tbResList Print — Bos Boswellia (frankincense)

Filters: qv=47, qv2=%, rfv=%

Product

Bos Boswellia (frankincense)
Description: <b>Boswellia</b> is an herbal extract from the Boswellia serrata tree that may help reduce inflammation.<br>
May help with rheumatoid arthritis, inflammatory bowel disease, asthma, and cancer.<br>
-Naturally occurring pentacyclic triterpenoids include ursolic acid (UA), oleanolic acid (OA), betulinic acid (BetA), bosewellic acid (BA), Asiatic acid (AA), α-amyrin, celastrol, glycyrrhizin, 18-β-glycyrrhetinic acid, lupeol, escin, madecassic acid, momordin I, platycodon D, pristimerin, saikosaponins, soyasapogenol B, and avicin<br>
Boswellia refers to a group of resinous extracts obtained from Boswellia trees (e.g., Boswellia serrata). Traditionally used in Ayurvedic and traditional Chinese medicine, Boswellia is reputed for its anti-inflammatory, analgesic, and immunomodulatory properties. Its bioactive components—such as boswellic acids.<br>
Boswellic acids belong to the pentacyclic triterpenoid class (a broader chemical family that includes compounds such as ursolic acid and betulinic acid found in other plants)
<pre>
3-acetyl-11-keto-β-boswellic acid (AKBA)
11-keto-β-boswellic acid (KBA)
α-boswellic acid (αBA)
β-boswellic acid (βBA)
3-acetyl-α-boswellic acid (AαBA)
3-acetyl-β-boswellic acid (AβBA)
</pre>
-Anti-inflammatory Activity (blocking the enzyme 5-lipoxygenase)
<a href="tbResList.php?qv=47&tsv=1090&wNotes=on">5LOX↓</a>,.<br>
-AKBA inhibits
<a href="tbResList.php?qv=47&tsv=1206&wNotes=on">methionine adenosyltransferase 2A (MAT2A)</a>***** (help in Methionine reduced diet?)
<br>
Boswellia extracts are often administered in doses ranging from 300 mg to 1,200 mg per day<br>
<br>
AKBA (Acetyl-11-keto-β-boswellic acid) is a bioactive compound derived from Boswellia serrata, a plant used traditionally for its anti-inflammatory properties. (upto 30% AKBA in
<a href="https://www.mcsformulas.com/vitamins-supplements/boswellia-akba-liposomal/"> Boswellia MEGA AKBA</a>)<br>
AKBA also available in Inflasanum @ 90% AKDA (MCSformulas)<br>

<br>
-Note <a href="tbResList.php?qv=47&tsv=1109&wNotes=on&exSp=open">half-life</a> reports vary 2.5-90hrs?.<br>
<a href="tbResList.php?qv=47&tsv=792&wNotes=on&exSp=open">BioAv</a> (bio availability increases with high fat meal)
<br>
Pathways:<br>

<!-- ROS : MMP↓, ER Stress↑, Ca+2↑, Cyt‑c↑, Casp3↑, Casp9↑, DNAdam↑, UPR↑, cl-PARP↑-->
- induce or lower
<a href="tbResList.php?qv=47&tsv=275&wNotes=on">ROS</a> production (not consistant increase for cancer cells)<br>
- ROS↑ related:
<a href="tbResList.php?qv=47&tsv=197&wNotes=on&word=MMP↓">MMP↓</a>(ΔΨm),
<a href="tbResList.php?qv=47&tsv=103&wNotes=on">ER Stress↑</a>,
<a href="tbResList.php?qv=47&tsv=356&wNotes=on">GRP78↑</a>,
<a href="tbResList.php?qv=47&tsv=38&wNotes=on&word=Ca+2↑">Ca+2↑</a>,
<a href="tbResList.php?qv=47&tsv=77&wNotes=on">Cyt‑c↑</a>,
<a href="tbResList.php?qv=47&wNotes=on&word=Casp">Caspases↑</a>,
<a href="tbResList.php?qv=47&tsv=82&wNotes=on&word=DNAdam↑">DNA damage↑</a>,
<a href="tbResList.php?qv=47&tsv=239&wNotes=on">cl-PARP↑</a>,
<br>


