tbResList Print — CHr Chrysin

Filters: qv=61, qv2=%, rfv=%

Product

CHr Chrysin
Description: <b>Chrysin</b> is found in passion flower and honey. It is a flavonoid.<br>
-To reach plasma levels that might more closely match the concentrations used in in vitro studies (typically micromolar), considerably high doses or advanced delivery mechanisms would be necessary.<br>

Chrysin is widely summarized as modulating PI3K/Akt and MAPK pathways in cancer.<br>
<br>

-Note <a href="tbResList.php?qv=61&tsv=1109&wNotes=on&exSp=open">half-life</a> 2 hrs,
<a href="tbResList.php?qv=61&tsv=792&wNotes=on&exSp=open">BioAv</a> very poor often <1%
<br>
Pathways:<br>
<a href="https://cancerci.biomedcentral.com/articles/10.1186/s12935-021-01906-y/figures/3">Graphical Pathways</a><br>
<br>
<!-- ROS : MMP↓, ER Stress↑, Ca+2↑, Cyt‑c↑, Casp3↑, Casp9↑, DNAdam↑, UPR↑, cl-PARP↑-->
- may induce
<a href="tbResList.php?qv=61&tsv=275&wNotes=on">ROS</a> production<br>
- ROS↑ related:
<a href="tbResList.php?qv=61&tsv=197&wNotes=on&word=MMP↓">MMP↓</a>(ΔΨm),
<a href="tbResList.php?qv=61&tsv=103&wNotes=on">ER Stress↑</a>,
<a href="tbResList.php?qv=61&tsv=459&wNotes=on">UPR↑</a>,
<a href="tbResList.php?qv=61&tsv=356&wNotes=on">GRP78↑</a>,
<a href="tbResList.php?qv=61&tsv=38&wNotes=on&word=Ca+2↑">Ca+2↑</a>,
<a href="tbResList.php?qv=61&tsv=77&wNotes=on">Cyt‑c↑</a>,
<a href="tbResList.php?qv=61&wNotes=on&word=Casp">Caspases↑</a>,
<a href="tbResList.php?qv=61&tsv=82&wNotes=on&word=DNAdam↑">DNA damage↑</a>,
<a href="tbResList.php?qv=61&tsv=239&wNotes=on">cl-PARP↑</a>,
<a href="tbResList.php?qv=61&wNotes=on&word=HSP">HSP↓</a>
<br>

<!-- ANTIOXIDANT : NRF2, SOD, GSH, CAT, HO-1, GPx, GPX4, -->
- May Lower AntiOxidant defense in Cancer Cells:
<a href="tbResList.php?qv=61&tsv=226&wNotes=on&word=NRF2↓">NRF2↓</a>,
<a href="tbResList.php?qv=61&tsv=137&wNotes=on&word=GSH↓">GSH↓</a>
<a href="tbResList.php?qv=61&tsv=597&wNotes=on">HO1↓</a>


<br>

- May Raise
<a href="tbResList.php?qv=61&tsv=1103&wNotes=on&word=antiOx↑">AntiOxidant</a>
defense in Normal Cells:
<a href="tbResList.php?qv=61&tsv=275&wNotes=on&word=ROS↓">ROS↓</a>,
<a href="tbResList.php?qv=61&tsv=226&wNotes=on&word=NRF2↑">NRF2↑</a>,
<a href="tbResList.php?qv=61&tsv=298&wNotes=on&word=SOD↑">SOD↑</a>,
<a href="tbResList.php?qv=61&tsv=137&wNotes=on&word=GSH↑">GSH↑</a>,
<a href="tbResList.php?qv=61&tsv=46&wNotes=on&word=Catalase↑">Catalase↑</a>,
<br>

<!-- INFLAMMATION : NF-kB↓, COX2↓, COX2↓ PRO-INFL CYTOKINES: IL-1β↓, TNF-α↓, IL-6↓, IL-8↓, -->
- lowers
<a href="tbResList.php?qv=61&tsv=953&wNotes=on&word=Inflam">Inflammation</a> :
<a href="tbResList.php?qv=61&tsv=214&wNotes=on&word=NF-kB↓">NF-kB↓</a>,
<a href="tbResList.php?qv=61&tsv=66&wNotes=on&word=COX2↓">COX2↓</a>,
Pro-Inflammatory Cytokines :
<a href="tbResList.php?qv=61&tsv=978&wNotes=on&word=IL1β↓">IL-1β↓</a>,
<a href="tbResList.php?qv=61&tsv=309&wNotes=on&word=TNF-α↓">TNF-α↓</a>,
<a href="tbResList.php?qv=61&tsv=158&wNotes=on&word=IL6↓">IL-6↓</a>,
<br>



