BetA Betulinic acid
Description: <b>Betulinic acid</b> "buh-TOO-li-nik acid" is a natural compound with antiretroviral, anti malarial, anti-inflammatory and anticancer properties. It is found in the bark of several plants, such as white birch, ber tree and rosemary, and has a complex mode of action against tumor cells.<br>
-Betulinic acid is a naturally occurring pentacyclic triterpenoid<br>
-vitro concentrations range from 1–100 µM, in vivo studies in rodents have generally used doses from 10–100 mg/kg<br>
Precursor: Betulin, via oxidation at C-28<br>
Lipophilicity: High (poor aqueous solubility)<br>
-<a href="tbResList.php?qv=42&tsv=1109&wNotes=on&exSp=open">half-life</a> reports vary 3-5 hrs?.
Reported half-life varies by formulation and species; several studies report multi-hour systemic persistence.<br>
<a href="tbResList.php?qv=42&tsv=792&wNotes=on&exSp=open">BioAv</a> -hydrophobic molecule with relatively poor water solubility. <br>
<pre>
Main Cancer action
-Direct mitochondrial targeting in cancer cells
-Minimal effect on normal cells
Key pathways
-Mitochondrial membrane permeabilization
-ROS-mediated apoptosis
-Caspase-independent death
Chemo relevance: Generally compatible, Not a redox buffer
</pre>
<br>
Pathways:<br>
<!-- ROS : MMP↓, ER Stress↑, Ca+2↑, Cyt‑c↑, Casp3↑, Casp9↑, DNAdam↑, UPR↑, cl-PARP↑-->
- often induce
<a href="tbResList.php?qv=42&tsv=275&wNotes=on">ROS</a> production<br>
- ROS↑ related:
<a href="tbResList.php?&qv=42&tsv=197&wNotes=on&word=MMP↓">MMP↓</a>(ΔΨm),
<a href="tbResList.php?&qv=42&tsv=103&wNotes=on">ER Stress↑</a>,
<a href="tbResList.php?&qv=42&tsv=459&wNotes=on">UPR↑</a>,
<a href="tbResList.php?&qv=42&tsv=356&wNotes=on">GRP78↑</a>,
<a href="tbResList.php?&qv=42&tsv=38&wNotes=on&word=Ca+2↑">Ca+2↑</a>,
<a href="tbResList.php?&qv=42&tsv=77&wNotes=on">Cyt‑c↑</a>,
<a href="tbResList.php?&qv=42&wNotes=on&word=Casp">Caspases↑</a>,
<a href="tbResList.php?&qv=42&tsv=82&wNotes=on&word=DNAdam↑">DNA damage↑</a>,
<a href="tbResList.php?&qv=42&tsv=239&wNotes=on">cl-PARP↑</a>,
<a href="tbResList.php?&qv=42&wNotes=on&word=HSP">HSP↓</a>
<br>
<!-- ANTIOXIDANT : NRF2, SOD, GSH, CAT, HO-1, GPx, GPX4, -->
- Lowers AntiOxidant defense in Cancer Cells(Often associated with reduced redox buffering capacity in tumor cells (e.g., GSH depletion); NRF2 direction model-dependent.):
<a href="tbResList.php?&qv=42&tsv=226&wNotes=on&word=NRF2↓">NRF2↓</a>,
<a href="tbResList.php?&qv=42&tsv=298&wNotes=on&word=SOD↓">SOD↓</a>,
<a href="tbResList.php?&qv=42&tsv=137&wNotes=on&word=GSH↓">GSH↓</a>
<br>
- May Raise
<a href="tbResList.php?&qv=42&tsv=1103&wNotes=on&word=antiOx↑">AntiOxidant</a>
defense in Normal Cells:
<a href="tbResList.php?&qv=42&tsv=226&wNotes=on&word=NRF2↑">NRF2↑</a>,
<a href="tbResList.php?&qv=42&tsv=298&wNotes=on&word=SOD↑">SOD↑</a>,
<a href="tbResList.php?&qv=42&tsv=137&wNotes=on&word=GSH↑">GSH↑</a>,
<a href="tbResList.php?&qv=42&tsv=46&wNotes=on&word=Catalase↑">Catalase↑</a>
Reports suggest relative sparing of normal cells and preservation of antioxidant capacity in some models
<br>
<!-- INFLAMMATION : NF-kB↓, COX2↓, COX2↓ PRO-INFL CYTOKINES: IL-1β↓, TNF-α↓, IL-6↓, IL-8↓, -->
- lowers
