tbResList Print — BBR Berberine

Filters: qv=41, qv2=%, rfv=%

Product

BBR Berberine
Description: <b>Berberine</b> is a chemical found in some plants like European barberry, goldenseal, goldthread, Oregon grape, phellodendron, and tree turmeric. Berberine is a bitter-tasting and yellow-colored chemical.<br>
Coptis (commonly referring to Coptidis Rhizoma, a traditional Chinese medicinal herb) contains bioactive alkaloids (most notably berberine and coptisine) that have been studied for their pharmacological effects—including their influence on reactive oxygen species (ROS) and related pathways.<br>
<br>
– Berberine is known for its relatively low oral bioavailability, often cited at less than 1%. This low bioavailability is mainly due to poor intestinal absorption and active efflux by transport proteins such as P-glycoprotein.<br>
– Despite the low bioavailability, berberine is still pharmacologically active, and its metabolites may also contribute to its overall effects.<br>
<br>
• Effective Dosage in Studies<br>
– Many clinical trials or preclinical studies use dosages in the range of 500 to 1500 mg per day, typically administered in divided doses.<br>
– Therefore, to obtain a bioactive dose of berberine, supplementation in a standardized extract form is necessary.<br>
<br>
-IC50 in cancer cell lines: Approximately 10–100 µM (commonly around 20–50 µM in many models)<br>
-IC50 in normal cell lines: Generally higher (often above 100 µM), although this can vary with cell type<br>
- In vivo studies: Dosing regimens in animal models generally range from about 50 to 200 mg/kg<br>
- very effective AChE inhibitor (Alzheimers)<br>
- Berberine may enhance the effects of blood-thinning medications like warfarin and aspirin. <br>

<br>


<br>

-Note <a href="tbResList.php?qv=41&tsv=1109&wNotes=on&exSp=open">half-life</a> reports vary 2.5-90hrs?.<br>
-low solubility of apigenin in water :
<a href="tbResList.php?qv=41&tsv=792&wNotes=on&exSp=open">BioAv</a>


<br>
Pathways:<br>

<!-- ROS : MMP↓, ER Stress↑, Ca+2↑, Cyt‑c↑, Casp3↑, Casp9↑, DNAdam↑, UPR↑, cl-PARP↑-->
- induce
<a href="tbResList.php?qv=41&tsv=275&wNotes=on">ROS</a> production<br>
- ROS↑ related:
<a href="tbResList.php?&qv=41&tsv=197&wNotes=on&word=MMP↓">MMP↓</a>(ΔΨm),
<a href="tbResList.php?&qv=41&tsv=103&wNotes=on">ER Stress↑</a>,
<a href="tbResList.php?&qv=41&tsv=38&wNotes=on">Ca+2↑</a>,
<a href="tbResList.php?&qv=41&tsv=77&wNotes=on">Cyt‑c↑</a>,
<a href="tbResList.php?&qv=41&wNotes=on&word=Casp">Caspases↑</a>,
<a href="tbResList.php?&qv=41&tsv=82&wNotes=on&word=DNAdam↑">DNA damage↑</a>,
<a href="tbResList.php?&qv=41&tsv=459&wNotes=on">UPR↑</a>,
<a href="tbResList.php?&qv=41&tsv=239&wNotes=on">cl-PARP↑</a>,
<a href="tbResList.php?&qv=41&wNotes=on&word=HSP">HSP↓</a>
<br>

<!-- ANTIOXIDANT : NRF2, SOD, GSH, CAT, HO-1, GPx, GPX4, -->
- Lowers AntiOxidant defense in Cancer Cells:
<a href="tbResList.php?&qv=41&tsv=226&wNotes=on&word=NRF2↓">NRF2↓</a>,
<a href="tbResList.php?&qv=41&tsv=137&wNotes=on&word=GSH↓">GSH↓</a>
<br>

- Raises
<a href="tbResList.php?&qv=41&tsv=1103&wNotes=on&word=antiOx↑">AntiOxidant</a>
defense in Normal Cells:
<a href="tbResList.php?&qv=41&tsv=226&wNotes=on&word=NRF2↑">NRF2↑</a>,
<a href="tbResList.php?&qv=41&tsv=298&wNotes=on&word=SOD↑">SOD↑</a>,
<a href="tbResList.php?&qv=41&tsv=137&wNotes=on&word=GSH↑">GSH↑</a>,
<a href="tbResList.php?&qv=41&tsv=46&wNotes=on&word=Catalase↑">Catalase↑</a>,
<br>

<!-- INFLAMMATION : NF-kB↓, COX2↓, COX2↓ PRO-INFL CYTOKINES: IL-1β↓, TNF-α↓, IL-6↓, IL-8↓, -->
- lowers
<a href="tbResList.php?&qv=41&tsv=953&wNotes=on&word=Inflam">Inflammation</a> :
<a href="tbResList.php?&qv=41&tsv=214&wNotes=on&word=NF-kB↓">NF-kB↓</a>,
<a href="tbResList.php?&qv=41&tsv=66&wNotes=on&word=COX2↓">COX2↓</a>,
<a href="tbResList.php?&qv=41&tsv=235&wNotes=on&word=p38↓">p38↓</a>, Pro-Inflammatory Cytokines :
<a href="tbResList.php?&qv=41&tsv=978&wNotes=on&word=IL1β↓">IL-1β↓</a>,
<a href="tbResList.php?&qv=41&tsv=309&wNotes=on&word=TNF-α↓">TNF-α↓</a>,
<a href="tbResList.php?&qv=41&tsv=158&wNotes=on&word=IL6↓">IL-6↓</a>,
<a href="tbResList.php?&qv=41&tsv=368&wNotes=on&word=IL8↓">IL-8↓</a>
<br>


- PI3K/AKT(Inhibition), JAK/STATs, Wnt/β-catenin, AMPK, MAPK/ERK, and JNK.<br>

<!-- GROWTH/METASTASES : EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1, uPA↓, VEGF↓, ERK↓-->
- inhibit Growth/Metastases :
<a href="tbResList.php?&qv=41&tsv=96&wNotes=on"EMT↓</a>,
<a href="tbResList.php?&qv=41&tsv=204&wNotes=on">MMPs↓</a>,
<a href="tbResList.php?&qv=41&tsv=201&wNotes=on">MMP2↓</a>,
<a href="tbResList.php?&qv=41&tsv=203&wNotes=on">MMP9↓</a>,
<a href="tbResList.php?&qv=41&tsv=415&wNotes=on">IGF-1↓</a>,
<a href="tbResList.php?&qv=41&tsv=428&wNotes=on">uPA↓</a>,
<a href="tbResList.php?&qv=41&tsv=334&wNotes=on">VEGF↓</a>,
<a href="tbResList.php?&qv=41&tsv=1284&wNotes=on">ROCK1↓</a>,
<a href="tbResList.php?&qv=41&tsv=110&wNotes=on">FAK↓</a>,
<a href="tbResList.php?&qv=41&tsv=273&wNotes=on">RhoA↓</a>,
<a href="tbResList.php?&qv=41&tsv=214&wNotes=on">NF-κB↓</a>,
<a href="tbResList.php?&qv=41&tsv=79&wNotes=on">CXCR4↓</a>,
<a href="tbResList.php?&qv=41&tsv=304&wNotes=on">TGF-β↓</a>,
<a href="tbResList.php?&qv=41&tsv=719&wNotes=on">α-SMA↓</a>,
<a href="tbResList.php?&qv=41&tsv=105&wNotes=on">ERK↓</a>
<br>

