tbResList Print — SeNPs Selenium NanoParticles

Filters: qv=391, qv2=%, rfv=%

Product

SeNPs Selenium NanoParticles
Description: <b>Selenium NanoParticles</b><br>
<pre>
| Category | Role in cancer |
| -------------------------------- | ----------------------------------------------------------------------------------------------- |
| Sodium Selenium (selenite) | Direct cytotoxic redox poison |
| Selenium (organic / nutritional) | **Redox buffer & immune modulator** (generally *anti-therapy* when oxidative stress is desired) |
| SeNPs | Tunable redox-signaling anticancer platform |
</pre>

In the chemical synthesis of selenium nanoparticles, a precursor such as sodium selenite (Na₂SeO₃) is dissolved in water to form a homogenous solution. A reducing agent, like ascorbic acid or sodium borohydride (NaBH₄), is then added to the solution. The reducing agent donates electrons to the selenium ions (SeO32−SeO32), reducing them to elemental selenium (Se0Se^0). This reduction process leads to the nucleation of selenium atoms, which subsequently grow into nanoparticles through controlled aggregation. <br>
<br>
<a href="https://nestronics.ca/dbx/tbResEdit.php?rid=4440">Se NPs might be hepatoprotective.</a><br>

<a href="https://nestronics.ca/dbx/tbResList.php?qv=149&tsv=1171&wNotes=on">(chemoprotective)</a>
<a href="https://nestronics.ca/dbx/tbResList.php?qv=149&tsv=1185&wNotes=on">(radioprotective)</a>
<a href="https://nestronics.ca/dbx/tbResList.php?qv=149&tsv=1107&wNotes=on">(radiosensitizer)</a><br>

<br>
<pre>
Selenium nanoparticles (SeNPs) are a biocompatible, less-toxic,
and more controllable form of selenium compared to inorganic salts (like sodium selenite).
Major SeNPs hepatoprotective mechanisms
Mechanism Description Key markers affected
1. Antioxidant activity SeNPs boost antioxidant enzyme ↓ ROS, ↓ MDA, ↑ GSH, ↑ GPx
systems (GPx, SOD, CAT) and scavenge
ROS directly.
2. Anti-inflammatory effect Downregulate NF-κB, TNF-α, ↓ TNF-α, ↓ IL-1β, ↓ IL-6
IL-6, and COX-2 pathways.
3. Anti-apoptotic action Balance between Bcl-2/Bax and reduce ↑ Bcl-2, ↓ Bax, ↓ Caspase-3
caspase-3 activation in hepatocytes.
4. Metal/toxin chelation SeNPs can bind or transform toxic ↓ liver metal accumulation
metals (Cd²⁺, Hg²⁺, As³⁺)
into less harmful complexes.
5. Mitochondrial protection Maintain membrane potential, Preserved ΔΨm, ↑ ATP
prevent mitochondrial ROS burst,
and ATP loss.
6. Regeneration support Stimulate hepatocyte proliferation ↑ PCNA, improved histology
and repair via redox signaling
and selenoproteins.

Comparison: SeNPs vs. Sodium Selenite
Property SeNPs Sodium Selenite
Toxicity Low Moderate–high
Bioavailability Controlled, often slow- Rapid, less controllable
release
ROS balance Adaptive, mild antioxidant Can flip to pro-oxidant easily
Safety margin Wide Narrow
Hepatoprotection Strong, sustained Protective at low dose,
toxic at high dose

</pre>

Form of SeNPs matter:<br>
1. Core composition / capping agent: SeNPs can be stabilized with polysaccharides, proteins, or small molecules. Some stabilizers may interact with cellular redox systems differently—e.g., a protein-capped SeNP may have slower release and less ROS generation, whereas a bare SeNP might induce stronger ROS in cancer cells.<br>
2. Particle size: Smaller SeNPs (<50 nm) tend to generate more ROS and may enhance anticancer activity, but could theoretically interfere with ROS-dependent chemo if administered simultaneously. Larger SeNPs are slower-acting and may be safer alongside chemo.<br>
3. Surface charge / coating: Positively charged or functionalized SeNPs can preferentially enter tumor cells, whereas neutral or negatively charged forms may distribute more evenly. This affects both selective cytotoxicity and interaction with normal cells.<br>
<br>