<a href="tbResList.php?&qv=42&tsv=953&wNotes=on&word=Inflam">Inflammation</a> :
<a href="tbResList.php?&qv=42&tsv=214&wNotes=on&word=NF-kB↓">NF-kB↓</a>(typ),
<a href="tbResList.php?&qv=42&tsv=66&wNotes=on&word=COX2↓">COX2↓</a>,
<a href="tbResList.php?&qv=42&tsv=235&wNotes=on&word=p38↓">p38↓</a>
(context-dependent; often stress-activated), Pro-Inflammatory Cytokines :
<a href="tbResList.php?&qv=42&tsv=978&wNotes=on&word=IL1β↓">IL-1β↓</a>,
<a href="tbResList.php?&qv=42&tsv=309&wNotes=on&word=TNF-α↓">TNF-α↓</a>,
<a href="tbResList.php?&qv=42&tsv=158&wNotes=on&word=IL6↓">IL-6↓</a>,
<a href="tbResList.php?&qv=42&tsv=368&wNotes=on&word=IL8↓">IL-8↓</a>
<br>
<!-- GROWTH/METASTASES : EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1, uPA↓, VEGF↓, ERK↓
inhibiting metastasis-associated proteins such as ROCK1, FAK, (RhoA), NF-κB and u-PA, MMP-1 and MMP-13.-->
- inhibit Growth/Metastases :
<a href="tbResList.php?&qv=42&tsv=96&wNotes=on"EMT↓</a>,
<a href="tbResList.php?&qv=42&tsv=204&wNotes=on">MMPs↓</a>,
<a href="tbResList.php?&qv=42&tsv=201&wNotes=on">MMP2↓</a>,
<a href="tbResList.php?&qv=42&tsv=203&wNotes=on">MMP9↓</a>,
<a href="tbResList.php?&qv=42&tsv=308&wNotes=on">TIMP2</a>,
<a href="tbResList.php?&qv=42&tsv=415&wNotes=on">IGF-1↓</a>,
<a href="tbResList.php?&qv=42&tsv=334&wNotes=on">VEGF↓</a>,
<a href="tbResList.php?&qv=42&tsv=1284&wNotes=on">ROCK1↓</a>,
<a href="tbResList.php?&qv=42&tsv=110&wNotes=on">FAK↓</a>,
<a href="tbResList.php?&qv=42&tsv=214&wNotes=on">NF-κB↓</a>,
<a href="tbResList.php?&qv=42&tsv=304&wNotes=on">TGF-β↓</a>,
<a href="tbResList.php?&qv=42&tsv=719&wNotes=on">α-SMA↓</a>,
<a href="tbResList.php?&qv=42&tsv=105&wNotes=on">ERK↓</a>
<br>
<!-- REACTIVATE GENES : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, -->
- reactivate genes thereby inhibiting cancer cell growth :
<a href="tbResList.php?qv=42&tsv=236&wNotes=on">P53↑</a>,
<a href="tbResList.php?&qv=42&wNotes=on&word=HSP">HSP↓</a>(model-dependent),
<a href="tbResList.php?&qv=42&tsv=506&wNotes=on">Sp proteins↓</a>,
<br>
<!-- CELL CYCLE ARREST : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓ -->
- cause Cell cycle arrest :
<a href="tbResList.php?&qv=42&tsv=322&wNotes=on">TumCCA↑</a>,
<a href="tbResList.php?&qv=42&tsv=73&wNotes=on">cyclin D1↓</a>,
<a href="tbResList.php?&qv=42&tsv=467&wNotes=on">CDK2↓</a>,
<a href="tbResList.php?&qv=42&tsv=894&wNotes=on">CDK4↓</a>,
<br>
<!-- MIGRATION/INVASION : TumCMig↓, TumCI↓, FAK↓, ERK↓, -->
- inhibits Migration/Invasion :
<a href="tbResList.php?&qv=42&tsv=326&wNotes=on">TumCMig↓</a>,
<a href="tbResList.php?&qv=42&tsv=324&wNotes=on">TumCI↓</a>,
<a href="tbResList.php?&qv=42&tsv=110&wNotes=on">FAK↓</a>,
<a href="tbResList.php?&qv=42&tsv=105&wNotes=on">ERK↓</a>,
<a href="tbResList.php?&qv=42&tsv=96&wNotes=on">EMT↓</a>,
<a href="tbResList.php?&qv=42&tsv=1117&wNotes=on">TOP1↓</a>,
<br>
<!-- GLYCOLYSIS : ATP↓, HIF-1α↓, PKM2↓, cMyc↓, PDK1↓, GLUT1↓, LDHA↓, HK2↓, Glucose↓, GlucoseCon↓, lactateProd, OXPHOS -->
- inhibits
<a href="tbResList.php?qv=42&tsv=129&wNotes=on">glycolysis</a>
(secondary to mitochondrial stress)
<a href="tbResList.php?qv=42&tsv=21&wNotes=on&word=ATP↓">ATP depletion</a> :
<a href="tbResList.php?&qv=42&tsv=143&wNotes=on">HIF-1α↓</a>,