<!-- REACTIVATE GENES : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, -->
- reactivate genes thereby inhibiting cancer cell growth :
<a href="tbResList.php?qv=41&tsv=140&wNotes=on">HDAC↓</a>,
<a href="tbResList.php?qv=41&tsv=85&wNotes=on">DNMT1↓</a>,
<a href="tbResList.php?qv=41&tsv=108&wNotes=on">EZH2↓</a>,
<a href="tbResList.php?qv=41&tsv=236&wNotes=on">P53↑</a>,
<a href="tbResList.php?&qv=41&wNotes=on&word=HSP">HSP↓</a>
<br>

<!-- CELL CYCLE ARREST : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓ -->
- cause Cell cycle arrest :
<a href="tbResList.php?&qv=41&tsv=322&wNotes=on">TumCCA↑</a>,
<a href="tbResList.php?&qv=41&tsv=73&wNotes=on">cyclin D1↓</a>,
<a href="tbResList.php?&qv=41&tsv=378&wNotes=on">cyclin E↓</a>,
<a href="tbResList.php?&qv=41&tsv=467&wNotes=on">CDK2↓</a>,
<a href="tbResList.php?&qv=41&tsv=894&wNotes=on">CDK4↓</a>,
<a href="tbResList.php?&qv=41&tsv=895&wNotes=on">CDK6↓</a>,
<br>

<!-- MIGRATION/INVASION : TumCMig↓, TumCI↓, FAK↓, ERK↓, -->
- inhibits Migration/Invasion :
<a href="tbResList.php?&qv=41&tsv=326&wNotes=on">TumCMig↓</a>,
<a href="tbResList.php?&qv=41&tsv=324&wNotes=on">TumCI↓</a>,
<a href="tbResList.php?&qv=41&tsv=110&wNotes=on">FAK↓</a>,
<a href="tbResList.php?&qv=41&tsv=105&wNotes=on">ERK↓</a>,
<br>

<!-- GLYCOLYSIS : ATP↓, HIF-1α↓, PKM2↓, cMyc↓, PDK1↓, GLUT1↓, LDHA↓, HK2↓, Glucose↓, GlucoseCon↓, lactateProd, OXPHOS -->
- inhibits
<a href="tbResList.php?qv=41&tsv=129&wNotes=on">glycolysis</a>
/<a href="tbResList.php?qv=41&tsv=947&wNotes=on">Warburg Effect</a> and
<a href="tbResList.php?qv=41&tsv=21&wNotes=on&word=ATP↓">ATP depletion</a> :
<a href="tbResList.php?&qv=41&tsv=143&wNotes=on">HIF-1α↓</a>,
<a href="tbResList.php?&qv=41&tsv=772&wNotes=on">PKM2↓</a>,
<a href="tbResList.php?&qv=41&tsv=35&wNotes=on">cMyc↓</a>,
<a href="tbResList.php?&qv=41&tsv=566&wNotes=on&word=GLUT">GLUT1↓</a>,
<a href="tbResList.php?&qv=41&tsv=906&wNotes=on">LDH↓</a>,
<a href="tbResList.php?&qv=41&tsv=175&wNotes=on&word=LDH">LDHA↓</a>,
<a href="tbResList.php?&qv=41&tsv=773&wNotes=on">HK2↓</a>,
<a href="tbResList.php?&qv=41&wNotes=on&word=PFK">PFKs↓</a>,
<a href="tbResList.php?&qv=41&wNotes=on&word=PDK">PDKs↓</a>,
<a href="tbResList.php?&qv=41&tsv=1278&wNotes=on">Glucose↓</a>,
<a href="tbResList.php?&qv=41&tsv=623&wNotes=on">GlucoseCon↓</a>
<br>


<!-- ANGIOGENESIS : VEGF↓, VEGFR2↓, HIF-1α↓, NOTCH↓, FGF↓, PDGF↓, EGFR↓ ITG(Integrins↓)-->
- inhibits
<a href="tbResList.php?qv=41&tsv=447&wNotes=on">angiogenesis↓</a> :
<a href="tbResList.php?qv=41&tsv=334&wNotes=on">VEGF↓</a>,
<a href="tbResList.php?&qv=41&tsv=143&wNotes=on">HIF-1α↓</a>,
<a href="tbResList.php?&qv=41&wNotes=on&word=NOTCH">Notch↓</a>,
<a href="tbResList.php?&qv=41&wNotes=on&word=FGF">FGF↓</a>,
<a href="tbResList.php?&qv=41&tsv=361&wNotes=on">PDGF↓</a>,
<a href="tbResList.php?&qv=41&tsv=94&wNotes=on&word=EGFR↓">EGFR↓</a>,
<a href="tbResList.php?&qv=41&&wNotes=on&word=ITG">Integrins↓</a>,
<br>

<!-- CSCs : CSC↓, CK2↓, Hh↓, GLi↓, GLi1↓, -->
- inhibits Cancer Stem Cells :
<a href="tbResList.php?qv=41&tsv=795&wNotes=on">CSC↓</a>,
<a href="tbResList.php?qv=41&tsv=141&wNotes=on">Hh↓</a>,
<a href="tbResList.php?qv=41&tsv=124&wNotes=on">GLi1↓</a>,
<a href="tbResList.php?qv=41&tsv=677&wNotes=on">CD133↓</a>,
<a href="tbResList.php?qv=41&tsv=342&wNotes=on">β-catenin↓</a>,
<a href="tbResList.php?qv=41&tsv=357&wNotes=on">n-myc↓</a>,
<a href="tbResList.php?qv=41&tsv=656&wNotes=on">sox2↓</a>,
<a href="tbResList.php?qv=41&tsv=222&wNotes=on">notch2↓</a>,
<a href="tbResList.php?qv=41&tsv=1024&wNotes=on">nestin↓</a>,
<a href="tbResList.php?qv=41&tsv=508&wNotes=on">OCT4↓</a>,
<br>

<!-- OTHERS : -->
- Others: <a href="tbResList.php?qv=41&tsv=252&wNotes=on">PI3K↓</a>,
<a href="tbResList.php?qv=41&tsv=4&wNotes=on">AKT↓</a>,
<a href="tbResList.php?qv=41&wNotes=on&word=JAK">JAK↓</a>,
<a href="tbResList.php?qv=41&wNotes=on&word=STAT">STAT↓</a>,
<a href="tbResList.php?qv=41&tsv=377&wNotes=on">Wnt↓</a>,
<a href="tbResList.php?qv=41&tsv=342&wNotes=on">β-catenin↓</a>,
<a href="tbResList.php?qv=41&tsv=9&wNotes=on">AMPK↓</a>,
<a href="tbResList.php?qv=41&tsv=475&wNotes=on">α↓</a>,
<a href="tbResList.php?qv=41&tsv=105&wNotes=on">ERK↓</a>,
<a href="tbResList.php?qv=41&tsv=168&wNotes=on">JNK</a>,
<br>


<!-- SYNERGIES : -->
- Synergies:
<a href="tbResList.php?qv=41&tsv=1106&wNotes=on">chemo-sensitization</a>,
<a href="tbResList.php?qv=41&tsv=1171&wNotes=on">chemoProtective</a>,
<a href="tbResList.php?qv=41&tsv=1107&wNotes=on">RadioSensitizer</a>,
<a href="tbResList.php?qv=41&tsv=1185&wNotes=on">RadioProtective</a>,
<a href="tbResList.php?qv=41&tsv=961&esv=2&wNotes=on&exSp=open">Others(review target notes)</a>,
<a href="tbResList.php?qv=41&tsv=1105&wNotes=on">Neuroprotective</a>,
<a href="tbResList.php?qv=41&tsv=557&wNotes=on">Cognitive</a>,
<a href="tbResList.php?qv=41&tsv=1175&wNotes=on">Renoprotection</a>,
<a href="tbResList.php?qv=41&tsv=1179&wNotes=on">Hepatoprotective</a>,
<a href="tbResList.php?&qv=41&tsv=1188&wNotes=on">CardioProtective</a>,
<br>