- may Raise
<a href="tbResList.php?qv=47&tsv=1103&wNotes=on&word=antiOx↑">AntiOxidant</a>
defense in Normal Cells:
<a href="tbResList.php?qv=47&tsv=275&wNotes=on&word=ROS↓">ROS↓</a>,
<a href="tbResList.php?qv=47&tsv=226&wNotes=on&word=NRF2↑">NRF2↑</a>,
<a href="tbResList.php?qv=47&tsv=298&wNotes=on&word=SOD↑">SOD↑</a>,
<a href="tbResList.php?qv=47&tsv=137&wNotes=on&word=GSH↑">GSH↑</a>,
<a href="tbResList.php?qv=47&tsv=46&wNotes=on&word=Catalase↑">Catalase↑</a>,
<br>

<!-- INFLAMMATION : NF-kB↓, COX2↓, COX2↓ PRO-INFL CYTOKINES: IL-1β↓, TNF-α↓, IL-6↓, IL-8↓, -->
- lowers
<a href="tbResList.php?qv=47&tsv=953&wNotes=on&word=Inflam">Inflammation</a> :
<a href="tbResList.php?qv=47&tsv=214&wNotes=on&word=NF-kB↓">NF-kB↓</a>,
<a href="tbResList.php?qv=47&tsv=66&wNotes=on&word=COX2↓">COX2↓</a>,
<a href="tbResList.php?qv=47&tsv=235&wNotes=on&word=p38↓">p38↓</a>
(context-dependent; stress/inflammatory MAPK modulation), Pro-Inflammatory Cytokines :
<a href="tbResList.php?qv=47&tsv=978&wNotes=on&word=IL1β↓">IL-1β↓</a>,
<a href="tbResList.php?qv=47&tsv=309&wNotes=on&word=TNF-α↓">TNF-α↓</a>,
<a href="tbResList.php?qv=47&tsv=158&wNotes=on&word=IL6↓">IL-6↓</a>,
<br>



<!-- GROWTH/METASTASES : EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1, uPA↓, VEGF↓, ERK↓
inhibiting metastasis-associated proteins such as ROCK1, FAK, (RhoA), NF-κB and u-PA, MMP-1 and MMP-13.-->
- inhibit Growth/Metastases :
<a href="tbResList.php?qv=47&tsv=96&wNotes=on"EMT↓</a>,
<a href="tbResList.php?qv=47&tsv=204&wNotes=on">MMPs↓</a>,
<a href="tbResList.php?qv=47&tsv=201&wNotes=on">MMP2↓</a>,
<a href="tbResList.php?qv=47&tsv=203&wNotes=on">MMP9↓</a>,
<a href="tbResList.php?qv=47&tsv=334&wNotes=on">VEGF↓</a>,
<a href="tbResList.php?qv=47&tsv=214&wNotes=on">NF-κB↓</a>,
<a href="tbResList.php?qv=47&tsv=79&wNotes=on">CXCR4↓</a>,
<a href="tbResList.php?qv=47&tsv=105&wNotes=on">ERK↓</a>
<br>


<!-- CELL CYCLE ARREST : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓ -->
- cause Cell cycle arrest :
<a href="tbResList.php?qv=47&tsv=322&wNotes=on">TumCCA↑</a>,
<a href="tbResList.php?qv=47&tsv=73&wNotes=on">cyclin D1↓</a>,
<a href="tbResList.php?qv=47&tsv=378&wNotes=on">cyclin E↓</a>,
<a href="tbResList.php?qv=47&tsv=467&wNotes=on">CDK2↓</a>,
<a href="tbResList.php?qv=47&tsv=894&wNotes=on">CDK4↓</a>,
<a href="tbResList.php?qv=47&tsv=895&wNotes=on">CDK6↓</a>,
<br>