<a href="tbResList.php?&qv=42&tsv=772&wNotes=on">PKM2↓</a>,
<a href="tbResList.php?&qv=42&tsv=35&wNotes=on">cMyc↓</a>,
<a href="tbResList.php?&qv=42&tsv=566&wNotes=on&word=GLUT">GLUT1↓</a>,
<a href="tbResList.php?&qv=42&tsv=906&wNotes=on">LDH↓</a>,
<a href="tbResList.php?&qv=42&tsv=175&wNotes=on&word=LDH">LDHA↓</a>,
<a href="tbResList.php?&qv=42&tsv=773&wNotes=on">HK2↓</a>,
<a href="tbResList.php?&qv=42&wNotes=on&word=PFK">PFKs↓</a>,
<a href="tbResList.php?&qv=42&wNotes=on&word=PDK">PDKs↓</a>,
<a href="tbResList.php?&qv=42&tsv=773&wNotes=on">HK2↓</a>,
<a href="tbResList.php?&qv=42&tsv=847&wNotes=on">ECAR↓</a>,
<a href="tbResList.php?&qv=42&tsv=356&wNotes=on">GRP78↑</a>(ER stress),
<a href="tbResList.php?&qv=42&tsv=623&wNotes=on">GlucoseCon↓</a>
<br>
<!-- ANGIOGENESIS : VEGF↓, VEGFR2↓, HIF-1α↓, NOTCH↓, FGF↓, PDGF↓, EGFR↓ ITG(Integrins↓)-->
- inhibits
<a href="tbResList.php?qv=42&tsv=447&wNotes=on">angiogenesis↓</a> :
<a href="tbResList.php?qv=42&tsv=334&wNotes=on">VEGF↓</a>,
<a href="tbResList.php?&qv=42&tsv=143&wNotes=on">HIF-1α↓</a>,
<a href="tbResList.php?&qv=42&tsv=94&wNotes=on&word=EGFR↓">EGFR↓</a>,
<br>
<!-- CSCs : CSC↓, CK2↓, Hh↓, GLi↓, GLi1↓, -->
- inhibits Cancer Stem Cells in some studies :
<a href="tbResList.php?qv=42&tsv=795&wNotes=on">CSC↓</a>,
<a href="tbResList.php?qv=42&tsv=124&wNotes=on">GLi1↓</a>,
<a href="tbResList.php?qv=42&tsv=342&wNotes=on">β-catenin↓</a>,
<a href="tbResList.php?qv=42&tsv=508&wNotes=on">OCT4↓</a>,
<br>
<!-- OTHERS : -->
- Others: <a href="tbResList.php?qv=42&tsv=252&wNotes=on">PI3K↓</a>(typ),
<a href="tbResList.php?qv=42&tsv=4&wNotes=on">AKT↓</a>(typ),
<a href="tbResList.php?qv=42&wNotes=on&word=JAK">JAK↓</a>,
<a href="tbResList.php?qv=42&wNotes=on&word=STAT">STAT↓</a>,
<a href="tbResList.php?qv=42&tsv=342&wNotes=on">β-catenin↓</a>,
<a href="tbResList.php?qv=42&tsv=9&wNotes=on">AMPK↓</a>(AMPK is often activated during metabolic stress),
<a href="tbResList.php?qv=42&tsv=105&wNotes=on">ERK↓</a>,
<a href="tbResList.php?qv=42&tsv=168&wNotes=on">JNK</a>,
<br>
<!-- SYNERGIES : -->
- Synergies:
<a href="tbResList.php?qv=42&tsv=1106&wNotes=on">chemo-sensitization</a>,
<a href="tbResList.php?qv=42&tsv=1171&wNotes=on">chemoProtective</a>,
<a href="tbResList.php?qv=42&tsv=1107&wNotes=on">RadioSensitizer</a>,
<a href="tbResList.php?qv=42&tsv=961&esv=2&wNotes=on&exSp=open">Others(review target notes)</a>,
<a href="tbResList.php?qv=42&tsv=1105&wNotes=on">Neuroprotective</a>,
<a href="tbResList.php?qv=42&tsv=557&wNotes=on">Cognitive</a>,
<a href="tbResList.php?qv=42&tsv=1175&wNotes=on">Renoprotection</a>,
<a href="tbResList.php?qv=42&tsv=1179&wNotes=on">Hepatoprotective</a>,
<a href="tbResList.php?&qv=42&tsv=1188&wNotes=on">CardioProtective</a>,
<br>
<!-- SELECTIVE: -->
- Selectivity:
<a href="tbResList.php?qv=42&tsv=1110&wNotes=on">Cancer Cells vs Normal Cells</a>
<br>
<br>
<!-- Betulinic Acid — Time-Scale Flagged Pathway Table (web-ready) -->
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells</th>
<th>Normal Cells</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>
<tr>
<td>1</td>
<td>Intrinsic apoptosis (mitochondrial-mediated)</td>