<!-- SELECTIVE: -->
- Selectivity:
<a href="tbResList.php?qv=41&tsv=1110&wNotes=on">Cancer Cells vs Normal Cells</a>
<br>
<br>


<table border="1" cellspacing="0" cellpadding="4">
<tr>
<th>Rank</th>
<th>Pathway / Target Axis</th>
<th>Direction</th>
<th>Primary Effect</th>
<th>Notes / Cancer Relevance</th>
<th>Ref</th>
</tr>

<tr>
<td>1</td>
<td>AMPK → mTOR axis</td>
<td>↑ AMPK / ↓ mTOR signaling</td>
<td>Metabolic stress + growth suppression</td>
<td>In vivo/in vitro colon tumorigenesis model: berberine activates AMPK, inhibits mTOR signaling and reduces proliferation/tumorigenesis, growth suppression, autophagy, HIF-1α ↓, glycolysis ↓, berberine’s known mitochondrial/energetic effects</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC4504840/">(ref)</a></td>
</tr>

<tr>
<td>2</td>
<td>Mitochondrial dysfunction / ROS generation</td>
<td>↑ ROS / mitochondrial stress</td>
<td>Upstream metabolic trigger</td>
<td>Berberine inhibits mitochondrial function, increases ROS, and contributes to AMPK activation and downstream apoptosis</td>
<td><a href="https://www.nature.com/articles/aps2012161">(ref)</a></td>
</tr>

<tr>
<td>3</td>
<td>Mitochondrial apoptosis (cytochrome c release)</td>
<td>↑ cytochrome c release</td>
<td>Intrinsic death signaling</td>
<td>Oral cancer model: berberine reduces mitochondrial membrane potential, releases cytochrome c, activates caspase-3</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/17970083/">(ref)</a></td>
</tr>

<tr>
<td>4</td>
<td>Intrinsic apoptosis (caspase-3 activation)</td>
<td>↑ caspase-3 activation</td>
<td>Programmed cell death</td>
<td>Same oral cancer study documents caspase-3 activation as a key execution marker</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/17970083/">(ref)</a></td>
</tr>

<tr>
<td>5</td>
<td>NF-κB signaling (p65 activation)</td>
<td>↓ NF-κB activation</td>
<td>Reduced pro-survival transcription</td>
<td>Colon cancer model reports inhibition of p65 phosphorylation; interpreted as secondary to metabolic/redox stress</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC4504840/">(ref)</a></td>
</tr>

<tr>
<td>6</td>
<td>Cell cycle control</td>
<td>↑ G1 arrest</td>
<td>Proliferation blockade</td>
<td>Prostate cancer model: berberine induces G1-phase cell cycle arrest and caspase-3–dependent apoptosis</td>
<td><a href="https://aacrjournals.org/mct/article/5/2/296/285475/Berberine-a-natural-product-induces-G1-phase-cell">(ref)</a></td>
</tr>

<tr>
<td>7</td>
<td>Hypoxia / glycolysis signaling (HIF-1α)</td>
<td>↓ HIF-1α protein</td>
<td>Warburg / glycolysis suppression</td>
<td>Berberine suppresses mTOR and reduces HIF-1α protein expression downstream of AMPK activation</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC6521278/">(ref)</a></td>
</tr>

<tr>
<td>8</td>
<td>Angiogenesis signaling (HIF-1α → VEGF axis)</td>
<td>↓ VEGF signaling</td>
<td>Reduced vascular support</td>
<td>Lung cancer study: berberine suppresses VEGF signaling alongside HIF-1α inhibition</td>
<td><a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0069240">(ref)</a></td>
</tr>

<tr>
<td>9</td>
<td>PI3K–AKT–mTOR signaling</td>
<td>↓ PI3K / AKT / mTOR</td>
<td>Survival pathway suppression</td>
<td>Gastric cancer paper: berberine represses PI3K/AKT/mTOR signaling and improves chemosensitivity</td>
<td><a href="https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2020.616251/full">(ref)</a></td>
</tr>

<tr>
<td>10</td>
<td>Migration / invasion programs</td>
<td>↓ migration &amp; invasion</td>
<td>Anti-metastatic phenotype</td>
<td>Tongue SCC model: berberine suppresses migration and invasion with associated signaling changes</td>
<td><a href="https://www.sciencedirect.com/science/article/pii/S0304383509000640">(ref)</a></td>
</tr>

<tr>
<td>11</td>
<td>Telomerase (hTERT) / immortalization axis</td>
<td>↓ hTERT-related signaling</td>
<td>Reduced proliferative capacity</td>
<td>Lung cancer study includes AP-2/hTERT regulatory axis modulation by berberine</td>
<td><a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0069240">(ref)</a></td>
</tr>

<tr>
<td>12</td>
<td>In vivo tumor suppression</td>
<td>↓ tumorigenesis</td>
<td>Demonstrated anti-tumor effect</td>
<td>Colon tumorigenesis model confirms reduced proliferation and tumor burden with berberine</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC4504840/">(ref)</a></td>
</tr>

</table>












Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

GSH↓, 1,   HO-1↓, 2,   ICD↑, 1,   MDA↑, 1,   NQO1↓, 1,   NRF2↑, 1,   NRF2↓, 3,   ROS↑, 37,   SOD↓, 1,  

Mitochondria & Bioenergetics

AIF↝, 1,   ATP↓, 5,   CDC2↓, 1,   CDC25↓, 2,   MEK↓, 3,   MMP↓, 16,   mtDam↑, 3,   Raf↓, 2,   XIAP↓, 2,  

Core Metabolism/Glycolysis

ACC↑, 1,   AMPK↑, 7,   AMPK↝, 1,   cMyc↓, 4,   GLS↓, 1,   glucose↓, 1,   GlucoseCon↓, 2,   glut↓, 1,   Glycolysis↓, 6,   HK2↓, 3,   lactateProd↓, 1,   LDH↓, 2,   LDHA↓, 2,   PDK1↓, 2,   PFK2↓, 1,   PKM2↓, 4,   PPARγ↓, 1,   RARα↓, 1,   RARβ↑, 1,   RARγ↑, 1,   p‑S6K↓, 1,   SIRT1↑, 1,   Warburg↓, 2,  

Cell Death

p‑Akt↓, 2,   Akt↓, 11,   APAF1↑, 1,   Apoptosis↑, 30,   BAD↑, 2,   Bak↑, 1,   BAX↑, 7,   Bax:Bcl2↑, 6,   Bcl-2↓, 10,   Bcl-xL↓, 1,   Casp↑, 1,   cl‑Casp↑, 1,   proCasp1↓, 1,   Casp1↓, 3,   cl‑Casp3↑, 5,   Casp3↑, 13,   Casp3↓, 1,   Casp7↑, 2,   Casp8↑, 3,   cl‑Casp9↑, 3,   Casp9↑, 6,   cFLIP↓, 1,   Cyt‑c↑, 9,   Fas↑, 1,   FasL↑, 2,   hTERT/TERT↓, 1,   IAP1↓, 1,   p‑JNK↑, 1,   p‑JNK↝, 1,   JNK↑, 3,   JNK↓, 1,   p‑MAPK↓, 1,   MAPK↓, 2,   MAPK↑, 2,   Mcl-1↓, 1,   MDM2↓, 1,   necrosis↑, 2,   p27↑, 4,   P2X7↓, 1,   p38↑, 1,   p‑p38↑, 1,   p‑p38↝, 1,   Set9↑, 1,   survivin↓, 2,   Telomerase↓, 3,   TumCD↑, 2,  

