tbResList Print — DSF Disulfiram

Filters: qv=387, qv2=%, rfv=%

Product

DSF Disulfiram
Description: <b>Disulfiram</b> is a synthetic small-molecule drug best known for its use in the treatment of chronic alcohol use disorder. It is a thiuram disulfide compound with the chemical formula C₁₀H₂₀N₂S₄ and acts primarily as an aldehyde dehydrogenase (ALDH) inhibitor.
<pre>
Main Actions:
-Potent copper-dependent pro-oxidant
-Targets ALDH⁺ cancer stem cells
-Strong clinical repurposing interest

Key pathways
-Cu-mediated redox cycling
-Proteasome inhibition
-Mitochondrial ROS

Chemo relevance
-Often synergistic
-Highly mechanism-dependent
</pre>


<table border="1" cellspacing="0" cellpadding="4">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells</th>
<th>Normal Cells</th>
<th>Label</th>
<th>Primary Interpretation</th>
<th>Notes</th>
</tr>

<tr>
<td>1</td>
<td>Metal chelation / Disulfiram–Cu complex formation</td>
<td>↑ DSF–Cu complex formation</td>
<td>↔ limited formation</td>
<td>Driver</td>
<td>Copper-dependent cytotoxic chemistry</td>
<td>Elevated copper in cancer cells enables formation of cytotoxic DSF–Cu complexes; this is the initiating event for most anticancer effects</td>
</tr>

<tr>
<td>2</td>
<td>Proteasome / p97–NPL4 axis</td>
<td>↓ proteasome function; ↑ proteotoxic stress</td>
<td>↔ minimal disruption</td>
<td>Driver</td>
<td>Protein homeostasis collapse</td>
<td>DSF–Cu disrupts protein degradation pathways, leading to accumulation of misfolded proteins and stress signaling</td>
</tr>

<tr>
<td>3</td>
<td>Reactive oxygen species (ROS)</td>
<td>↑ ROS (metal-dependent)</td>
<td>↔ buffered</td>
<td>Secondary</td>
<td>Oxidative stress amplification</td>
<td>ROS rise follows DSF–Cu redox cycling and proteotoxic stress; not the primary trigger</td>
</tr>

<tr>
<td>4</td>
<td>Mitochondrial integrity / intrinsic apoptosis</td>
<td>↓ ΔΨm; ↑ caspase activation</td>
<td>↔ preserved</td>
<td>Secondary</td>
<td>Execution of cell death</td>
<td>Mitochondrial dysfunction and apoptosis occur downstream of proteostasis and redox stress</td>
</tr>

<tr>
<td>5</td>
<td>ALDH activity (ALDH1A1 / stemness)</td>
<td>↓ ALDH activity</td>
<td>↓ ALDH (clinically tolerated)</td>
<td>Secondary</td>
<td>Cancer stem-like cell targeting</td>
<td>ALDH inhibition preferentially impacts cancer stem-like populations; normal cells tolerate inhibition at therapeutic exposure</td>
</tr>

<tr>
<td>6</td>
<td>NF-κB signaling</td>
<td>↓ NF-κB activation</td>
<td>↓ inflammatory NF-κB tone</td>
<td>Secondary</td>
<td>Suppression of survival transcription</td>
<td>NF-κB inhibition reflects upstream proteotoxic and redox stress rather than direct targeting</td>
</tr>

<tr>
<td>7</td>
<td>Cell cycle progression</td>
<td>↓ proliferation / ↑ arrest</td>
<td>↔ largely spared</td>
<td>Phenotypic</td>
<td>Cytostatic growth control</td>
<td>Growth inhibition reflects impaired protein turnover and metabolic stress</td>
</tr>

<tr>
<td>8</td>
<td>Apoptosis / non-apoptotic death</td>
<td>↑ apoptosis or proteotoxic death</td>
<td>↔ protected</td>
<td>Phenotypic</td>
<td>Threshold-dependent cell death</td>
<td>Cell death modality depends on copper availability and stress magnitude</td>
</tr>

</table>

Pathway results for Effect on Cancer / Diseased Cells

NA, unassigned

DrugR↓, 1,  

Redox & Oxidative Stress

Ferroptosis↑, 2,   GSH/GSSG↓, 1,   GSR↓, 1,   ox-GSSG↑, 1,   HO-1↓, 1,   ICD↑, 1,   Iron↑, 2,   Keap1↓, 1,   lipid-P↑, 2,   NRF2↓, 3,   ROS↑, 7,   SOD↓, 2,   SOD1↓, 1,  

Mitochondria & Bioenergetics

ATP↓, 1,   MMP↓, 1,   mtDam↑, 1,  

Core Metabolism/Glycolysis

CREB↓, 1,  

Cell Death

Akt↓, 1,   Apoptosis↑, 4,   ATF2↓, 1,   Ferroptosis↑, 2,   JNK↑, 2,   p‑JNK↑, 1,   MAPK↓, 2,   Myc↑, 1,   Proteasome?, 1,   Proteasome↓, 1,   TumCD↑, 4,  