"30 mg of Na2SeO3.5H2O was added to 90 mL of Milli-Q water.
Ascorbic acid (10 mL, 56.7 mM) was added dropwise to sodium selenite solution with vigorous stirring.
10 µL of polysorbate were added after each 2 ml of ascorbic acid.
Selenium nanoparticles were formed after the addition of ascorbic acid.
This can be visualized by a color change of the reactant solution from clear white to clear red.
All solutions were made in a sterile environment by using a sterile cabinet and double distilled water."<br>
<br>
SeNPs Cancer relevant pathways
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway (direction)</th>
<th>Notes (key mechanistic readout)</th>
<th>Ref</th>
</tr>

<tr>
<td>1</td>
<td>Redox stress / ROS ↑</td>
<td>SeNPs commonly elevate intracellular ROS in cancer cells (often upstream of downstream apoptosis/autophagy signaling).</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC8582357/">(ref)</a></td>
</tr>

<tr>
<td>2</td>
<td>DNA damage / DDR ↑</td>
<td>ROS-linked DNA damage response reported in anti-angiogenic/cancer models (e.g., DNA damage as part of the cytotoxic cascade).</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/26961468/">(ref)</a></td>
</tr>

<tr>
<td>3</td>
<td>PI3K → Akt → mTOR ↓</td>
<td>Frequently reported as inhibited (or functionally downshifted), aligning with reduced survival signaling and increased stress-death programs.</td>
<td><a href="https://www.frontiersin.org/journals/nutrition/articles/10.3389/fnut.2023.1116051/full">(ref)</a></td>
</tr>

<tr>
<td>4</td>
<td>Mitochondrial integrity (ΔΨm) ↓</td>
<td>Mitochondrial membrane potential loss is a recurring early event (mitochondria-centered cytotoxicity).</td>
<td><a href="https://royalsocietypublishing.org/doi/10.1098/rsos.180509">(ref)</a></td>
</tr>

<tr>
<td>5</td>
<td>Intrinsic apoptosis (caspase cascade) ↑</td>
<td>Activation of caspase-mediated apoptosis (e.g., caspase-3 activation) commonly follows mitochondrial disruption.</td>
<td><a href="https://royalsocietypublishing.org/doi/10.1098/rsos.180509">(ref)</a></td>
</tr>

<tr>
<td>6</td>
<td>Stress MAPK (p38) ↑</td>
<td>p38 signaling is reported as engaged in ROS-associated SeNP cytotoxicity programs (context: apoptosis signaling).</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/30564384/">(ref)</a></td>
</tr>

<tr>
<td>7</td>
<td>p53 program ↑</td>
<td>p53 pathway activation/“reactivation” can be amplified in SeNP-based constructs (p53 target genes up; apoptosis up).</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC12615484/">(ref)</a></td>
</tr>

<tr>
<td>8</td>
<td>Autophagy regulation ↑ (often pro-death or dysregulated)</td>
<td>Functionalized SeNPs can drive autophagy as a major action mode in colorectal cancer models (often intertwined with cytotoxicity).</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/30091749/">(ref)</a></td>
</tr>

<tr>
<td>9</td>
<td>Angiogenesis (VEGF → VEGFR2 → ERK/Akt) ↓</td>
<td>Anti-angiogenic SeNP designs suppress VEGF-driven signaling and tube formation in endothelial/tumor angiogenesis models.</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/26961468/">(ref)</a></td>
</tr>

<tr>
<td>10</td>
<td>NF-κB signaling ↓</td>
<td>NF-κB activation markers (e.g., p-p65 / p-IκBα) can be reduced by decorated SeNPs in inflammatory signaling models relevant to tumor-promoting inflammation.</td>
<td><a href="https://link.springer.com/article/10.1186/s12951-017-0252-y">(ref)</a></td>
</tr>

<tr>
<td>11</td>
<td>Androgen receptor axis (AR transcriptional activity) ↓</td>
<td>Reported in prostate cancer context: AR downregulation/disruption via Akt/Mdm2/AR-linked apoptosis framework.</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC3431821/">(ref)</a></td>
</tr>

<tr>
<td>12</td>
<td>Ferroptosis ↑ (Nrf2/HO-1/SLC7A11/GCLC/GPX4 ↓)</td>
<td>Some decorated SeNPs are explicitly reported to induce ferroptosis, including downregulation of System Xc−/GSH/GPX4-axis proteins and iron-homeostasis shifts.</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/39701247/">(ref)</a></td>
</tr>
</table>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

antiOx↑, 3,   Catalase↓, 1,   GSH↓, 1,   NRF2↓, 1,   ROS↑, 14,   selenoP↑, 1,   SOD↓, 1,  