Kinase & Signal Transduction

AMPKα↓, 1,   Sp1/3/4↓, 1,  

Transcription & Epigenetics

EZH2↓, 2,   ac‑H3↑, 1,   ac‑H4↑, 1,   miR-145↑, 1,   miR-21↓, 1,   other↓, 1,   other↝, 1,   TET3↑, 1,   tumCV↓, 7,  

Protein Folding & ER Stress

CHOP↓, 1,   CHOP↑, 1,   p‑eIF2α↓, 1,   ER Stress↑, 5,   GRP78/BiP↓, 1,   HSP70/HSPA5↓, 1,   PERK↓, 1,   p‑PERK↓, 1,  

Autophagy & Lysosomes

LC3‑Ⅱ/LC3‑Ⅰ↓, 1,   LC3B↑, 1,   LC3II↑, 1,   LC3s↑, 1,   p62↑, 1,   TumAuto↑, 4,  

DNA Damage & Repair

ATM↑, 1,   DNAdam↑, 5,   DNMT1↓, 4,   DNMT1↑, 1,   DNMT3A↓, 1,   DNMTs↓, 1,   p‑P53↑, 1,   P53↑, 5,   cl‑PARP↑, 4,   PARP↑, 3,   PCNA↓, 1,   RAD51↓, 1,   TP53↑, 2,   γH2AX↑, 1,  

Cell Cycle & Senescence

CDK1↓, 1,   CDK2↓, 2,   CDK4↓, 4,   Cyc↓, 1,   CycB/CCNB1↓, 1,   cycD1/CCND1↓, 7,   cycE/CCNE↓, 3,   P21↑, 5,   RB1↑, 1,   TFAP2A↓, 1,   TumCCA↑, 23,  

Proliferation, Differentiation & Cell State

CD133↓, 3,   CD44↓, 1,   CSCs↓, 4,   Diff↓, 1,   EMT↓, 4,   EMT↑, 2,   ERK↓, 9,   ERK↑, 2,   p‑ERK↓, 2,   p‑ERK↝, 1,   FGF↓, 1,   FOXO3↑, 1,   Gli1∅, 1,   GSK‐3β↝, 1,   HDAC↓, 3,   HDAC∅, 1,   HH↓, 1,   IGF-1↓, 1,   IGFBP1↑, 1,   IGFBP3↑, 1,   mTOR↓, 10,   mTOR↝, 1,   mTOR∅, 1,   p‑mTOR↓, 1,   p‑mTORC1↓, 1,   n-MYC↓, 2,   Nestin↓, 2,   NOTCH↓, 1,   NOTCH2↓, 1,   OCT4↓, 1,   p‑PI3K↓, 1,   PI3K↓, 7,   PTCH1↓, 1,   PTEN↑, 2,   RAS↓, 1,   Smo↓, 1,   SOX2↓, 3,   STAT3↓, 3,   p‑STAT3↓, 2,   TumCG↓, 2,   Wnt↓, 2,  

Migration

AP-1↓, 1,   AXL↓, 1,   Ca+2↑, 3,   E-cadherin↑, 2,   E-cadherin↓, 2,   FAK↓, 1,   Fibronectin↓, 1,   FTO↑, 1,   ITGB1↓, 1,   Ki-67↓, 2,   miR-29b↓, 1,   MMP1↓, 2,   MMP13↓, 1,   MMP2↓, 10,   MMP3↓, 1,   MMP7∅, 1,   MMP9↓, 9,   MMPs↓, 1,   N-cadherin↓, 2,   N-cadherin?, 1,   NCAM↓, 1,   PDGF↓, 1,   Rho↓, 1,   ROCK1↓, 1,   Snail↓, 2,   TGF-β↓, 1,   TGF-β1↓, 1,   TIMP1↑, 1,   TumCI↓, 11,   TumCMig↓, 11,   TumCP↓, 16,   TumCP↑, 2,   TumMeta↓, 1,   uPA↓, 2,   Vim↓, 2,   ac‑α-tubulin↑, 1,   β-catenin/ZEB1↓, 4,  

Angiogenesis & Vasculature

angioG↓, 2,   EGFR↓, 4,   Hif1a↓, 8,   VEGF↓, 7,   VEGFR2↓, 2,  

Barriers & Transport

AQPs↓, 1,   BBB↑, 1,   GLUT1↓, 4,   SLC12A5↓, 1,  

Immune & Inflammatory Signaling

ASC↓, 1,   CCR7↓, 1,   CD4+↓, 1,   COX2↓, 9,   COX2↑, 1,   CXCR4↓, 1,   IKKα↝, 1,   IL1↓, 2,   IL10↓, 1,   IL18↓, 1,   IL1β↓, 2,   IL6↓, 3,   IL8↑, 1,   IL8↓, 1,   Inflam↓, 4,   p‑JAK2↓, 1,   JAK2↓, 1,   MCP1↓, 2,   NF-kB↓, 7,   NF-kB↝, 1,   PD-L1↓, 1,   PGE2↓, 4,   TNF-α↓, 4,  

Hormonal & Nuclear Receptors

AR↓, 1,   CDK6↓, 2,  

Drug Metabolism & Resistance

BioAv↓, 4,   BioAv↑, 2,   BioAv↝, 1,   ChemoSen↓, 1,   ChemoSen↑, 7,   Dose↓, 1,   Dose↑, 1,   Dose?, 1,   Dose↝, 1,   eff↑, 15,   eff↓, 5,   eff↝, 2,   MDR1↓, 2,   RadioS↑, 6,   selectivity↑, 8,  

Clinical Biomarkers

AR↓, 1,   EGFR↓, 4,   EZH2↓, 2,   GutMicro↑, 2,   hTERT/TERT↓, 1,   IL6↓, 3,   Ki-67↓, 2,   LDH↓, 2,   PD-L1↓, 1,   TP53↑, 2,  

Functional Outcomes

AntiCan↑, 1,   AntiTum↑, 2,   chemoP↑, 1,   chemoPv↑, 1,   OS↑, 1,   radioP↑, 1,   RenoP↑, 1,   toxicity↓, 1,   TumVol↓, 1,  
Total Targets: 283

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx?, 1,   antiOx↑, 11,   antiOx↓, 1,   Catalase↑, 2,   Ferroptosis↓, 2,   GPx↑, 2,   GSH↑, 3,   HO-1↑, 2,   lipid-P↓, 6,   MDA↓, 3,   NADPH/NADP+↑, 1,   NRF2↑, 2,   RNS↓, 1,   ROS↓, 14,   ROS∅, 1,   SOD↑, 3,  

Metal & Cofactor Biology

FTH1↑, 1,   TfR1/CD71↓, 1,  

Mitochondria & Bioenergetics

ATP↓, 1,   MMP∅, 1,   OCR↓, 1,  

Core Metabolism/Glycolysis

ALAT↓, 1,   AMPK↓, 1,   AMPK↑, 2,   p‑AMPK↑, 1,   CREB↑, 1,   glucoNG↓, 1,   Glycolysis↑, 1,   LDL↓, 2,   MCU↓, 1,   NH3↑, 1,   PKM2↓, 1,   PPARγ↑, 1,  

Cell Death

p‑Akt↑, 1,   Akt↑, 3,   Akt↓, 1,   Apoptosis∅, 1,   Apoptosis↓, 3,   BAX↓, 1,   cl‑Casp3↓, 1,   Ferroptosis↓, 2,   JNK↓, 3,   MAPK↓, 3,   p38↓, 2,  

Transcription & Epigenetics

other?, 1,  

Protein Folding & ER Stress

CHOP↓, 1,   p‑eIF2α↓, 1,   eIF2α↓, 1,   ER Stress↓, 6,   HSP70/HSPA5↑, 1,   HSP90↑, 2,   p‑PERK↓, 1,   UPR↓, 1,  