Transcription & Epigenetics

tumCV↑, 1,  

Autophagy & Lysosomes

p‑p62↑, 1,  

DNA Damage & Repair

DNAdam↑, 2,  

Cell Cycle & Senescence

cycA1/CCNA1↓, 1,   cycD1/CCND1↓, 1,   TumCCA↑, 1,  

Proliferation, Differentiation & Cell State

ALDH↓, 2,   CSCs↓, 5,   EMT↓, 2,   FOXO↑, 1,   TumCG↓, 3,  

Migration

MMP1↓, 1,   TumCI↓, 2,   TumCMig↓, 2,   TumCP↓, 3,   TumCP↑, 1,   TumMeta↓, 3,   Vim↓, 1,  

Angiogenesis & Vasculature

angioG↓, 6,  

Barriers & Transport

P-gp↓, 2,  

Immune & Inflammatory Signaling

HMGB1↑, 1,   Imm↑, 2,   NF-kB↓, 6,   NF-kB↑, 1,   p65↓, 1,   PD-L1↑, 1,  

Drug Metabolism & Resistance

BioAv↝, 1,   BioAv↑, 2,   BioAv↓, 1,   ChemoSen↑, 6,   Dose↝, 3,   eff↑, 9,   eff↓, 4,   Half-Life↓, 1,   Half-Life↑, 1,   RadioS↑, 5,   selectivity↑, 2,  

Clinical Biomarkers

Myc↑, 1,   PD-L1↑, 1,  

Functional Outcomes

antiNeop↑, 1,   AntiTum↑, 3,   chemoP↑, 1,   OS↑, 1,   OS∅, 1,   Remission↑, 1,   toxicity↓, 2,   toxicity↝, 2,   toxicity↑, 1,  

Infection & Microbiome

Sepsis↓, 1,  
Total Targets: 78

Pathway results for Effect on Normal Cells

Immune & Inflammatory Signaling

Inflam↓, 1,  
Total Targets: 1

Research papers

Year Title Authors PMID Link Flag
2026Disulfiram/Copper Combined with Irradiation Induces Immunogenic Cell Death in MelanomaEnwen Wanghttps://www.researchgate.net/publication/399939116_DisulfiramCopper_Combined_with_Irradiation_Induces_Immunogenic_Cell_Death_in_Melanoma0
2024Disulfiram and cancer immunotherapy: Advanced nano-delivery systems and potential therapeutic strategiesDi Huanghttps://www.sciencedirect.com/science/article/pii/S25901567240007930
2024Disulfiram: A novel repurposed drug for cancer therapyZeng, Minhttps://journals.lww.com/cmj/fulltext/2024/06200/disulfiram__a_novel_repurposed_drug_for_cancer.2.aspx0
2023The immunomodulatory function and antitumor effect of disulfiram: paving the way for novel cancer therapeuticsSijia Zhanghttps://link.springer.com/article/10.1007/s12672-023-00729-90
2023Effect of Disulfiram and Copper Plus Chemotherapy vs Chemotherapy Alone on Survival in Patients With Recurrent GlioblastomaKatja Werlenius, MDhttps://jamanetwork.com/journals/jamanetworkopen/fullarticle/28029660
2023Nrf2/HO-1 Alleviates Disulfiram/Copper-Induced Ferroptosis in Oral Squamous Cell CarcinomaYanjuan Zhaohttps://link.springer.com/article/10.1007/s10528-023-10405-w0
2023Advancing Cancer Therapy with Copper/Disulfiram Nanomedicines and Drug Delivery SystemsXuejia Kanghttps://www.mdpi.com/1999-4923/15/6/15670
2022Anticancer effects of disulfiram: a systematic review of in vitro, animal, and human studiesLing WangPMC9161604https://pmc.ncbi.nlm.nih.gov/articles/PMC9161604/0
2022Leveraging disulfiram to treat cancer: Mechanisms of action, delivery strategies, and treatment regimensYao Luhttps://www.sciencedirect.com/science/article/abs/pii/S01429612210069180
2021Overcoming the compensatory elevation of NRF2 renders hepatocellular carcinoma cells more vulnerable to disulfiram/copper-induced ferroptosisXueying Renhttps://www.sciencedirect.com/science/article/pii/S22132317210028100
2014Disulfiram targeting lymphoid malignant cell lines via ROS-JNK activation as well as Nrf2 and NF-kB pathway inhibitionJie ZhaPMC4075939https://pmc.ncbi.nlm.nih.gov/articles/PMC4075939/0
2012Activation of Oxidative Stress and Down-Regulation of Nuclear Factor Erythroid 2-Related Factor May Be Responsible for Disulfiram/Copper Complex Induced Apoptosis in Lymphoid Malignancy Cell LinesFeili Chenhttps://ashpublications.org/blood/article/120/21/4869/85384/Activation-of-Oxidative-Stress-and-Down-Regulation0
2004Disulfiram inhibits activating transcription factor/cyclic AMP-responsive element binding protein and human melanoma growth in a metal-dependent manner in vitro, in mice and in a patient with metastatic diseaseSukhdev S. Brahttps://aacrjournals.org/mct/article/3/9/1049/234373/Disulfiram-inhibits-activating-transcription0