<!-- GROWTH/METASTASES : EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1, uPA↓, VEGF↓, ERK↓
inhibiting metastasis-associated proteins such as ROCK1, FAK, (RhoA), NF-κB and u-PA, MMP-1 and MMP-13.-->
- inhibit Growth/Metastases :
<a href="tbResList.php?qv=61&tsv=604&wNotes=on">TumMeta↓</a>,
<a href="tbResList.php?qv=61&tsv=323&wNotes=on">TumCG↓</a>,
<a href="tbResList.php?qv=61&tsv=96&wNotes=on">EMT↓</a>,
<a href="tbResList.php?qv=61&tsv=201&wNotes=on">MMP2↓</a>,
<a href="tbResList.php?qv=61&tsv=203&wNotes=on">MMP9↓</a>,
<a href="tbResList.php?qv=61&tsv=308&wNotes=on">TIMP2</a>,
<a href="tbResList.php?qv=61&tsv=428&wNotes=on">uPA↓</a>,
<a href="tbResList.php?qv=61&tsv=334&wNotes=on">VEGF↓</a>,
<a href="tbResList.php?qv=61&tsv=1284&wNotes=on">ROCK1↓</a>,
<a href="tbResList.php?qv=61&tsv=110&wNotes=on">FAK↓</a>,
<a href="tbResList.php?qv=61&tsv=273&wNotes=on">RhoA↓</a>,
<a href="tbResList.php?qv=61&tsv=214&wNotes=on">NF-κB↓</a>,
<a href="tbResList.php?qv=61&tsv=105&wNotes=on">ERK↓</a>
<br>

<!-- REACTIVATE GENES : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, -->
- reactivate genes thereby inhibiting cancer cell growth :
<a href="tbResList.php?qv=61&tsv=140&wNotes=on">HDAC↓</a>,
<a href="tbResList.php?qv=61&tsv=236&wNotes=on">P53↑</a>,
<a href="tbResList.php?qv=61&wNotes=on&word=HSP">HSP↓</a>,
<br>

<!-- CELL CYCLE ARREST : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓ -->
- cause Cell cycle arrest :
<a href="tbResList.php?qv=61&tsv=322&wNotes=on">TumCCA↑</a>,
<a href="tbResList.php?qv=61&tsv=73&wNotes=on">cyclin D1↓</a>,
<a href="tbResList.php?qv=61&tsv=467&wNotes=on">CDK2↓</a>,
<a href="tbResList.php?qv=61&tsv=894&wNotes=on">CDK4↓</a>,
<br>

<!-- MIGRATION/INVASION : TumCMig↓, TumCI↓, FAK↓, ERK↓, -->
- inhibits Migration/Invasion :
<a href="tbResList.php?qv=61&tsv=326&wNotes=on">TumCMig↓</a>,
<a href="tbResList.php?qv=61&tsv=324&wNotes=on">TumCI↓</a>,
<a href="tbResList.php?qv=61&tsv=110&wNotes=on">FAK↓</a>,
<a href="tbResList.php?qv=61&tsv=105&wNotes=on">ERK↓</a>,
<a href="tbResList.php?qv=61&tsv=96&wNotes=on">EMT↓</a>,
<a href="tbResList.php?qv=61&tsv=1117&wNotes=on">TOP1↓</a>,
<a href="tbResList.php?qv=61&tsv=657&wNotes=on">TET1↓</a>,
<br>

<!-- GLYCOLYSIS : ATP↓, HIF-1α↓, PKM2↓, cMyc↓, PDK1↓, GLUT1↓, LDHA↓, HK2↓, Glucose↓, GlucoseCon↓, lactateProd, OXPHOS -->
- inhibits
<a href="tbResList.php?qv=61&tsv=129&wNotes=on">glycolysis</a>
and
<a href="tbResList.php?qv=61&tsv=21&wNotes=on&word=ATP↓">ATP depletion</a> :
<a href="tbResList.php?qv=61&tsv=143&wNotes=on">HIF-1α↓</a>,
<a href="tbResList.php?qv=61&tsv=35&wNotes=on">cMyc↓</a>,
<a href="tbResList.php?qv=61&tsv=566&wNotes=on&word=GLUT">GLUT1↓</a>,
<a href="tbResList.php?qv=61&tsv=906&wNotes=on">LDH↓</a>,
<a href="tbResList.php?qv=61&tsv=773&wNotes=on">HK2↓</a>,
<a href="tbResList.php?qv=61&wNotes=on&word=PDK">PDKs↓</a>,
<a href="tbResList.php?qv=61&tsv=773&wNotes=on">HK2↓</a>,
<a href="tbResList.php?qv=61&tsv=356&wNotes=on">GRP78↑</a>,
<a href="tbResList.php?qv=61&tsv=623&wNotes=on">GlucoseCon↓</a>
<br>