Autophagy & Lysosomes

Beclin-1↑, 3,   LC3B↑, 1,   LC3II↑, 2,   p62↓, 1,  

DNA Damage & Repair

DNAdam↓, 1,   DNMT1↓, 1,   DNMTs↓, 1,   p16↓, 1,   RAD51↓, 1,   TP53↑, 1,  

Proliferation, Differentiation & Cell State

ERK↑, 1,   p‑ERK↑, 2,   GSK‐3β↓, 1,   Jun↓, 1,   KLF4↑, 1,   mTOR↑, 1,   mTOR↓, 1,   p‑mTOR↓, 1,   P70S6K↓, 2,   PI3K↑, 1,   PI3K↓, 1,   STAT1↓, 1,   STAT3↑, 1,   STAT4↓, 1,  

Migration

AntiAg↑, 1,   APP↓, 4,   Ca+2↓, 2,   mt-Ca+2↓, 1,   CD31↑, 2,   CDK5↓, 1,   LAMs↑, 1,   N-cadherin↑, 2,   Smad1↑, 1,   TGF-β↓, 1,   TGF-β1↓, 1,   α-SMA↓, 1,  

Angiogenesis & Vasculature

angioG↑, 2,   ATF4↓, 1,   VEGF↑, 2,  

Barriers & Transport

BBB↑, 3,  

Immune & Inflammatory Signaling

CRP↓, 1,   IFN-γ↑, 1,   IL10↑, 4,   IL17↑, 1,   IL1β↓, 2,   IL6↓, 2,   IL6↑, 1,   Inflam↓, 14,   JAK2↑, 1,   NF-kB↓, 4,   Th1 response↓, 1,   Th17↓, 1,   TNF-α↓, 4,  

Synaptic & Neurotransmission

5HT↑, 1,   AChE↓, 9,   BChE↓, 3,   BChE?, 1,   BDNF↑, 2,   MAOA↓, 2,   p‑tau↓, 4,   tau?, 1,  

Protein Aggregation

Aβ↓, 8,   BACE↓, 3,   MAOB↓, 3,   PP2A↑, 1,  

Drug Metabolism & Resistance

BioAv↑, 5,   BioAv↓, 4,   BioAv↝, 4,   Dose↝, 2,   eff↑, 4,   Half-Life↝, 2,   Half-Life↓, 2,  

Clinical Biomarkers

ALAT↓, 1,   ALP↓, 1,   AST↓, 1,   BG↓, 1,   CRP↓, 1,   GutMicro↑, 1,   IL6↓, 2,   IL6↑, 1,   TP53↑, 1,  

Functional Outcomes

cardioP↑, 6,   cognitive↑, 8,   hepatoP↑, 3,   memory↑, 8,   Mood↑, 1,   motorD↑, 1,   neuroP↑, 9,   RenoP↑, 3,   toxicity↑, 1,   toxicity↓, 5,  
Total Targets: 144