<!-- MIGRATION/INVASION : TumCMig↓, TumCI↓, FAK↓, ERK↓, -->
- inhibits Migration/Invasion :
<a href="tbResList.php?qv=47&tsv=326&wNotes=on">TumCMig↓</a>,
<a href="tbResList.php?qv=47&tsv=324&wNotes=on">TumCI↓</a>,
<a href="tbResList.php?qv=47&tsv=105&wNotes=on">ERK↓</a>,
<a href="tbResList.php?qv=47&tsv=1117&wNotes=on">TOP1↓</a>,
<br>



<!-- ANGIOGENESIS : VEGF↓, VEGFR2↓, HIF-1α↓, NOTCH↓, FGF↓, PDGF↓, EGFR↓ ITG(Integrins↓)-->
- inhibits
<a href="tbResList.php?qv=47&tsv=447&wNotes=on">angiogenesis↓</a> :
<a href="tbResList.php?qv=47&tsv=334&wNotes=on">VEGF↓</a>,
<a href="tbResList.php?qv=47&wNotes=on&word=NOTCH">Notch↓</a>,
<a href="tbResList.php?qv=47&tsv=361&wNotes=on">PDGF↓</a>,
<br>



<!-- OTHERS : -->
- Others: <a href="tbResList.php?qv=47&tsv=252&wNotes=on">PI3K↓</a>,
<a href="tbResList.php?qv=47&tsv=4&wNotes=on">AKT↓</a>,
<a href="tbResList.php?qv=47&wNotes=on&word=STAT">STAT↓</a>,
<a href="tbResList.php?qv=47&tsv=377&wNotes=on">Wnt↓</a>,
<a href="tbResList.php?qv=47&tsv=342&wNotes=on">β-catenin↓</a>,
<a href="tbResList.php?qv=47&tsv=9&wNotes=on">AMPK↓</a>,
<a href="tbResList.php?qv=47&tsv=105&wNotes=on">ERK↓</a>,
<a href="tbResList.php?qv=47&tsv=168&wNotes=on">JNK</a>(JNK is activated under stress)
<br>


<!-- SYNERGIES : -->
- Synergies:
<a href="tbResList.php?qv=47&tsv=1106&wNotes=on">chemo-sensitization</a>,
<a href="tbResList.php?qv=47&tsv=1171&wNotes=on">chemoProtective</a>,
<a href="tbResList.php?qv=47&tsv=1185&wNotes=on">RadioProtective</a>,
<a href="tbResList.php?qv=47&tsv=961&esv=2&wNotes=on&exSp=open">Others(review target notes)</a>,
<a href="tbResList.php?qv=47&tsv=1105&wNotes=on">Neuroprotective</a>,
<a href="tbResList.php?qv=47&tsv=557&wNotes=on">Cognitive</a>,
<a href="tbResList.php?qv=47&tsv=1179&wNotes=on">Hepatoprotective</a>,
<br>
<br>
<!-- SELECTIVE: -->
- Selectivity:
<a href="tbResList.php?qv=47&tsv=1110&wNotes=on">Cancer Cells vs Normal Cells</a><br>
<br>




<!-- Boswellia (Boswellia serrata; boswellic acids incl. AKBA) — Time-Scale Flagged Pathway Table (web-page ready) -->
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells</th>
<th>Normal Cells</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>NF-κB axis (IKK → NF-κB; NF-κB-regulated genes)</td>
<td>NF-κB ↓; downstream targets ↓ (COX-2, Cyclin D1, Bcl-2/Bcl-xL/IAPs, MMP-9, VEGF, CXCR4 etc.)</td>
<td>Anti-inflammatory tone (context)</td>
<td>R, G</td>
<td>Anti-survival / anti-inflammatory transcription</td>
<td>AKBA-class compounds suppress NF-κB signaling and reduce multiple NF-κB-regulated tumor programs in vitro and in vivo models.</td>
</tr>

<tr>
<td>2</td>
<td>5-LOX (leukotriene pathway) / eicosanoid signaling</td>
<td>5-LOX activity ↓ (context); pro-inflammatory eicosanoid signaling ↓</td>
<td>Anti-inflammatory support</td>
<td>P, R</td>
<td>Direct enzymatic / lipid-mediator suppression</td>
<td>Boswellic acids are widely discussed as 5-LOX–linked anti-inflammatory agents; cancer relevance often tracks inflammation-driven growth signals.</td>
</tr>