<!-- ANGIOGENESIS : VEGF↓, VEGFR2↓, HIF-1α↓, NOTCH↓, FGF↓, PDGF↓, EGFR↓ ITG(Integrins↓)-->
- inhibits
<a href="tbResList.php?qv=61&tsv=447&wNotes=on">angiogenesis↓</a> :
<a href="tbResList.php?qv=61&tsv=334&wNotes=on">VEGF↓</a>,
<a href="tbResList.php?qv=61&tsv=143&wNotes=on">HIF-1α↓</a>,
<a href="tbResList.php?qv=61&wNotes=on&word=NOTCH">Notch↓</a>,
<a href="tbResList.php?qv=61&tsv=361&wNotes=on">PDGF↓</a>,
<a href="tbResList.php?qv=61&tsv=94&wNotes=on&word=EGFR↓">EGFR↓</a>,
<br>


<!-- OTHERS : -->
- Others: <a href="tbResList.php?qv=61&tsv=252&wNotes=on">PI3K↓</a>,
<a href="tbResList.php?qv=61&tsv=4&wNotes=on">AKT↓</a>,
<a href="tbResList.php?qv=61&wNotes=on&word=STAT">STAT↓</a>,
<a href="tbResList.php?qv=61&tsv=377&wNotes=on">Wnt↓</a>,
<a href="tbResList.php?qv=61&tsv=9&wNotes=on">AMPK↓</a>,
<a href="tbResList.php?qv=61&tsv=105&wNotes=on">ERK↓</a>,
<a href="tbResList.php?qv=61&tsv=168&wNotes=on">JNK</a>,
<a href="tbResList.php?qv=61&tsv=825&wNotes=on">TrxR</a>,
<br>


<!-- SYNERGIES : -->
- Synergies:
<a href="tbResList.php?qv=61&tsv=1106&wNotes=on">chemo-sensitization</a>,
<a href="tbResList.php?qv=61&tsv=1171&wNotes=on">chemoProtective</a>,
<a href="tbResList.php?qv=61&tsv=1107&wNotes=on">RadioSensitizer</a>,
<a href="tbResList.php?qv=61&tsv=961&esv=2&wNotes=on&exSp=open">Others(review target notes)</a>,
<a href="tbResList.php?qv=61&tsv=1105&wNotes=on">Neuroprotective</a>,
<a href="tbResList.php?qv=61&tsv=557&wNotes=on">Cognitive</a>,
<a href="tbResList.php?qv=61&tsv=1175&wNotes=on">Renoprotection</a>,
<a href="tbResList.php?qv=61&tsv=1179&wNotes=on">Hepatoprotective</a>,
<a href="tbResList.php?&qv=61&tsv=1188&wNotes=on">CardioProtective</a>,

<br>
<br>
<!-- SELECTIVE: -->
- Selectivity:
<a href="tbResList.php?qv=61&tsv=1110&wNotes=on">Cancer Cells vs Normal Cells</a>
<br>
<br>



<!-- Chrysin (CHr / Chrysin) — Time-Scale Flagged Pathway Table -->
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells</th>
<th>Normal Cells</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>PI3K → AKT (± mTOR) survival axis</td>
<td>↓ PI3K/AKT (often ↓ p-AKT; downstream growth signals ↓)</td>
<td>↔</td>
<td>R, G</td>
<td>Growth/survival suppression</td>
<td>Frequently reported hub effect; contributes to reduced proliferation and sensitization to stress/apoptosis programs.</td>
</tr>

<tr>
<td>2</td>
<td>Intrinsic apoptosis (p53/Bcl-2 family → caspase-9/3)</td>
<td>↑ p53 axis (context); Bax↑/Bcl-2↓; ↑ caspase-9/3; apoptosis ↑</td>
<td>↔ (generally less activation)</td>
<td>G</td>
<td>Apoptosis execution</td>
<td>Common endpoint across many tumor models; often downstream of survival-pathway suppression and stress signaling.</td>
</tr>