Research papers

Year Title Authors PMID Link Flag
2025Photodynamic therapy-triggered nuclear translocation of berberine from mitochondria leads to liver cancer cell deathWencheng Weihttps://www.researchgate.net/publication/388474479_Photodynamic_therapy-triggered_nuclear_translocation_of_berberine_from_mitochondria_leads_to_liver_cancer_cell_death0
2025Berberine is a Novel Mitochondrial Calcium Uniporter Inhibitor that Disrupts MCU‐EMRE AssemblyHaixin ZhaoPMC12061237https://pmc.ncbi.nlm.nih.gov/articles/PMC12061237/0
2025Berberine alleviates Alzheimer's disease by activating autophagy and inhibiting ferroptosis through the JNK-p38MAPK signaling pathwayChunbin Sunhttps://pubmed.ncbi.nlm.nih.gov/40215776/0
2025Network pharmacology study on the mechanism of berberine in Alzheimer’s disease modelYaoyi Zhanghttps://www.nature.com/articles/s41538-025-00378-y0
2024Suppression of colon cancer growth by berberine mediated by the intestinal microbiota and the suppression of DNA methyltransferases (DNMTs)Xiulian Wang37639199https://pubmed.ncbi.nlm.nih.gov/37639199/0
2024Berberine Inhibits KLF4 Promoter Methylation and Ferroptosis to Ameliorate Diabetic Nephropathy in Mice Shengyu Caihttps://pubs.acs.org/doi/10.1021/acs.chemrestox.4c002630
2024Berberine inhibits the glycolysis and proliferation of hepatocellular carcinoma cells by down-regulating HIF-1αLin Chenhttps://www.pjps.pk/uploads/2025/01/1737542489.pdf0
2024Based on network pharmacology and experimental validation, berberine can inhibit the progression of gastric cancer by modulating oxidative stressXiaodong HanPMC11833373https://pmc.ncbi.nlm.nih.gov/articles/PMC11833373/0
2024Berberine inhibits the progression of breast cancer by regulating METTL3-mediated m6A modification of FGF7 mRNAWei Fuhttps://onlinelibrary.wiley.com/doi/10.1111/1759-7714.153210
2024Berberine sensitizes immune checkpoint blockade therapy in melanoma by NQO1 inhibition and ROS activationZhuyu Luo39217888https://pubmed.ncbi.nlm.nih.gov/39217888/0
2024Berberine improved the microbiota in lung tissue of colon cancer and reversed the bronchial epithelial cell changes caused by cancer cellsWei YangPMC10835176https://pmc.ncbi.nlm.nih.gov/articles/PMC10835176/0
2024Berberine Targets PKM2 to Activate the t-PA-Induced Fibrinolytic System and Improves ThrombosisZeqi SunPMC11434879https://pmc.ncbi.nlm.nih.gov/articles/PMC11434879/0
2024Analysis of the mechanism of berberine against stomach carcinoma based on network pharmacology and experimental validationMeng WangPMC11483340https://pmc.ncbi.nlm.nih.gov/articles/PMC11483340/0
2024Berberine exerts antidepressant effects in vivo and in vitro through the PI3K/AKT/CREB/BDNF signaling pathwayYueheng Tanghttps://www.sciencedirect.com/science/article/pii/S07533322230181030
2024Effect of berberine on cognitive function and β-amyloid precursor protein in Alzheimer’s disease models: a systematic review and meta-analysisJia-Yang LiuPMC10824956https://pmc.ncbi.nlm.nih.gov/articles/PMC10824956/0
2024Radiotherapy Enhancing and Radioprotective Properties of Berberine: A Systematic ReviewElham Raeisi38984581https://pubmed.ncbi.nlm.nih.gov/38984581/0
2023Chitosan/alginate nanogel potentiate berberine uptake and enhance oxidative stress mediated apoptotic cell death in HepG2 cellsNeha Singh38081485https://pubmed.ncbi.nlm.nih.gov/38081485/0
2023The anti-aging mechanism of Berberine associated with metabolic controlhttps://www.sciencedirect.com/topics/chemistry/berberine0
2023Liposome-Encapsulated Berberine Alleviates Liver Injury in Type 2 Diabetes via Promoting AMPK/mTOR-Mediated Autophagy and Reducing ER Stress: Morphometric and Immunohistochemical ScoringSafaa I KhaterPMC10295074https://pmc.ncbi.nlm.nih.gov/articles/PMC10295074/0
2023Berberine inhibits the progression of renal cell carcinoma cells by regulating reactive oxygen species generation and inducing DNA damageYuwan Zhao37217616https://pubmed.ncbi.nlm.nih.gov/37217616/0
2023Antitumor Activity of Berberine by Activating Autophagy and Apoptosis in CAL-62 and BHT-101 Anaplastic Thyroid Carcinoma Cell LinesXiang-Zhe ShiPMC10312214https://pmc.ncbi.nlm.nih.gov/articles/PMC10312214/0
2023Berberine Inhibited Growth and Migration of Human Colon Cancer Cell Lines by Increasing Phosphatase and Tensin and Inhibiting Aquaporins 1, 3 and 5 ExpressionsNoor TarawnehPMC10180100https://pmc.ncbi.nlm.nih.gov/articles/PMC10180100/0
2023treatment with ROS scavenger N-acetylcysteine (NAC) and JNK inhibitor SP600125 could partially attenuate apoptosis and DNA damage triggered by DCZ0358.Yiyang WangPMC9966753https://pmc.ncbi.nlm.nih.gov/articles/PMC9966753/0
2023Berberine derivative DCZ0358 induce oxidative damage by ROS-mediated JNK signaling in DLBCL cellsQilin Feng37913572https://pubmed.ncbi.nlm.nih.gov/37913572/0
2023Berberine inhibits autophagy and promotes apoptosis of fibroblast-like synovial cells from rheumatoid arthritis patients through the ROS/mTOR signaling pathwayPMC10202790https://pmc.ncbi.nlm.nih.gov/articles/PMC10202790/0
2023Network pharmacology reveals that Berberine may function against Alzheimer’s disease via the AKT signaling pathwayWei Weihttps://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2023.1059496/full0
2023The efficacy and mechanism of berberine in improving aging-related cognitive dysfunction: A study based on network pharmacologyJiuxiu Yaohttps://pmc.ncbi.nlm.nih.gov/articles/PMC9895386/0
2023Berberine, a natural compound, suppresses Hedgehog signaling pathway activity and cancer growth18842418https://pmc.ncbi.nlm.nih.gov/articles/PMC4546096/0
2022Structural exploration of common pharmacophore based berberine derivatives as novel histone deacetylase inhibitor targeting HDACs enzymesSaravanan Kandasamy34994284https://pubmed.ncbi.nlm.nih.gov/34994284/0
2022Berberine as a Potential Agent for the Treatment of Colorectal CancerXi JiangPMC9096113https://pmc.ncbi.nlm.nih.gov/articles/PMC9096113/0
2022The therapeutic effects of berberine against different diseases: A review on the involvement of the endoplasmic reticulum stressFatemeh Yarmohammadi35778942https://pubmed.ncbi.nlm.nih.gov/35778942/0
2022Chemoproteomics reveals berberine directly binds to PKM2 to inhibit the progression of colorectal cancerShi-Hai YanPMC9386086https://pmc.ncbi.nlm.nih.gov/articles/PMC9386086/0
2022Berberine: An Important Emphasis on Its Anticancer Effects through Modulation of Various Cell Signaling PathwaysSaleh A AlmatroodiPMC9505063https://pmc.ncbi.nlm.nih.gov/articles/PMC9505063/0
2022Characterization of the anti-AChE potential and alkaloids in Rhizoma Coptidis from different Coptis species combined with spectrum-effect relationship and molecular dockingLuming Qihttps://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2022.1020309/full0
2022The short-term effects of berberine in the liver: Narrow margins between benefits and toxicityEvelyn Silva Moreira35963428https://pubmed.ncbi.nlm.nih.gov/35963428/0
2022Berberine increases the expression of cytokines and proteins linked to apoptosis in human melanoma cellsTaís Vidal Palma34860319https://pubmed.ncbi.nlm.nih.gov/34860319/0
2022Berberine enhances the sensitivity of radiotherapy in ovarian cancer cell line (SKOV-3)Mohammed S AleissaPMC9845113https://pmc.ncbi.nlm.nih.gov/articles/PMC9845113/0
2022Berberine induces non-small cell lung cancer apoptosis via the activation of the ROS/ASK1/JNK pathwayQianqian ChenPMC9096398https://pmc.ncbi.nlm.nih.gov/articles/PMC9096398/0
2021Berberine exerts its antineoplastic effects by reversing the Warburg effect via downregulation of the Akt/mTOR/GLUT1 signaling pathwayXiao-Hong GuoPMC8548812https://pmc.ncbi.nlm.nih.gov/articles/PMC8548812/0
2021Berberine Improves Cognitive Impairment by Simultaneously Impacting Cerebral Blood Flow and β-Amyloid Accumulation in an APP/tau/PS1 Mouse Model of Alzheimer’s DiseaseChenghui Yehttps://pmc.ncbi.nlm.nih.gov/articles/PMC8150323/0