<tr>
<td>3</td>
<td>Apoptosis (extrinsic + intrinsic; caspases; PARP)</td>
<td>Apoptosis ↑; Caspase-8/3 ↑; cl-PARP ↑ (context)</td>
<td>↔</td>
<td>G</td>
<td>Cell death execution</td>
<td>Reported apoptosis induction includes death-receptor (e.g., DR5-associated) and caspase/PARP cleavage patterns in multiple tumor models.</td>
</tr>

<tr>
<td>4</td>
<td>Cell-cycle control (Cyclin D1 / checkpoints)</td>
<td>Cyclin D1 ↓; proliferation ↓; arrest ↑ (context)</td>
<td>↔</td>
<td>G</td>
<td>Cytostasis</td>
<td>Often presented as downstream of NF-κB/survival signaling suppression and stress adaptation.</td>
</tr>

<tr>
<td>5</td>
<td>Invasion / metastasis programs (MMP-9, ICAM-1, CXCR4)</td>
<td>Invasion markers ↓; MMP-9 ↓; ICAM-1 ↓; CXCR4 ↓ (context)</td>
<td>↔</td>
<td>G</td>
<td>Anti-invasive phenotype</td>
<td>In vivo tumor models report reductions in invasive and chemokine/migration biomarkers alongside NF-κB suppression.</td>
</tr>

<tr>
<td>6</td>
<td>Angiogenesis signaling (VEGF; VEGFR2-mediated angiogenesis)</td>
<td>VEGF ↓; angiogenic outputs ↓ (context)</td>
<td>↔</td>
<td>G</td>
<td>Anti-angiogenic support</td>
<td>AKBA has been reported to suppress angiogenesis programs including VEGF signaling, with VEGFR2-mediated angiogenesis discussed in prostate cancer contexts.</td>
</tr>

<tr>
<td>7</td>
<td>PI3K → AKT (± mTOR) survival axis</td>
<td>PI3K/AKT ↓ (reported; model-dependent)</td>
<td>↔</td>
<td>R, G</td>
<td>Growth/survival suppression</td>
<td>Commonly listed as a downstream survival pathway impacted by boswellic acids; keep as “reported” (not universal across all models).</td>
</tr>

<tr>
<td>8</td>
<td>MAPK re-wiring (ERK / JNK / p38)</td>
<td>Stress-MAPK modulation (context-dependent)</td>
<td>↔</td>
<td>P, R, G</td>
<td>Signal reprogramming</td>
<td>MAPK direction varies by tumor type/dose and whether the experimental system is inflammatory vs cytotoxic.</td>
</tr>

<tr>
<td>9</td>
<td>Chemo-/radio-sensitization (combination relevance)</td>
<td>Sensitization ↑ (context)</td>
<td>—</td>
<td>G</td>
<td>Combination leverage</td>
<td>Combination studies report enhanced tumor control when AKBA-class compounds are paired with other therapies (context and regimen dependent).</td>
</tr>

<tr>
<td>10</td>
<td>Bioavailability constraint (oral exposure; formulation dependence)</td>
<td>Systemic exposure often limited without enhanced delivery</td>
<td>—</td>
<td>—</td>
<td>Translation constraint</td>
<td>Poor pharmacokinetics are a common limitation; multiple strategies (e.g., micellar delivery, bioenhancers) are studied to improve absorption.</td>
</tr>
</table>

<p><b>Time-Scale Flag (TSF):</b> P / R / G</p>
<ul>
<li><b>P</b>: 0–30 min (primary/physical–chemical effects; rapid enzymatic/kinase shifts)</li>
<li><b>R</b>: 30 min–3 hr (acute redox + stress-response signaling)</li>
<li><b>G</b>: &gt;3 hr (gene-regulatory adaptation and phenotype-level outcomes)</li>
</ul>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

