tbResList Print — CA Caffeic acid

Filters: qv=51, qv2=%, rfv=%

Product

CA Caffeic acid
Description: <b>Caffeic acid</b> is a polyphenol antioxidant found in coffee, fruits, vegetables, and herbs. It may have anti-inflammatory, anticancer, anti-aging, and other health benefits.<br>
Caffeic acid (CA) is a dietary hydroxycinnamic acid found widely in plant foods and in coffee largely as chlorogenic acids (caffeoylquinic acids). CA is generally antioxidant / anti-inflammatory and is frequently reported to modulate Nrf2 and NF-κB signaling, with downstream effects on survival pathways (PI3K/AKT), MAPKs, cell cycle, and apoptosis in preclinical cancer models. A notable mechanistic nuance is a context-dependent pro-oxidant effect described in the presence of copper (Cu), where CA can drive oxidative DNA damage in vitro (often discussed as potentially relevant to tumors with higher copper levels).<br>
<br>
-Caffeic acid phenethyl ester, the main representative component of propolis<br>
-Black chokeberry 141.14 mg/100 g F<br>
-Sunflower seed, meal 8.17 mg/100 g FW<br>
-Common sage, dried 26.40 mg/100 g FW<br>
-Ceylan cinnamon 24.20 mg/100 g FW<br>
-Nutmeg 16.30 mg/100 g FW<br>
<br>
-Dual capacity of CA to act as an antioxidant during carcinogenesis and as a pro-oxidant against cancer cells, promoting their apoptosis or sensitizing them to chemotherapeutic drugs.<br>
<br>
Pathways:<br>
-Caffeic acid is a potent antioxidant<br>
-Caffeic acid may also exhibit pro-oxidant behavior. At higher concentrations( 50–100 µM ?) or/and in the presence of transition metal ions (such as copper or iron), caffeic acid can participate in Fenton-like reactions, potentially leading to increased ROS generation.<br>
-Shown to inhibit NF-κB activation<br>
-Inhibitory effects on MAPK/ERK Pathway<br>
-PI3K/Akt Signaling Pathway<br>
-Activation of the Nrf2/ARE pathway <br>
-Cell cycle arrest at various checkpoints<br>
-Angiogenesis Inhibition<br>
<br>
Caffeic acid typically shows low oral bioavailability (sometimes only a few percent of the ingested dose is systemically available) and a short plasma half-life (around 1–2 hours in animal models).<br>

<br>


<!-- Caffeic Acid (CA) — Time-Scale Flagged Pathway Table (web-page ready) -->
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells</th>
<th>Normal Cells</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>NF-κB inflammatory transcription</td>
<td>NF-κB ↓; cytokines/COX-2/iNOS programs ↓ (reported)</td>
<td>Inflammation tone ↓ (common in injury models)</td>
<td>R, G</td>
<td>Anti-inflammatory / anti-survival transcription</td>
<td>CA is frequently reported to reduce NF-κB signaling in inflammatory and cancer models. Note: CAPE (the ester) is the “stronger” canonical NF-κB inhibitor; keep CA claims qualified as “reported.”</td>
</tr>

<tr>
<td>2</td>
<td>Nrf2/ARE antioxidant response (HO-1, GSH systems)</td>
<td>Stress adaptation modulation (context-dependent)</td>
<td>Nrf2 ↑; HO-1 ↑; antioxidant defenses ↑</td>
<td>R, G</td>
<td>Endogenous antioxidant upshift</td>
<td>CA can activate Nrf2/ARE programs in oxidative stress settings; tumor direction is model-dependent and should not be overstated as uniformly “good” or “bad.”</td>
</tr>

<tr>
<td>3</td>
<td>ROS / redox tone (antioxidant vs Cu-linked pro-oxidant)</td>
<td>ROS direction variable; pro-oxidant DNA damage reported with Cu (context)</td>
<td>Oxidative injury ↓ in many stress models</td>
<td>P, R, G</td>
<td>Redox modulation</td>
<td>CA is classically antioxidant, yet Cu-mediated pro-oxidant DNA breakage has been described in vitro; treat as conditional (metal availability, dose, cell type).</td>
</tr>

<tr>
<td>4</td>
<td>Intrinsic apoptosis (mitochondrial/caspase linked)</td>
<td>Apoptosis ↑; Bax ↑; caspases ↑ (reported)</td>
<td>↔ (generally less activation)</td>
<td>G</td>
<td>Cell death execution</td>
<td>Frequently observed downstream endpoint in tumor models, often coupled to NF-κB/PI3K/MAPK and stress/redox changes.</td>
</tr>

<tr>
<td>5</td>
<td>Cell-cycle control (Cyclins/CDKs; checkpoints)</td>
<td>Cell-cycle arrest ↑ (reported; phase varies)</td>
<td>↔</td>
<td>G</td>
<td>Cytostasis</td>
<td>Often appears as later phenotype-level outcome after upstream signaling shifts.</td>
</tr>