<td>↑ mitochondria depolarization; ↑ cytochrome-c; ↑ caspase-9/3 activation</td>
<td>↔ limited activation (higher exposure required)</td>
<td>R, G</td>
<td>Execution of apoptosis</td>
<td>Betulinic acid (BA) is well known to engage the intrinsic apoptotic cascade, typically downstream of redox and signaling perturbations.</td>
</tr>
<tr>
<td>2</td>
<td>ROS / redox stress</td>
<td>↑ ROS (P→R)</td>
<td>↔ basal or antioxidant adaptation in some contexts</td>
<td>P, R</td>
<td>Stress induction</td>
<td>Many studies report ROS elevation in tumor cells exposed to BA; the direction and magnitude vary by cell type and exposure.</td>
</tr>
<tr>
<td>3</td>
<td>Mitochondrial permeability transition / ΔΨm loss</td>
<td>ΔΨm ↓ (R→G)</td>
<td>↔ maintained</td>
<td>R, G</td>
<td>Mitochondrial failure</td>
<td>Often observed as an early event preceding caspase activation in apoptosis studies.</td>
</tr>
<tr>
<td>4</td>
<td>PI3K / AKT / mTOR survival axis</td>
<td>↓ PI3K/AKT signaling; ↓ phospho-mTOR</td>
<td>↔</td>
<td>R, G</td>
<td>Survival/growth suppression</td>
<td>Betulinic acid often downregulates pro-survival kinase signaling, sensitizing cells to apoptosis and cytostasis.</td>
</tr>
<tr>
<td>5</td>
<td>NF-κB signaling</td>
<td>↓ NF-κB activity</td>
<td>↔</td>
<td>R, G</td>
<td>Pro-survival/inflammatory transcription suppression</td>
<td>Reduction in NF-κB activity limits pro-survival gene expression; supports sensitization to stressors.</td>
</tr>
<tr>
<td>6</td>
<td>MAPK re-wiring (JNK / ERK / p38)</td>
<td>Stress-MAPK shifts; JNK/p38 often ↑; ERK context-dependent</td>
<td>↔</td>
<td>P, R</td>
<td>Early stress signaling</td>
<td>MAPK responses vary by model, with stress-associated p38/JNK often activated and ERK modulation variable.</td>
</tr>
<tr>
<td>7</td>
<td>Cell-cycle checkpoints (p21, p27, cyclins)</td>
<td>↑ p21/p27; ↑ G1/S or G2/M arrest</td>
<td>↔</td>
<td>G</td>
<td>Proliferation arrest</td>
<td>BA often induces cell-cycle blockade, slowing proliferation before apoptosis commitment.</td>
</tr>
<tr>
<td>8</td>
<td>Angiogenic signaling (VEGF & related)</td>
<td>↓ VEGF; anti-angiogenic outputs</td>
<td>↔</td>
<td>G</td>
<td>Anti-angiogenic support</td>
<td>Typically seen at the level of reduced pro-angiogenic factor expression or secretion in longer-term assays.</td>
</tr>
<tr>
<td>9</td>
<td>EMT / invasion / migration programs (MMPs)</td>
<td>↓ MMP2/MMP9; ↓ migration/invasion</td>
<td>↔</td>
<td>G</td>
<td>Anti-invasive phenotype</td>
<td>Often measured as reduced invasive capacity and decreased expression of EMT markers in later time points.</td>
</tr>
<tr>
<td>10</td>
<td>Autophagy modulation</td>
<td>↑ LC3-II; ↑ autophagic flux (model dependent)</td>
<td>↔</td>
<td>G</td>
<td>Adaptive clearance / cell fate shift</td>
<td>BA can modulate autophagy, which may either sensitize cells to death pathways or reflect adaptive stress responses.</td>
</tr>
</table>
<p><b>Time-Scale Flag (TSF):</b> P / R / G</p>
<ul>
<li><b>P</b>: 0–30 min (primary/physical-chemical effects; rapid kinase/redox signaling)</li>
<li><b>R</b>: 30 min–3 hr (acute redox and stress-response activation)</li>
<li><b>G</b>: >3 hr (gene-regulatory adaptation and phenotypic outcomes)</li>
</ul>