<tr>
<td>3</td>
<td>ER stress / UPR (PERK and related arms)</td>
<td>ER stress ↑; UPR activation ↑</td>
<td>↔</td>
<td>R, G</td>
<td>Stress-to-death coupling</td>
<td>ER stress has been directly shown in chrysin-treated cancer cells and can couple to apoptosis.</td>
</tr>

<tr>
<td>4</td>
<td>JAK / STAT3 signaling</td>
<td>↓ STAT3 signaling (context)</td>
<td>↔</td>
<td>R, G</td>
<td>Anti-survival transcription</td>
<td>STAT3 inhibition is reported in cancer models and often aligns with reduced proliferation and increased apoptosis.</td>
</tr>

<tr>
<td>5</td>
<td>ROS / oxidative stress (context-dependent)</td>
<td>ROS modulation (often ↑ mitochondrial ROS in tumor models)</td>
<td>↔ / antioxidant behavior in some contexts</td>
<td>P, R, G</td>
<td>Stress amplifier (variable)</td>
<td>Direction depends on dose/model; avoid absolute “ROS always ↑/↓”. Oxidative stress + DDR has been linked to anti-angiogenic effects in vivo in melanoma models.</td>
</tr>

<tr>
<td>6</td>
<td>MAPK re-wiring (ERK / JNK / p38)</td>
<td>MAPK shifts; JNK/p38 often stress-activated; ERK variable</td>
<td>↔</td>
<td>P, R, G</td>
<td>Signal reprogramming</td>
<td>MAPK effects differ by cell line; chrysin can suppress JNK/ERK signaling to reduce MMP-9 in some models.</td>
</tr>

<tr>
<td>7</td>
<td>Cell-cycle arrest / proliferation control</td>
<td>Cell-cycle arrest ↑; proliferation ↓</td>
<td>↔</td>
<td>G</td>
<td>Cytostasis</td>
<td>Often observed as later phenotype-level outcomes, downstream of signaling changes.</td>
</tr>

<tr>
<td>8</td>
<td>Invasion / metastasis (MMP-9; EMT programs)</td>
<td>MMP-9 ↓; migration/invasion ↓ (context)</td>
<td>↔</td>
<td>G</td>
<td>Anti-invasive phenotype</td>
<td>Chrysin can reduce MMP-9 expression via AP-1 suppression and MAPK pathway effects in certain cancer models.</td>
</tr>

<tr>
<td>9</td>
<td>Angiogenesis (VEGF/angiogenic outputs)</td>
<td>Angiogenesis outputs ↓ (context)</td>
<td>↔</td>
<td>G</td>
<td>Anti-angiogenic support</td>
<td>In melanoma models, chrysin has been associated with angiogenesis regression linked to oxidative stress and DNA damage response.</td>
</tr>

<tr>
<td>10</td>
<td>Bioavailability constraint (oral PK limitation)</td>
<td>Systemic exposure often low without formulation</td>
<td>—</td>
<td>—</td>
<td>Translation constraint</td>
<td>Native chrysin oral bioavailability is extremely low due to poor solubility and extensive glucuronidation/sulfation with efflux; formulation strategies are commonly required for systemic effects.</td>
</tr>
</table>

<p><b>Time-Scale Flag (TSF):</b> P / R / G</p>
<ul>
<li><b>P</b>: 0–30 min (primary/physical–chemical effects; rapid signaling / phosphorylation shifts)</li>
<li><b>R</b>: 30 min–3 hr (acute stress-response and redox signaling)</li>
<li><b>G</b>: &gt;3 hr (gene-regulatory adaptation and phenotype-level outcomes)</li>
</ul>



Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

Fenton↑, 1,   GSH↓, 2,   H2O2↑, 1,   HO-1↓, 3,   lipid-P↑, 3,   NRF2↓, 6,   ROS↑, 14,   ROS↓, 1,   TrxR↓, 1,  

Mitochondria & Bioenergetics

ADP:ATP↑, 2,   mt-ATP↓, 1,   BOK↑, 1,   MMP↓, 9,   MMP↑, 1,   mtDam↑, 1,   XIAP↓, 4,  