Mitochondria & Bioenergetics

MMP↓, 5,   mtDam↑, 1,  

Core Metabolism/Glycolysis

LDH↑, 1,  

Cell Death

Apoptosis↑, 10,   Bcl-2↓, 1,   BIM↑, 1,   Casp↑, 2,   Casp3↑, 2,   Casp9↑, 3,   Cyt‑c↑, 1,   GADD34↑, 1,   PUMA↑, 1,   TumCD↑, 1,  

Transcription & Epigenetics

other?, 1,   other↝, 2,   tumCV↓, 2,  

Protein Folding & ER Stress

CHOP↑, 1,   ER Stress↑, 3,  

DNA Damage & Repair

DNAdam↑, 4,   P53↑, 3,   PARP↝, 1,   PCNA↓, 1,  

Cell Cycle & Senescence

TumCCA↑, 4,  

Proliferation, Differentiation & Cell State

mTOR↑, 1,   TumCG↓, 3,  

Migration

Ca+2↝, 1,   MMP2↓, 1,   MMP9↓, 1,   TumCI↓, 1,   TumCMig↓, 1,   TumCP↓, 1,   TumMeta↓, 2,  

Angiogenesis & Vasculature

angioG↓, 2,   EPR↑, 2,  

Barriers & Transport

BBB↑, 1,  

Immune & Inflammatory Signaling

Imm↑, 1,  

Drug Metabolism & Resistance

BioAv↑, 1,   ChemoSen↑, 8,   Dose?, 1,   Dose↝, 5,   eff↑, 15,   eff↝, 1,   RadioS↑, 2,   RadioS↓, 1,   selectivity↑, 15,   selectivity↓, 2,  

Clinical Biomarkers

LDH↑, 1,  

Functional Outcomes

AntiCan↑, 9,   AntiTum↑, 4,   chemoP↑, 2,   chemoPv↑, 1,   RenoP↑, 1,   Risk↓, 4,   toxicity↓, 1,   toxicity↝, 1,  
Total Targets: 62

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 15,   Catalase↑, 4,   GPx↑, 5,   GSH↑, 6,   GSTs↑, 1,   H2O2↓, 1,   HDL↑, 1,   lipid-P↓, 3,   lipid-P?, 1,   MDA↓, 3,   NRF2↑, 2,   NRF2↓, 1,   ROS↓, 16,   selenoP↑, 8,   SOD↑, 7,   TAC↑, 1,  

Core Metabolism/Glycolysis

ALAT↓, 6,   AMPK↓, 1,   glucose↓, 1,   LDH↓, 1,   LDL↓, 1,  

Cell Death

Apoptosis↓, 1,  

Transcription & Epigenetics

other↝, 8,   other↓, 1,  

Autophagy & Lysosomes

ATG3↓, 1,  

DNA Damage & Repair

DNAdam↓, 3,  

Migration

AntiAg↑, 1,   ROCK1↓, 1,  

Barriers & Transport

BBB↑, 1,  

Immune & Inflammatory Signaling

CRP↓, 2,   IL1β↓, 1,   IL6↓, 2,   Imm↑, 1,   Inflam↓, 12,   NF-kB↓, 1,   p65↓, 1,   TNF-α↓, 4,  

Protein Aggregation

Aβ↓, 1,  

Drug Metabolism & Resistance

BioAv↑, 10,   Dose⇅, 1,   Dose↝, 21,   Dose?, 1,   eff↑, 13,   eff↝, 2,   RadioS↑, 1,  

Clinical Biomarkers

ALAT↓, 6,   Albumin↑, 1,   ALP↓, 2,   AST↓, 5,   creat↓, 1,   CRP↓, 2,   GutMicro↑, 4,   IL6↓, 2,   LDH↓, 1,  

Functional Outcomes

AntiCan↑, 1,   AntiDiabetic↑, 1,   cardioP↑, 1,   cognitive↑, 1,   hepatoP↑, 7,   neuroP↑, 1,   radioP↑, 3,   RenoP↑, 2,   Risk↓, 1,   toxicity↓, 20,   toxicity↝, 1,  