Ferroptosis↑, 1,   GPx4↓, 1,   i-Iron↑, 1,   lipid-P↑, 1,   lipid-P?, 1,   ROS↑, 7,   ROS↝, 1,   ROS↓, 2,  

Metal & Cofactor Biology

Tf↑, 1,   Tf↓, 1,  

Mitochondria & Bioenergetics

AIF↑, 2,   CDC25↓, 1,   MMP↓, 3,   MMP↝, 1,   p42↑, 1,   XIAP↓, 1,  

Core Metabolism/Glycolysis

AMPK↑, 1,   AMPK↓, 1,   cMyc↓, 2,   Glycolysis↓, 1,   NADPH↝, 1,   PPARα↓, 1,  

Cell Death

Akt↓, 3,   p‑Akt↓, 2,   Apoptosis↑, 7,   BAX↑, 4,   Bax:Bcl2↑, 1,   Bcl-2↓, 4,   cl‑Bcl-2↑, 1,   Bcl-xL↓, 3,   Casp↑, 4,   Casp3↑, 5,   Casp8↑, 5,   cl‑Casp8↑, 1,   cl‑Casp9↑, 1,   Casp9↑, 2,   Cyt‑c↑, 4,   Diablo↑, 2,   DR4↑, 2,   DR5↑, 2,   Ferroptosis↑, 1,   IAP1↓, 3,   ICAD↓, 2,   JNK↑, 1,   MAPK↓, 1,   p27↑, 1,   p38↑, 1,   survivin↓, 4,   TNFR 1↑, 1,  

Kinase & Signal Transduction

HER2/EBBR2↓, 1,   SOX9↓, 1,  

Transcription & Epigenetics

miR-27a-3p↓, 2,   tumCV↓, 2,  

Protein Folding & ER Stress

CHOP↑, 1,   ER Stress↑, 2,   GRP78/BiP↑, 1,  

Autophagy & Lysosomes

LC3B↓, 1,  

DNA Damage & Repair

DNAdam↑, 2,   P53↑, 1,   cl‑PARP↑, 6,   PARP1↓, 1,  

Cell Cycle & Senescence

p‑CDK1↓, 1,   CDK2↓, 2,   CDK4↓, 4,   cycD1/CCND1↓, 9,   cycE/CCNE↓, 2,   P21↑, 4,   p‑RB1↓, 3,   TumCCA↑, 5,   TumCCA?, 1,  

Proliferation, Differentiation & Cell State

CSCs↓, 1,   p‑ERK↓, 2,   ERK↓, 1,   FOXM1↓, 1,   GSK‐3β↓, 1,   Let-7↑, 3,   miR-34a↑, 2,   mTOR↓, 2,   NOTCH↓, 1,   PI3K↓, 2,   PTEN↑, 1,   SHP1↓, 1,   STAT3↓, 2,   STAT3↑, 1,   TOP1↓, 1,   TOP2↑, 1,   TOP2↓, 1,   TumCG↓, 8,   Wnt↓, 2,  

Migration

5LO↓, 5,   Ca+2↑, 1,   cal2↓, 1,   CD31↓, 2,   E-cadherin↑, 1,   Ki-67↓, 2,   miR-200b↑, 2,   MMP1↓, 2,   MMP2↓, 3,   MMP9↓, 7,   MMPs↓, 1,   PDGF↓, 1,   TumCI↓, 2,   TumCMig↓, 2,   TumCP↓, 6,   TumMeta↓, 2,   Vim↓, 1,   β-catenin/ZEB1↓, 2,  

Angiogenesis & Vasculature

angioG↓, 4,   HIF-1↓, 1,   NO↑, 1,   p‑PDGFR-BB↓, 1,   VEGF↓, 8,   VEGFR2↓, 1,  

Immune & Inflammatory Signaling

COX2↓, 7,   CXCR4↓, 7,   ICAM-1↓, 1,   IKKα↓, 1,   IL1↓, 1,   IL1α↓, 1,   IL2↓, 1,   IL4↓, 1,   IL6↓, 1,   Inflam↓, 3,   MCP1↓, 1,   MIP2↓, 1,   NF-kB↓, 10,   PGE2↓, 1,   TNF-α↓, 1,  