<tr>
<td>6</td>
<td>PI3K → AKT (± mTOR) survival axis</td>
<td>PI3K/AKT ↓ (reported; model-dependent)</td>
<td>↔</td>
<td>R, G</td>
<td>Growth/survival modulation</td>
<td>Reported in multiple tumor systems; best kept as “reported/model-dependent,” not a primary direct target.</td>
</tr>

<tr>
<td>7</td>
<td>MAPK re-wiring (ERK / JNK / p38)</td>
<td>MAPK modulation (context-dependent)</td>
<td>↔</td>
<td>P, R, G</td>
<td>Stress/mitogenic signaling adjustment</td>
<td>Directions vary across models and doses; avoid fixed arrows without a specific cited study for your cancer type.</td>
</tr>

<tr>
<td>8</td>
<td>Invasion / metastasis programs (MMPs / EMT)</td>
<td>MMPs ↓; migration/invasion ↓ (reported)</td>
<td>↔</td>
<td>G</td>
<td>Anti-invasive phenotype</td>
<td>Often downstream of NF-κB/MAPK and inflammation changes; not universal across all cell lines.</td>
</tr>

<tr>
<td>9</td>
<td>Angiogenesis signaling (VEGF & related outputs)</td>
<td>VEGF / angiogenic outputs ↓ (reported)</td>
<td>↔</td>
<td>G</td>
<td>Anti-angiogenic support</td>
<td>Later phenotype-level outcome; strength depends on model and exposure.</td>
</tr>

<tr>
<td>10</td>
<td>Bioavailability / metabolism constraint (chlorogenic acids → conjugates)</td>
<td>Systemic exposure mostly as glucuronide/sulfate/methylated metabolites</td>
<td>—</td>
<td>—</td>
<td>Translation constraint</td>
<td>After oral intake, CA/chlorogenic acids appear predominantly as conjugated metabolites; free CA levels are typically far below many in-vitro (µM) assay doses.</td>
</tr>
</table>

<p><b>Time-Scale Flag (TSF):</b> P / R / G</p>
<ul>
<li><b>P</b>: 0–30 min (rapid redox/metal interactions; early signaling shifts)</li>
<li><b>R</b>: 30 min–3 hr (acute stress-response + transcription signaling changes)</li>
<li><b>G</b>: &gt;3 hr (gene-regulatory adaptation and phenotype outcomes)</li>
</ul>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

antiOx↑, 2,   ROS↑, 5,   ROS⇅, 2,  

Mitochondria & Bioenergetics

MMP↓, 1,  

Core Metabolism/Glycolysis

ACLY↓, 1,   ALAT↝, 1,   AMPK↑, 3,   cMyc↓, 1,   FASN↓, 1,   GLS↓, 1,   Glycolysis↓, 1,   HK2↓, 1,   LDH↓, 1,   NADPH↓, 1,   PDH↓, 1,   PFK↓, 1,   PKM2↓, 1,  

Cell Death

p‑Akt↓, 1,   Apoptosis↓, 1,   Apoptosis↑, 3,   BAX↓, 1,   BAX↑, 2,   Bax:Bcl2↑, 2,   Bcl-2↓, 1,   BID↑, 1,   Casp↑, 1,   Casp3↑, 1,   Casp7↑, 1,   Casp9↑, 1,   Fas↑, 1,   iNOS↓, 1,   MAPK↓, 1,   MAPK↑, 1,   TumCD↑, 1,  

Kinase & Signal Transduction

SOX9↑, 1,  

Transcription & Epigenetics

other∅, 1,   other↑, 1,  

Protein Folding & ER Stress

HSP70/HSPA5↑, 1,   HSP70/HSPA5↓, 1,  

Autophagy & Lysosomes

LC3II↑, 1,   lysosome↓, 1,   p62↓, 1,  

DNA Damage & Repair

P53↑, 1,  

Cell Cycle & Senescence

CDK4↑, 1,   cycD1/CCND1↓, 3,   P21↑, 1,   RB1↑, 1,   TumCCA↓, 1,  

Proliferation, Differentiation & Cell State

CSCs↓, 1,   EMT↓, 1,   ERK↓, 2,   ERK↑, 1,   IGF-1R↓, 2,   STAT3↓, 3,   TumCG↓, 1,   TumCG↑, 1,  

Migration

Ca+2↑, 2,   E-cadherin↑, 1,   MMP2↓, 3,   MMP9↓, 4,   Snail↓, 1,   TSP-1↑, 1,   TumCMig↓, 2,   TumMeta↓, 1,   Vim↓, 2,   ac‑α-tubulin↑, 1,   β-catenin/ZEB1↓, 3,  

Angiogenesis & Vasculature

angioG↑, 1,   Hif1a↓, 2,   PHDs↓, 1,   VEGF↓, 4,  

Barriers & Transport

GLUT1↓, 1,   GLUT3↓, 1,  

Immune & Inflammatory Signaling

COX2↓, 2,   IL6↓, 1,   Inflam↓, 1,   NF-kB↓, 3,  

Hormonal & Nuclear Receptors

CDK6↑, 1,   ER(estro)↓, 1,  

Drug Metabolism & Resistance

ChemoSen↑, 3,   Dose?, 2,   Dose∅, 5,   eff↑, 9,   eff↓, 1,   eff↝, 2,   RadioS↑, 2,   selectivity↑, 2,  