Infection & Microbiome

Bacteria↓, 10,   Sepsis↓, 1,  
Total Targets: 67

Research papers

Year Title Authors PMID Link Flag
2022Inhibiting Metastasis and Improving Chemosensitivity via Chitosan-Coated Selenium Nanoparticles for Brain Cancer TherapyPaweena DanaPMC9370598https://pmc.ncbi.nlm.nih.gov/articles/PMC9370598/0
2025Selenium in cancer management: exploring the therapeutic potentialLingwen Hehttps://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2024.1490740/full0
2025Selenium, silver, and gold nanoparticles: Emerging strategies for hepatic oxidative stress and inflammation reductionKarthik K Karunakarhttps://www.sciencedirect.com/science/article/pii/S27906760250001600
2025Nano-chitosan-coated, green-synthesized selenium nanoparticles as a novel antifungal agent against Sclerotinia sclerotiorum in vitro studyMohamed M. Desoukyhttps://www.nature.com/articles/s41598-024-79574-x0
2025Selenium Nanoparticles in Cancer Therapy: Unveiling Cytotoxic Mechanisms and Therapeutic PotentialSumaira Anjumhttps://onlinelibrary.wiley.com/doi/full/10.1002/cnr2.702100
2025Biogenic synthesized selenium nanoparticles combined chitosan nanoparticles controlled lung cancer growth via ROS generation and mitochondrial damage pathwayRana I. Mahmoodhttps://www.degruyterbrill.com/document/doi/10.1515/ntrev-2025-0142/html0
2025Selenium nanoparticles: influence of reducing agents on particle stability and antibacterial activity at biogenic concentrationsAneta Bužkováhttps://pubs.rsc.org/en/content/articlehtml/2025/nr/d4nr05271d0
2025Synthesis, Characterization, and Cytotoxic Evaluation of Selenium NanoparticlesZinah Ayyed Habeebhttps://biomedpharmajournal.org/vol18no1/synthesis-characterization-and-cytotoxic-evaluation-of-selenium-nanoparticles/0
2025Modulatory effects of selenium nanoparticles on gut microbiota and metabolites of juvenile Nile tilapia (Oreochromis niloticus) by microbiome-metabolomic analysisJing Nihttps://www.sciencedirect.com/science/article/pii/S23525134250001340
2025Prophylactic supplementation with biogenic selenium nanoparticles mitigated intestinal barrier oxidative damage through suppressing epithelial-immune crosstalk with gut-on-a-chipLei Qiao40262719https://pubmed.ncbi.nlm.nih.gov/40262719/0
2025Histopathological Evaluation of Radioprotective Effects: Selenium Nanoparticles Protect Lung Tissue from Radiation DamageMirzaei, Fatemehhttps://journals.lww.com/adbm/fulltext/2025/07310/histopathological_evaluation_of_radioprotective.77.aspx0
2025Antioxidant and Hepatoprotective Effects of Moringa oleifera-mediated Selenium Nanoparticles in Diabetic Rats.Anas Ahzaruddin Ahmad Tarmizihttps://f1000research.com/articles/14-70
2025Translational Selenium Nanoparticles Promotes Clinical Non-small-cell Lung Cancer Chemotherapy via Activating Selenoprotein-driven Immune ManipulationYanzi Yu40095246https://pubmed.ncbi.nlm.nih.gov/40095246/0
2024Antibacterial and anti-biofilm efficacy of selenium nanoparticles against Pseudomonas aeruginosa: Characterization and in vitro analysisCatherine Thamayandhihttps://www.sciencedirect.com/science/article/abs/pii/S08824010240046500
2024Advances in nephroprotection: the therapeutic role of selenium, silver, and gold nanoparticles in renal healthKarthik K Karunakar39312019https://pubmed.ncbi.nlm.nih.gov/39312019/0
2024Radioprotective Effect of Selenium Nanoparticles: A Mini ReviewRasool AzmoonfarPMC11095073https://pmc.ncbi.nlm.nih.gov/articles/PMC11095073/0
2024Selenium Nanoparticles for Antioxidant Activity and Selenium Enrichment in PlantsYanhua Huanghttps://pubs.acs.org/doi/10.1021/acsanm.4c014460
2024Ascorbic acid-mediated selenium nanoparticles as potential antihyperuricemic, antioxidant, anticoagulant, and thrombolytic agentsMuhammad Aamir Ramzan Siddiquehttps://www.degruyterbrill.com/document/doi/10.1515/gps-2023-0158/html0