Core Metabolism/Glycolysis

AKT1↓, 1,   ALAT↓, 1,   AMPK↑, 3,   cMyc↓, 1,   GlucoseCon↓, 3,   Glycolysis↓, 3,   HK2↓, 5,   lactateProd↓, 2,   LDH↓, 1,   LDL↓, 1,   NADPH↓, 1,   PDK1↓, 3,   PDK3↑, 1,   PPARα↓, 1,  

Cell Death

p‑Akt↓, 3,   p‑Akt↑, 1,   Akt↓, 8,   APAF1↑, 1,   Apoptosis↑, 11,   BAD↓, 1,   Bak↑, 1,   BAX↑, 4,   Bcl-2↓, 2,   Bcl-xL↓, 1,   BID↑, 1,   Casp↑, 2,   Casp3↑, 12,   Casp7↑, 2,   Casp8↑, 2,   Casp9↑, 6,   Cyt‑c↑, 5,   DR5↑, 1,   FADD↑, 1,   Fas↑, 1,   FasL↑, 1,   hTERT/TERT↓, 5,   iNOS↓, 1,   JNK↑, 2,   MAPK↑, 3,   Mcl-1↓, 2,   NAIP↓, 1,   p27↑, 1,   p38↑, 3,   survivin↓, 1,   TRAIL↑, 1,   TumCD↑, 1,  

Kinase & Signal Transduction

p‑p70S6↑, 1,   p70S6↓, 1,  

Transcription & Epigenetics

tumCV↓, 3,  

Protein Folding & ER Stress

eIF2α↑, 2,   p‑eIF2α↑, 1,   ER Stress↑, 5,   GRP78/BiP↑, 2,   GRP78/BiP↝, 1,   PERK↑, 2,   UPR↑, 4,   XBP-1↓, 1,  

DNA Damage & Repair

DNAdam↑, 5,   P53↑, 3,   PARP↑, 1,   cl‑PARP↑, 3,   PCNA↓, 5,   TP53↑, 1,  

Cell Cycle & Senescence

CDK1↓, 1,   CDK2↓, 3,   CDK4↓, 2,   CycB/CCNB1↓, 2,   cycD1/CCND1↓, 6,   cycE1↓, 1,   P21↑, 1,   TumCCA↑, 8,  

Proliferation, Differentiation & Cell State

AR-V7?, 1,   Diff↑, 1,   EMT↓, 5,   ERK↓, 2,   ERK↑, 1,   p‑ERK↑, 1,   GSK‐3β↑, 1,   HDAC↓, 3,   HDAC8↓, 3,   Let-7↑, 1,   mTOR↓, 3,   NOTCH↑, 1,   NOTCH1↑, 3,   PI3K↑, 2,   PI3K↓, 2,   SCF↓, 2,   SHP1↑, 1,   STAT3↑, 1,   STAT3↓, 3,   p‑STAT3↓, 2,   p‑STAT3↑, 1,   TOP1↓, 2,   TumCG↓, 4,   Wnt↓, 1,  

Migration

Ca+2↑, 5,   CDKN1C↑, 1,   CLDN1↓, 2,   E-cadherin↑, 4,   FAK↓, 2,   p‑FAK↓, 1,   Fibronectin↓, 1,   Ki-67↓, 1,   MMP-10↓, 2,   MMP2↓, 3,   MMP9↑, 1,   MMP9↓, 3,   N-cadherin↓, 1,   PDGF↓, 1,   Rho↓, 1,   ROCK1↓, 1,   Slug↓, 2,   Snail↓, 2,   TET1↑, 3,   TIMP1↑, 1,   TIMP2↑, 1,   TumCI↓, 4,   TumCMig↓, 3,   TumCP↓, 6,   TumMeta↓, 3,   TumMeta↑, 1,   Twist↓, 3,   uPA↓, 1,   Vim↓, 2,  

Angiogenesis & Vasculature

angioG↓, 8,   ATF4↑, 1,   EGFR↓, 1,   Hif1a↓, 4,   VEGF↓, 6,  

Barriers & Transport

BBB↑, 1,   GLUT1↓, 1,  

Immune & Inflammatory Signaling

CD4+↑, 1,   COX2↓, 6,   COX2↑, 1,   IL10↓, 1,   IL1β↓, 3,   IL2↑, 1,   IL6↓, 2,   Inflam↓, 2,   M2 MC↑, 1,   NF-kB↓, 5,   NF-kB↑, 1,   PD-L1↓, 1,   PGE2↓, 2,   TLR4↓, 1,   TNF-α↑, 1,   TNF-α↓, 3,  