2021Berberine inhibits the Warburg effect through TET3/miR-145/HK2 pathways in ovarian cancer cellsJie LiPMC7738813https://pmc.ncbi.nlm.nih.gov/articles/PMC7738813/0
2021Berberine-photodynamic induced apoptosis by activating endoplasmic reticulum stress-autophagy pathway involving CHOP in human malignant melanoma cellsJiaping Fanghttps://www.researchgate.net/publication/350214160_Berberine-photodynamic_induced_apoptosis_by_activating_endoplasmic_reticulum_stress-autophagy_pathway_involving_CHOP_in_human_malignant_melanoma_cells0
2021Berberine as a Potential Anticancer Agent: A Comprehensive ReviewAbdur RaufPMC8658774https://pmc.ncbi.nlm.nih.gov/articles/PMC8658774/0
2021Berberine: A Review of its Pharmacokinetics Properties and Therapeutic Potentials in Diverse Vascular DiseasesXiaopeng AiPMC8964367https://pmc.ncbi.nlm.nih.gov/articles/PMC8964367/0
2021Berberine Improves Behavioral and Cognitive Deficits in a Mouse Model of Alzheimer’s Disease via Regulation of β-Amyloid Production and Endoplasmic Reticulum StressYubin Lianghttps://pubs.acs.org/doi/10.1021/acschemneuro.0c008080
2021Functional inhibition of lactate dehydrogenase suppresses pancreatic adenocarcinoma progressionChien‐shan ChengPMC8238920https://pmc.ncbi.nlm.nih.gov/articles/PMC8238920/0
2021Berberine Suppresses Stemness and Tumorigenicity of Colorectal Cancer Stem-Like Cells by Inhibiting m6A MethylationZiyi ZhaoPMC8634032https://pmc.ncbi.nlm.nih.gov/articles/PMC86340320
2020Berberine induces apoptosis in glioblastoma multiforme U87MG cells via oxidative stress and independent of AMPK activityTaís Vidal Palma32410137https://pubmed.ncbi.nlm.nih.gov/32410137/0
2020Berberine mitigates cognitive decline in an Alzheimer’s Disease Mouse Model by targeting both tau hyperphosphorylation and autophagic clearanceYing Chenhttps://www.sciencedirect.com/science/article/pii/S07533322193529280
2020Low-Dose Berberine Attenuates the Anti-Breast Cancer Activity of Chemotherapeutic Agents via Induction of Autophagy and AntioxidationBing HanPMC7549173https://pmc.ncbi.nlm.nih.gov/articles/PMC7549173/1
2020Berberine associated photodynamic therapy promotes autophagy and apoptosis via ROS generation in renal carcinoma cellsTairine Zara Lopes31874443https://www.sciencedirect.com/science/article/pii/S0753332219354162?via%3Dihub0
2020Berberine Can Amplify Cytotoxic Effect of Radiotherapy by Targeting Cancer Stem CellsSanaa A El-Benhawyhttps://www.tandfonline.com/doi/full/10.2217/bmt-2020-0007#d1e2820
2020Berberine Improves Chemo-Sensitivity to Cisplatin by Enhancing Cell Apoptosis and Repressing PI3K/AKT/mTOR Signaling Pathway in Gastric CancerYingying Kouhttps://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2020.616251/full0
2020Effects of Berberine and Its Derivatives on Cancer: A Systems Pharmacology ReviewChaohe ZhangPMC6974675https://pmc.ncbi.nlm.nih.gov/articles/PMC6974675/0
2020Berberine diminishes cancer cell PD-L1 expression and facilitates antitumor immunity via inhibiting the deubiquitination activity of CSN5Yang LiuPMC7745128https://pmc.ncbi.nlm.nih.gov/articles/PMC7745128/0
2020Traditional Chinese Medicine: Role in Reducing β-Amyloid, Apoptosis, Autophagy, Neuroinflammation, Oxidative Stress, and Mitochondrial Dysfunction of Alzheimer’s DiseaseShi-Yu ChenPMC7188934https://pmc.ncbi.nlm.nih.gov/articles/PMC7188934/0
2020Berberine: A novel therapeutic strategy for cancerParisa Samadihttps://iubmb.onlinelibrary.wiley.com/doi/full/10.1002/iub.23500
2019Neuroprotective effects of berberine in animal models of Alzheimer’s disease: a systematic review of pre-clinical studiesNing-Ning Yuanhttps://bmccomplementmedtherapies.biomedcentral.com/articles/10.1186/s12906-019-2510-z0
2019The effects of Berberis vulgaris consumption on plasma levels of IGF-1, IGFBPs, PPAR-γ and the expression of angiogenic genes in women with benign breast disease: a randomized controlled clinical trialSaeed PirouzpanahPMC6868871https://pmc.ncbi.nlm.nih.gov/articles/PMC6868871/0
2019Antitumor Effects of Berberine on Gliomas via Inactivation of Caspase-1-Mediated IL-1β and IL-18 ReleaseLei TongPMC6527738https://pmc.ncbi.nlm.nih.gov/articles/PMC6527738/0
2019Berberine Inhibits Growth of Liver Cancer Cells by Suppressing Glutamine UptakePengcheng ZhangPMC6978679https://pmc.ncbi.nlm.nih.gov/articles/PMC6978679/0
2019Berberine-loaded Janus gold mesoporous silica nanocarriers for chemo/radio/photothermal therapy of liver cancer and radiation-induced injury inhibitionXiao-Dong LiPMC6554520https://pmc.ncbi.nlm.nih.gov/articles/PMC6554520/0
2019Regulation of Cell Signaling Pathways by Berberine in Different Cancers: Searching for Missing Pieces of an Incomplete Jig-Saw Puzzle for an Effective Cancer TherapyAmmad Ahmad FarooqiPMC6521278https://pmc.ncbi.nlm.nih.gov/articles/PMC6521278/0
201913-[CH2CO-Cys-(Bzl)-OBzl]-Berberine: Exploring The Correlation Of Anti-Tumor Efficacy With ROS And Apoptosis ProteinGuanyu LiPMC6901133https://pmc.ncbi.nlm.nih.gov/articles/PMC6901133/0
2019Therapeutic potential and recent delivery systems of berberine: A wonder moleculeMarina Rajuhttps://www.sciencedirect.com/science/article/abs/pii/S17564646193044140
2018Berberine decelerates glucose metabolism via suppression of mTOR‑dependent HIF‑1α protein synthesis in colon cancer cellsLiyuan Maohttps://www.spandidos-publications.com/10.3892/or.2018.63180
2018Naturally Occurring Acetylcholinesterase Inhibitors and Their Potential Use for Alzheimer's Disease TherapyThaiane Coelho dos SantosPMC6201143https://pmc.ncbi.nlm.nih.gov/articles/PMC6201143/0
2018Berberine down-regulates IL-8 expression through inhibition of the EGFR/MEK/ERK pathway in triple-negative breast cancer cellsSangmin Kimhttps://www.sciencedirect.com/science/article/abs/pii/S09447113183026910
2018Cell-specific pattern of berberine pleiotropic effects on different human cell linesAlessandro Agnarellihttps://www.nature.com/articles/s41598-018-28952-30
2018Pharmacological effects of berberine on mood disordersJie Fanhttps://pmc.ncbi.nlm.nih.gov/articles/PMC6307759/0
2017Mechanism underlying berberine's effects on HSP70/TNFα under heat stress: Correlation with the TATA boxesJing-Fei JIANGhttps://www.sciencedirect.com/science/article/abs/pii/S18755364173003410
2017Integrins and Cell Metabolism: An Intimate Relationship Impacting CancerRehman AtaPMC5297821https://pmc.ncbi.nlm.nih.gov/articles/PMC5297821/0
2017Berberine promotes antiproliferative effects of epirubicin in T24 bladder cancer cells by enhancing apoptosis and cell cycle arrestYumin Zhuo27719740https://pubmed.ncbi.nlm.nih.gov/27719740/0
2017Berberine attenuates cognitive impairment and ameliorates tau hyperphosphorylation by limiting the self-perpetuating pathogenic cycle between NF-κB signaling, oxidative stress and neuroinflammationWenbo He29132092https://pubmed.ncbi.nlm.nih.gov/29132092/0
2017Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAsJames A. McCubreyhttps://www.aging-us.com/article/101250/text0
2017Berberine protects against glutamate-induced oxidative stress and apoptosis in PC12 and N2a cellsHamid Reza SadeghniaPMC5478787https://pmc.ncbi.nlm.nih.gov/articles/PMC5478787/0
2017Berberine Inhibited the Proliferation of Cancer Cells by Suppressing the Activity of Tumor Pyruvate Kinase M2Zhichao Lihttps://journals.sagepub.com/doi/10.1177/1934578X17012009090
2017Naturally occurring anti-cancer agents targeting EZH2Fahimeh Shahabipourhttps://www.sciencedirect.com/science/article/abs/pii/S03043835173018420
2017The enhancement of combination of berberine and metformin in inhibition of DNMT1 gene expression through interplay of SP1 and PDPK1Fang Zhenghttps://onlinelibrary.wiley.com/doi/full/10.1111/jcmm.133470
2017Berberine binds RXRα to suppress β-catenin signaling in colon cancer cellsH RuanPMC5735301https://pmc.ncbi.nlm.nih.gov/articles/PMC5735301/0