Synaptic & Neurotransmission

5HT↓, 1,  

Hormonal & Nuclear Receptors

AR↓, 3,   CDK6↓, 2,  

Drug Metabolism & Resistance

BioAv↓, 1,   BioAv↑, 2,   BioAv↝, 1,   ChemoSen↑, 7,   Dose↑, 1,   eff↑, 5,   Half-Life↓, 1,   selectivity↑, 1,  

Clinical Biomarkers

AR↓, 3,   ascitic↓, 2,   FOXM1↓, 1,   GutMicro↑, 1,   HER2/EBBR2↓, 1,   IL6↓, 1,   Ki-67↓, 2,  

Functional Outcomes

AntiCan↑, 2,   AntiTum↑, 1,   chemoPv↑, 1,   radioP↑, 1,   toxicity↓, 1,   TumVol↓, 1,   Weight∅, 1,  
Total Targets: 153

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 1,   Catalase↑, 2,   GPx↑, 1,   GSH↑, 1,   HO-1↑, 3,   lipid-P↓, 2,   MDA↓, 1,   NRF2↑, 5,   ROS↓, 6,   SAM-e↓, 1,   SOD↑, 3,   TAC↑, 1,  

Mitochondria & Bioenergetics

ATP↓, 1,  

Core Metabolism/Glycolysis

ALAT↓, 1,   CREB∅, 1,   LDH↑, 1,   MATs↓, 1,  

Cell Death

iNOS↓, 1,   p‑JNK↓, 1,   MAPK↑, 1,   p38↓, 1,  

Transcription & Epigenetics

Ach↑, 1,  

DNA Damage & Repair

DNAdam↓, 1,  

Proliferation, Differentiation & Cell State

Choline↑, 1,  

Migration

5LO↓, 2,   Ca+2↝, 1,   MMP3↓, 1,   β-catenin/ZEB1↑, 1,  

Angiogenesis & Vasculature

NO↑, 1,   NO↓, 1,  

Barriers & Transport

BBB↑, 1,  

Immune & Inflammatory Signaling

COX1↓, 1,   COX2↓, 2,   CRP↓, 1,   IL1β↓, 2,   IL6↓, 3,   Imm↑, 1,   Inflam↓, 5,   NF-kB↓, 2,   NF-kB↑, 1,   p‑NF-kB↓, 1,   PGE2↓, 2,   PGE2↑, 1,   Th1 response↓, 1,   Th2↑, 2,   TNF-α↓, 5,  

Synaptic & Neurotransmission

AChE↓, 3,   BDNF↑, 2,  

Protein Aggregation

Aβ↓, 2,  

Drug Metabolism & Resistance

BioAv↑, 3,   BioAv↓, 1,   ChemoSen↑, 1,   Dose↝, 2,   Dose↑, 1,   eff↑, 3,   Half-Life↓, 1,  

Clinical Biomarkers

ALAT↓, 1,   AST↓, 1,   CRP↓, 1,   IL6↓, 3,   LDH↑, 1,  

Functional Outcomes

cognitive↓, 1,   cognitive↑, 2,   hepatoP↑, 1,   memory↑, 1,   neuroP↑, 4,   toxicity↓, 1,  
Total Targets: 67