2024Selenium Nanoparticles: A Comprehensive Examination of Synthesis Techniques and Their Diverse Applications in Medical Research and Toxicology StudiesShobana SampathPMC10893520https://pmc.ncbi.nlm.nih.gov/articles/PMC10893520/0
2024A review on selenium nanoparticles and their biomedical applicationsK.K. Karthikhttps://www.sciencedirect.com/science/article/pii/S2949723X230007640
2024Synthesis and cytotoxic activities of selenium nanoparticles incorporated nano-chitosanAhmed E. Abdelhamidhttps://link.springer.com/article/10.1007/s00289-023-04768-80
2024Curcumin-Modified Selenium Nanoparticles Improve S180 Tumour Therapy in Mice by Regulating the Gut Microbiota and ChemotherapyRong Zhanghttps://www.tandfonline.com/doi/full/10.2147/IJN.S4766860
2023Physiological Benefits of Novel Selenium Delivery via NanoparticlesAlice AuPMC10094732https://pmc.ncbi.nlm.nih.gov/articles/PMC10094732/0
2023Anti-cancerous effect and biological evaluation of green synthesized Selenium nanoparticles on MCF-7 breast cancer and HUVEC cell linesNegin Seifihttps://www.researchgate.net/publication/374741533_Anti-cancerous_effect_and_biological_evaluation_of_green_synthesized_Selenium_nanoparticles_on_MCF-7_breast_cancer_and_HUVEC_cell_lines0
2023Synthesis and Characterization of Selenium Nanoparticles and its Effects on in vitro Rumen Feed Degradation, Ruminal Parameters, and Total Gas ProductionShakweer, W. M. E.https://ejchem.journals.ekb.eg/article_290826_c2eda0bb371c1e5b37aacba892a7f0f2.pdf0
2023The Role of Selenium Nanoparticles in the Treatment of Liver Pathologies of Various NaturesMichael V GoltyaevPMC10341905https://pmc.ncbi.nlm.nih.gov/articles/PMC10341905/0
2023Antioxidant Properties of Selenium Nanoparticles Synthesized Using Tea and Herb Water ExtractsAleksandra Sentkowskahttps://www.mdpi.com/2076-3417/13/2/10710
2023Nano and mesosized selenium and its synthesis using the ascorbic acid routeDaniela Štefankováhttps://www.sciencedirect.com/science/article/abs/pii/S00223093230032890
2023A comparative study on the hepatoprotective effect of selenium-nanoparticles and dates flesh extract on carbon tetrachloride induced liver damage in albino ratsGhada Nady OuaisPMC10714081https://pmc.ncbi.nlm.nih.gov/articles/PMC10714081/0
2023Selenium Nanoparticles: Green Synthesis and Biomedical ApplicationEkaterina O MikhailovaPMC10745377https://pmc.ncbi.nlm.nih.gov/articles/PMC10745377/0
2022Therapeutic potential of selenium nanoparticlesDeepasree Khttps://www.frontiersin.org/journals/nanotechnology/articles/10.3389/fnano.2022.1042338/full0
2022Synthesis of a Bioactive Composition of Chitosan–Selenium NanoparticlesK V ApryatinaPMC8943790https://pmc.ncbi.nlm.nih.gov/articles/PMC8943790/0
2022Selenium Nanoparticle in the Management of Oxidative Stress During Cancer ChemotherapyUgir Hossain Skhttps://link.springer.com/rwe/10.1007/978-981-16-5422-0_1160
2021Selenium nanoparticles: Synthesis, in-vitro cytotoxicity, antioxidant activity and interaction studies with ct-DNA and HSA, HHb and Cyt c serum proteinsNahid ShahabadiPMC8080047https://pmc.ncbi.nlm.nih.gov/articles/PMC8080047/0
2021Selenium triggers Nrf2-AMPK crosstalk to alleviate cadmium-induced autophagy in rabbit cerebrumHaotian Xuehttps://www.sciencedirect.com/science/article/abs/pii/S0300483X210017850
2021Mechanisms of the Cytotoxic Effect of Selenium Nanoparticles in Different Human Cancer Cell LinesElena G VarlamovaPMC8346078https://pmc.ncbi.nlm.nih.gov/articles/PMC8346078/0
2021Selenium nanoparticles: a review on synthesis and biomedical applicationsNeha Bishthttps://pubs.rsc.org/en/content/articlehtml/2022/ma/d1ma00639h0