2017Traditional Chinese medicinal herbs as potential AChE inhibitors for anti-Alzheimer’s disease: A reviewYingying Jianghttps://www.sciencedirect.com/science/article/abs/pii/S00452068173058490
2016Berberine suppressed epithelial mesenchymal transition through cross-talk regulation of PI3K/AKT and RARα/RARβ in melanoma cellsYu Kou27639645https://pubmed.ncbi.nlm.nih.gov/27639645/0
2016Berberine affects osteosarcoma via downregulating the caspase-1/IL-1β signaling axisHao JinPMC5355653https://pmc.ncbi.nlm.nih.gov/articles/PMC5355653/0
2016Berberine induces neuronal differentiation through inhibition of cancer stemness and epithelial-mesenchymal transition in neuroblastoma cellsC.R. Naveenhttps://www.sciencedirect.com/science/article/abs/pii/S09447113163002890
2016Berberine regulates AMP-activated protein kinase signaling pathways and inhibits colon tumorigenesis in miceWeidong LiPMC4504840https://pmc.ncbi.nlm.nih.gov/articles/PMC4504840/0
2016Plant Isoquinoline Alkaloid Berberine Exhibits Chromatin Remodeling by Modulation of Histone Deacetylase To Induce Growth Arrest and Apoptosis in the A549 Cell LineKalaiarasi Arunachalamhttps://www.researchgate.net/publication/311612897_Plant_Isoquinoline_Alkaloid_Berberine_Exhibits_Chromatin_Remodeling_by_Modulation_of_Histone_Deacetylase_To_Induce_Growth_Arrest_and_Apoptosis_in_the_A549_Cell_Line0
2016Berberine reverses lapatinib resistance of HER2-positive breast cancer cells by increasing the level of ROSRuohan ZhangPMC5036410https://pmc.ncbi.nlm.nih.gov/articles/PMC5036410/0
2016Berberine protects rat heart from ischemia/reperfusion injury via activating JAK2/STAT3 signaling and attenuating endoplasmic reticulum stressGuo-long ZhaoPMC4775848https://pmc.ncbi.nlm.nih.gov/articles/PMC4775848/0
2015Berberine-induced apoptosis in human breast cancer cells is mediated by reactive oxygen species generation and mitochondrial-related apoptotic pathwayJuan Xie25352028https://pubmed.ncbi.nlm.nih.gov/25352028/0
2015Berberine regulates proliferation, collagen synthesis and cytokine secretion of cardiac fibroblasts via AMPK-mTOR-p70S6K signaling pathwayFen AiPMC4680383https://pmc.ncbi.nlm.nih.gov/articles/PMC4680383/0
2015Inhibitory Effect of Berberine on Zeste Homolog 2 (Ezh2) Enhancement in Human Esophageal Cell LinesS.-Z. Chenhttps://www.researchgate.net/publication/283808428_Inhibitory_Effect_of_Berberine_on_Zeste_Homolog_2_Ezh2_Enhancement_in_Human_Esophageal_Cell_Lines0
2015Berberine induces FasL-related apoptosis through p38 activation in KB human oral cancer cellsJAE-SUNG KIMPMC4440222https://pmc.ncbi.nlm.nih.gov/articles/PMC4440222/0
2014Berberine induces apoptosis via ROS generation in PANC-1 and MIA-PaCa2 pancreatic cell linesSH ParkPMC4321216https://pmc.ncbi.nlm.nih.gov/articles/PMC4321216/0
2014Synergistic Inhibitory Effect of Berberine and d-Limonene on Human Gastric Carcinoma Cell Line MGC803Xiu-Zhen ZhangPMC4152785https://pmc.ncbi.nlm.nih.gov/articles/PMC4152785/0
2014A gene expression signature-based approach reveals the mechanisms of action of the Chinese herbal medicine berberineKuen-Haur LeePMC5377252https://pmc.ncbi.nlm.nih.gov/articles/PMC5377252/0
2013Berberine Targets AP-2/hTERT, NF-κB/COX-2, HIF-1α/VEGF and Cytochrome-c/Caspase Signaling to Suppress Human Cancer Cell GrowthLingyi Fuhttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.00692400
2012Berberine Induces Caspase-Independent Cell Death in Colon Tumor Cells through Activation of Apoptosis-Inducing FactorLihong WangPMC3344856https://pmc.ncbi.nlm.nih.gov/articles/PMC3344856/0
2012Effects of Coptis extract combined with chemotherapeutic agents on ROS production, multidrug resistance, and cell growth in A549 human lung cancer cellsChengwei HePMC3488973https://pmc.ncbi.nlm.nih.gov/articles/PMC3488973/0
2012Set9, NF-κB, and microRNA-21 mediate berberine-induced apoptosis of human multiple myeloma cellsHai-yan HuPMC4086496https://pmc.ncbi.nlm.nih.gov/articles/PMC4086496/0
2011Berberine: A Potential Multipotent Natural Product to Combat Alzheimer’s DiseaseHong-Fang JiPMC6264702https://pmc.ncbi.nlm.nih.gov/articles/PMC6264702/0
2010Berberine-induced apoptosis in human glioblastoma T98G cells is mediated by endoplasmic reticulum stress accompanying reactive oxygen species and mitochondrial dysfunctionKi Seong Eom20930370https://pubmed.ncbi.nlm.nih.gov/20930370/0
2010Berberine reduces endoplasmic reticulum stress and improves insulin signal transduction in Hep G2 cellsZeng-si Wanghttps://www.researchgate.net/publication/43100133_Berberine_reduces_endoplasmic_reticulum_stress_and_improves_insulin_signal_transduction_in_Hep_G2_cells0
2010Berberine Inhibited Radioresistant Effects and Enhanced Anti-Tumor Effects in the Irradiated-Human Prostate Cancer CellsJung-Mu HurPMC3834470https://pmc.ncbi.nlm.nih.gov/articles/PMC3834470/0
2009Anti-Alzheimer and Antioxidant Activities of Coptidis Rhizoma AlkaloidsHyun Ah Junghttps://www.jstage.jst.go.jp/article/bpb/32/8/32_8_1433/_article0
2009Berberine Differentially Modulates the Activities of ERK, p38 MAPK, and JNK to Suppress Th17 and Th1 T Cell Differentiation in Type 1 Diabetic MiceGuoliang CuiPMC2788891https://pmc.ncbi.nlm.nih.gov/articles/PMC2788891/0
2009Berberine suppresses in vitro migration and invasion of human SCC-4 tongue squamous cancer cells through the inhibitions of FAK, IKK, NF-κB, u-PA and MMP-2 and -9Yung-Tsuan Hohttps://www.sciencedirect.com/science/article/abs/pii/S03043835090006400
2008Berberine and Its More Biologically Available Derivative, Dihydroberberine, Inhibit Mitochondrial Respiratory Complex I: A Mechanism for the Action of Berberine to Activate AMP-Activated Protein Kinase and Improve Insulin ActionNigel Turnerhttps://diabetesjournals.org/diabetes/article/57/5/1414/13470/Berberine-and-Its-More-Biologically-Available0
2008Berberine induced down-regulation of matrix metalloproteinase-1, -2 and -9 in human gastric cancer cells (SNU-5) in vitroJing-Pin Lin18468407https://pubmed.ncbi.nlm.nih.gov/18468407/0
2008Berberine-induced apoptosis in human prostate cancer cells is initiated by reactive oxygen species generationSyed M Meeran18275980https://pubmed.ncbi.nlm.nih.gov/18275980/0
2007Berberine induces apoptosis in human HSC-3 oral cancer cells via simultaneous activation of the death receptor-mediated and mitochondrial pathwayChin-Chung Lin17970083https://pubmed.ncbi.nlm.nih.gov/17970083/0
2006Berberine, a natural product, induces G1-phase cell cycle arrest and caspase-3-dependent apoptosis in human prostate carcinoma cellsSudheer K. Mantenahttps://aacrjournals.org/mct/article/5/2/296/285475/Berberine-a-natural-product-induces-G1-phase-cell0
2004Berberine inhibits HIF-1alpha expression via enhanced proteolysisShankung Lin15322253https://pubmed.ncbi.nlm.nih.gov/15322253/0
1998Agonist-dependent differential effects of berberine in human platelet aggregationBukhtiar H. Shahhttps://onlinelibrary.wiley.com/doi/10.1002/(SICI)1099-1573(1998)12:1+%3CS60::AID-PTR251%3E3.0.CO;2-J0
2017Regulation of GSK-3 activity by curcumin, berberine and resveratrol: Potential effects on multiple diseasesJames A McCubrey28579298https://pubmed.ncbi.nlm.nih.gov/28579298/0
2025Biomarker discovery and phytochemical interventions in Alzheimer's disease: A path to therapeutic advancesMithila Debnathhttps://www.sciencedirect.com/science/article/pii/S26670313250002590
2019Effects of Resveratrol, Berberine and Their Combinations on Reactive Oxygen Species, Survival and Apoptosis in Human Squamous Carcinoma (SCC-25) CellsMagdalena Skonieczna30950357https://pubmed.ncbi.nlm.nih.gov/30950357/0
2024From 2D to 3D In Vitro World: Sonodynamically-Induced Prooxidant Proapoptotic Effects of C60-Berberine Nanocomplex on Cancer CellsAleksandar RadivoievychPMC11430052https://pmc.ncbi.nlm.nih.gov/articles/PMC11430052/0