Research papers

Year Title Authors PMID Link Flag
20253-Acetyl-11-keto-β-boswellic acid (AKBA) induced antiproliferative effect by suppressing Notch signaling pathway and synergistic interaction with cisplatin against prostate cancer cellsMahima Vermahttps://www.researchgate.net/publication/389255021_3-Acetyl-11-keto-b-boswellic_acid_AKBA_induced_antiproliferative_effect_by_suppressing_Notch_signaling_pathway_and_synergistic_interaction_with_cisplatin_against_prostate_cancer_cells0
2024The anti-proliferative effects of a frankincense extract in a window of opportunity phase ia clinical trial for patients with breast cancerIngrid V Bonilla ValentePMC10959833https://pmc.ncbi.nlm.nih.gov/articles/PMC10959833/0
2024The journey of boswellic acids from synthesis to pharmacological activitiesEhab A. Ragabhttps://link.springer.com/content/pdf/10.1007/s00210-023-02725-w.pdf0
2024Anti-proliferative, Pro-apoptotic, and Chemosensitizing Potential of 3-Acetyl-11-keto-β-boswellic Acid (AKBA) Against Prostate Cancer CellsMahima Verma38502429https://pubmed.ncbi.nlm.nih.gov/38502429/0
2024Boswellia carterii n-hexane extract suppresses breast cancer growth via induction of ferroptosis by downregulated GPX4 and upregulated transferrinJinxin XiePMC11192895https://pmc.ncbi.nlm.nih.gov/articles/PMC11192895/0
2023The journey of boswellic acids from synthesis to pharmacological activitiesEhab A RagabPMC10858840https://pmc.ncbi.nlm.nih.gov/articles/PMC10858840/0
2023Development, Analytical Characterization, and Bioactivity Evaluation of Boswellia serrata Extract-Layered Double Hydroxide Hybrid CompositesStefania CometaPMC10537998https://pmc.ncbi.nlm.nih.gov/articles/PMC10537998/0
2023Boswellic acids as promising agents for the management of brain diseasesArezoo Rajabianhttps://www.sciencedirect.com/science/article/abs/pii/S00243205220089670
2023Antiproliferative and cell cycle arrest potentials of 3-O-acetyl-11-keto-β-boswellic acid against MCF-7 cells in vitroSaja A AhmedPMC10315361https://pmc.ncbi.nlm.nih.gov/articles/PMC10315361/0
2023Anti-cancer properties of boswellic acids: mechanism of action as anti-cancerous agentVijay Laxmi TrivediPMC10434769https://pmc.ncbi.nlm.nih.gov/articles/PMC10434769/0
2022Boswellic acids ameliorate neurodegeneration induced by AlCl3: the implication of Wnt/β-catenin pathwayEman A. Mohamedhttps://link.springer.com/article/10.1007/s11356-022-20611-50
2022Anti-inflammatory and anti-cancer activities of frankincense: Targets, treatments and toxicitiesThomas Efferth32027979https://pubmed.ncbi.nlm.nih.gov/32027979/0
2022Potential complementary and/or synergistic effects of curcumin and boswellic acids for management of osteoarthritisVidhu SethiPMC9511324https://pmc.ncbi.nlm.nih.gov/articles/PMC9511324/0
2021Mechanistic role of boswellic acids in Alzheimer’s disease: Emphasis on anti-inflammatory propertiesAisha Siddiquihttps://www.sciencedirect.com/science/article/pii/S07533322210103490
2021Mechanistic role of boswellic acids in Alzheimer's disease: Emphasis on anti-inflammatory propertiesAisha Siddiqui34607104https://pubmed.ncbi.nlm.nih.gov/34607104/0
2020Acetyl-11-keto-β-boswellic acid inhibits proliferation and induces apoptosis of gastric cancer cells through the phosphatase and tensin homolog /Akt/ cyclooxygenase-2 signaling pathwayMeng-Xue SunPMC7579763https://pmc.ncbi.nlm.nih.gov/articles/PMC7579763/0
2020Enhanced Bioavailability of Boswellic Acid by Piper longum: A Computational and Pharmacokinetic StudyK Reeta VijayaraniPMC7770183https://pmc.ncbi.nlm.nih.gov/articles/PMC7770183/0
2018Protective Effect of Boswellic Acids against Doxorubicin-Induced Hepatotoxicity: Impact on Nrf2/HO-1 Defense PathwayBassant M BarakatPMC5818967https://pmc.ncbi.nlm.nih.gov/articles/PMC5818967/0