Clinical Biomarkers

ALAT↝, 1,   ALP↝, 1,   AST↝, 1,   IL6↓, 1,   LDH↓, 1,  

Functional Outcomes

AntiCan↑, 1,   NDRG1↑, 1,   TumVol↓, 1,   Weight↑, 1,  
Total Targets: 96

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

lipid-P↓, 1,   ROS↓, 2,  

Cell Death

Casp3↓, 1,  

Proliferation, Differentiation & Cell State

GSK‐3β↓, 1,  

Migration

5LO↓, 1,   AntiAg↑, 1,  

Angiogenesis & Vasculature

TXA2↓, 1,  

Immune & Inflammatory Signaling

COX1↓, 1,   Inflam↓, 1,   NF-kB↓, 1,  

Synaptic & Neurotransmission

AChE↓, 3,   BChE↓, 2,   BDNF↓, 1,   p‑tau↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 1,   eff↑, 2,  

Functional Outcomes

cognitive↑, 1,   memory↑, 1,   neuroP↑, 1,  
Total Targets: 19

Research papers

Year Title Authors PMID Link Flag
2023Quercetin- and caffeic acid-functionalized chitosan-capped colloidal silver nanoparticles: one-pot synthesis, characterization, and anticancer and antibacterial activitiesAkif Hakan KurtPMC10043739https://pmc.ncbi.nlm.nih.gov/articles/PMC10043739/0
2024Adjuvant Properties of Caffeic Acid in Cancer TreatmentNicole Cortezhttps://www.mdpi.com/1422-0067/25/14/76310
2023Dihydrocaffeic acid improves IL-1β-induced inflammation and cartilage degradation via inhibiting NF-κB and MAPK signalling pathwaysRui LuPMC10076109https://pmc.ncbi.nlm.nih.gov/articles/PMC10076109/0
2023Polyphenol-rich diet mediates interplay between macrophage-neutrophil and gut microbiota to alleviate intestinal inflammationDandan HanPMC10562418https://pmc.ncbi.nlm.nih.gov/articles/PMC10562418/0
2022Caffeic Acid and Diseases—Mechanisms of ActionNela PavlíkováPMC9820408https://pmc.ncbi.nlm.nih.gov/articles/PMC9820408/0
2022Caffeic Acid and Diseases—Mechanisms of ActionNela PavlíkováPMC9820408https://pmc.ncbi.nlm.nih.gov/articles/PMC9820408/0
2021Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancerSepideh Mirzaeihttps://www.sciencedirect.com/science/article/abs/pii/S10436618210034310
2020Caffeine inhibits the anticancer activity of paclitaxel via down-regulation of α-tubulin acetylationHuanhuan Xu32580047https://pubmed.ncbi.nlm.nih.gov/32580047/1
2020Caffeic Acid Phenethyl Ester (CAPE) Induced Apoptosis in Serous Ovarian Cancer OV7 Cells by Deregulation of BCL2/BAX GenesAnna KleczkaPMC7435968https://pmc.ncbi.nlm.nih.gov/articles/PMC7435968/0
2020Caffeic acid: a brief overview of its presence, metabolism, and bioactivityAnna Birkováhttps://www.researchgate.net/publication/341061974_Caffeic_acid_a_brief_overview_of_its_presence_metabolism_and_bioactivity0
2020Polyphenols and inhibitory effects of crude and purified extracts from tomato varieties on the formation of advanced glycation end products and the activity of angiotensin-converting and acetylcholinesterase enzymesW. Błaszczakhttps://www.sciencedirect.com/science/article/abs/pii/S0308814620300285?via%3Dihub0
2018Caffeic Acid Targets AMPK Signaling and Regulates Tricarboxylic Acid Cycle Anaplerosis while Metformin Downregulates HIF-1α-Induced Glycolytic Enzymes in Human Cervical Squamous Cell Carcinoma LinesMalgorzata Tyszka-CzocharaPMC6073805https://pmc.ncbi.nlm.nih.gov/articles/PMC6073805/0
2015Caffeine and Caffeic Acid Inhibit Growth and Modify Estrogen Receptor and Insulin-like Growth Factor I Receptor Levels in Human Breast CancerAnn H Rosendahl25691730https://pubmed.ncbi.nlm.nih.gov/25691730/0
2014Antiplatelet effects of caffeic acid due to Ca(2+) mobilizationinhibition via cAMP-dependent inositol-1, 4, 5-trisphosphate receptor phosphorylationDong-Ha Lee24088646https://pubmed.ncbi.nlm.nih.gov/24088646/0
2012Comparative Study on the Inhibitory Effect of Caffeic and Chlorogenic Acids on Key Enzymes Linked to Alzheimer’s Disease and Some Pro-oxidant Induced Oxidative Stress in Rats’ Brain-In VitroGaniyu Obohhttps://link.springer.com/article/10.1007/s11064-012-0935-60
2011Antioxidant Properties and Phenolic Composition of Greek Propolis ExtractsV. Lagourihttps://www.tandfonline.com/doi/full/10.1080/10942912.2012.6545610