisławska30097116https://pubmed.ncbi.nlm.nih.gov/30097116/0
2018Urolithin A gains in antiproliferative capacity by reducing the glycolytic potential via the p53/TIGAR axis in colon cancer cellsElisabeth NordenPMC6412115https://pmc.ncbi.nlm.nih.gov/articles/PMC6412115/0
2017Urolithins impair cell proliferation, arrest the cell cycle and induce apoptosis in UMUC3 bladder cancer cellsJoana Liberalhttps://link.springer.com/article/10.1007/s10637-017-0483-70
2017Metabolite of ellagitannins, urolithin A induces autophagy and inhibits metastasis in human sw620 colorectal cancer cellsWenhua ZhaoPMC5814919https://pmc.ncbi.nlm.nih.gov/articles/PMC5814919/0