2018Identification of a natural inhibitor of methionine adenosyltransferase 2A regulating one-carbon metabolism in keratinocytesJing Baihttps://www.researchgate.net/publication/329909362_Identification_of_a_natural_inhibitor_of_methionine_adenosyltransferase_2A_regulating_one-carbon_metabolism_in_keratinocytes0
2016Boswellia serrata gum resin aqueous extract upregulatesBDNF but not CREB expression in adult male rat hippocampusMOHAMMAD KHALAJ-KONDORIhttps://journals.tubitak.gov.tr/medical/vol46/iss5/44/0
2016The potential role of boswellic acids in cancer prevention and treatmentNand Kishor Royhttps://www.sciencedirect.com/science/article/abs/pii/S030438351630252X0
2016Novel evidence for curcumin and boswellic acid induced chemoprevention through regulation of miR-34a and miR-27a in colorectal cancerShusuke TodenPMC4417447https://pmc.ncbi.nlm.nih.gov/articles/PMC4417447/0
2015Phytochemical Analysis and Anti-cancer Investigation of Boswellia serrata Bioactive Constituents In VitroHanaa H Ahmed26514509https://pubmed.ncbi.nlm.nih.gov/26514509/0
2015Boswellia serrata Preserves Intestinal Epithelial Barrier from Oxidative and Inflammatory DamageDaniela Catanzarohttps://www.researchgate.net/publication/276443948_Boswellia_serrata_Preserves_Intestinal_Epithelial_Barrier_from_Oxidative_and_Inflammatory_Damage0
2014Boswellia ovalifoliolata abrogates ROS mediated NF-κB activation, causes apoptosis and chemosensitization in Triple Negative Breast Cancer cellsDinesh Thummurihttps://www.sciencedirect.com/science/article/abs/pii/S13826689140011730
2013Enhanced absorption of boswellic acids by a lecithin delivery form (Phytosome(®)) of Boswellia extractJan Hüsch23092618https://pubmed.ncbi.nlm.nih.gov/23092618/0
2013Boswellic Acid Inhibits Growth and Metastasis of Human Colorectal Cancer in Orthotopic Mouse Model By Downregulating Inflammatory, Proliferative, Invasive, and Angiogenic BiomarkersVivek R YadavPMC3246525https://pmc.ncbi.nlm.nih.gov/articles/PMC3246525/0
2012Targeted inhibition of tumor proliferation, survival, and metastasis by pentacyclic triterpenoids: Potential role in prevention and therapy of cancerMuthu K. Shanmugamhttps://www.sciencedirect.com/science/article/abs/pii/S03043835120016070
2012Acetyl-11-keto-β-Boswellic Acid Suppresses Invasion of Pancreatic Cancer Cells Through The Downregulation of CXCR4 Chemokine Receptor ExpressionByoungduck ParkPMC3082612https://pmc.ncbi.nlm.nih.gov/articles/PMC3082612/0
2012Boswellic acid exerts antitumor effects in colorectal cancer cells by modulating expression of the let-7 and miR-200 microRNA familyMasanobu TakahashiPMC3510738https://pmc.ncbi.nlm.nih.gov/articles/PMC3510738/0
2011Boswellia sacra essential oil induces tumor cell-specific apoptosis and suppresses tumor aggressiveness in cultured human breast cancer cellsMahmoud M SuhailPMC3258268https://pmc.ncbi.nlm.nih.gov/articles/PMC3258268/0
2007A triterpenediol from Boswellia serrata induces apoptosis through both the intrinsic and extrinsic apoptotic pathways in human leukemia HL-60 cellsShashi Bhushan17636381https://pubmed.ncbi.nlm.nih.gov/17636381/0
2006Acetyl-keto-β-boswellic acid inhibits cellular proliferation through a p21-dependent pathway in colon cancer cellsJian-Jun LiuPMC1752013https://pmc.ncbi.nlm.nih.gov/articles/PMC1752013/0
2004Effect of food intake on the bioavailability of boswellic acids from a herbal preparation in healthy volunteersVanessa Sterk15643550https://pubmed.ncbi.nlm.nih.gov/15643550/0
2003Coupling of boswellic acid-induced Ca2+ mobilisation and MAPK activation to lipid metabolism and peroxide formation in human leucocytesAnja AltmannPMC1574191https://pmc.ncbi.nlm.nih.gov/articles/PMC1574191/0