2021Selenium Nanoparticles for Biomedical Applications: From Development and Characterization to TherapeuticsCláudio Ferrohttps://advanced.onlinelibrary.wiley.com/doi/full/10.1002/adhm.2021005980
2020Selenium‐Containing Nanoparticles Combine the NK Cells Mediated Immunotherapy with Radiotherapy and ChemotherapyGao Shiqianhttps://www.researchgate.net/publication/339250030_Selenium-Containing_Nanoparticles_Combine_the_NK_Cells_Mediated_Immunotherapy_with_Radiotherapy_and_Chemotherapy0
2020Bioogenic selenium and its hepatoprotective activityhttps://www.nature.com/articles/s41598-017-13636-1.pdf0
2019Selenium nanoparticles: An insight on its Pro-oxidant andantioxidant propertiesPrashanth Kondaparthi0
2019Therapeutic applications of selenium nanoparticlesAmit Khuranahttps://www.sciencedirect.com/science/article/pii/S07533322183629540
2019Selenium nanoparticles: Synthesis, characterization and study of their cytotoxicity, antioxidant and antibacterial activitySafieh Boroumandhttps://www.researchgate.net/publication/333473165_Selenium_nanoparticles_Synthesis_characterization_and_study_of_their_cytotoxicity_antioxidant_and_antibacterial_activity0
2019In vitro growth of gut microbiota with selenium nanoparticlesSheeana GangadooPMC6920403https://pmc.ncbi.nlm.nih.gov/articles/PMC6920403/0
2018Selenium nanoparticles are more efficient than sodium selenite in producing reactive oxygen species and hyper-accumulation of selenium nanoparticles in cancer cells generates potent therapeutic effectsGuangshan Zhaohttps://www.sciencedirect.com/science/article/abs/pii/S08915849183093900
2018pH-responsive selenium nanoparticles stabilized by folate-chitosan delivering doxorubicin for overcoming drug-resistant cancer cellsUrarika Luesakul29254044https://pubmed.ncbi.nlm.nih.gov/29254044/0
2018Green synthesis of selenium nanoparticles with extract of hawthorn fruit induced HepG2 cells apoptosisDongxiao CuiPMC6225412https://pmc.ncbi.nlm.nih.gov/articles/PMC6225412/0
2017Antioxidant capacities of the selenium nanoparticles stabilized by chitosanXiaona ZhaiPMC5217424https://pmc.ncbi.nlm.nih.gov/articles/PMC5217424/0
2017Antioxidant and hepatoprotective role of selenium against silver nanoparticlesSabah AnsarPMC5661492https://pmc.ncbi.nlm.nih.gov/articles/PMC5661492/0
2016Antioxidant and Hepatoprotective Efficiency of Selenium Nanoparticles Against Acetaminophen-Induced Hepatic DamageKamal Adel Aminhttps://link.springer.com/article/10.1007/s12011-016-0748-60
2015A Review on synthesis and their antibacterial activity of Silver and Selenium nanoparticles against biofilm forming Staphylococcus aureusPoonam Vermahttps://www.researchgate.net/publication/323004815_A_Review_on_synthesis_and_their_antibacterial_activity_of_Silver_and_Selenium_nanoparticles_against_biofilm_forming_Staphylococcus_aureus0
2014Effects of chitosan-stabilized selenium nanoparticles on cell proliferation, apoptosis and cell cycle pattern in HepG2 cells: comparison with other selenospeciesHector Estevez25038448https://pubmed.ncbi.nlm.nih.gov/25038448/0
2014Cytotoxicity and therapeutic effect of irinotecan combined with selenium nanoparticlesFuping Gaohttps://www.sciencedirect.com/science/article/abs/pii/S01429612140078680
2013Functionalized selenium nanoparticles with nephroprotective activity, the important roles of ROS-mediated signaling pathwaysYinghua Li32261335https://pubmed.ncbi.nlm.nih.gov/32261335/0
2012PEG-nanolized ultrasmall selenium nanoparticles overcome drug resistance in hepatocellular carcinoma HepG2 cells through induction of mitochondria dysfunctionShanyuan ZhengPMC3418171https://pmc.ncbi.nlm.nih.gov/articles/PMC3418171/0
2025A study to determine the effect of nano-selenium and thymoquinone on the Nrf2 gene expression in Alzheimer’s diseaseDoha El-Sayed Ellakwahttps://www.tandfonline.com/doi/full/10.1080/20565623.2025.2458434#summary-abstract0