Hormonal & Nuclear Receptors

AR↓, 1,   CYP19?, 1,  

Drug Metabolism & Resistance

BioAv↓, 2,   BioAv↑, 6,   ChemoSen↑, 8,   Dose↝, 2,   eff↑, 15,   Half-Life↓, 1,   MDR1↓, 1,   RadioS↑, 2,   selectivity↑, 4,  

Clinical Biomarkers

ALAT↓, 1,   ALP↓, 1,   AR↓, 1,   EGFR↓, 1,   hTERT/TERT↓, 5,   IL6↓, 2,   Ki-67↓, 1,   LDH↓, 1,   PD-L1↓, 1,   TP53↑, 1,  

Functional Outcomes

AntiCan↑, 1,   cardioP↑, 1,   chemoP↑, 1,   chemoPv↑, 2,   neuroP↑, 2,   OS↑, 1,   RenoP↑, 1,   TumVol↓, 1,   Weight∅, 2,  

Infection & Microbiome

CD8+↑, 1,  
Total Targets: 194

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 4,   Catalase↑, 4,   Catalase↓, 1,   GPx↑, 2,   GPx↓, 1,   GSH↑, 3,   GSTs↑, 2,   HDL↑, 1,   HO-1↑, 2,   lipid-P↓, 2,   MDA↓, 2,   NOX4↓, 1,   NRF2↑, 2,   NRF2↓, 1,   ROS↓, 11,   ROS∅, 1,   SOD↑, 5,   TBARS↓, 1,   VitC↑, 1,  

Core Metabolism/Glycolysis

CREB↑, 1,   GAPDH↑, 1,   lipidLev↓, 2,   NADPH↑, 1,   PPARα↑, 1,  

Cell Death

Akt↓, 1,   Akt↑, 1,   Apoptosis↓, 1,   BAX↓, 1,   Bcl-2↑, 1,   Casp3↓, 1,   Cyt‑c↓, 1,   iNOS↓, 2,   JNK↓, 1,   MAPK↓, 1,  

Protein Folding & ER Stress

HSP70/HSPA5↑, 1,  

DNA Damage & Repair

PARP↓, 1,   PCNA↓, 1,  

Proliferation, Differentiation & Cell State

GSK‐3β↓, 1,   HDAC↓, 1,   PI3K↓, 1,   PTEN↑, 1,  

Angiogenesis & Vasculature

NO↓, 1,   VEGF↑, 1,  

Immune & Inflammatory Signaling

COX2↓, 5,   COX2∅, 1,   IFN-γ↓, 1,   IL17↓, 1,   IL1β↓, 1,   IL2↓, 1,   Inflam↓, 7,   NF-kB↓, 5,   PGE2↓, 1,   TNF-α↓, 2,  

Synaptic & Neurotransmission

AChE↓, 1,   BDNF↑, 1,   TrkB↑, 1,  

Hormonal & Nuclear Receptors

GR↑, 1,   GR↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 3,   P450↓, 1,  

Clinical Biomarkers

AST↓, 1,  

Functional Outcomes

cardioP↑, 3,   cardioP⇅, 1,   chemoPv↑, 3,   cognitive↑, 2,   hepatoP↑, 5,   memory↑, 3,   neuroP↑, 4,   neuroP↓, 1,   RenoP↑, 2,   toxicity↓, 2,   toxicity↝, 1,  
Total Targets: 72

Research papers

Year Title Authors PMID Link Flag
2025Network pharmacology unveils the intricate molecular landscape of Chrysin in breast cancer therapeuticsJianping Mahttps://link.springer.com/article/10.1007/s12672-025-01951-30
2025Chrysin modulates the BDNF/TrkB/AKT/Creb neuroplasticity signaling pathway: Acting in the improvement of cognitive flexibility and declarative, working and aversive memory deficits caused by hypothyroidism in C57BL/6 female miceVandreza Cardoso Bortolottohttps://www.sciencedirect.com/science/article/abs/pii/S03064522240073950
2025Anticancer Activity of Ether Derivatives of ChrysinArkadiusz Sokal https://www.mdpi.com/1420-3049/30/4/9600
2024Chrysin targets aberrant molecular signatures and pathways in carcinogenesis (Review)Ritu Rainahttps://www.spandidos-publications.com/10.3892/wasj.2024.2600
2024Chrysin Inhibits TAMs-Mediated Autophagy Activation via CDK1/ULK1 Pathway and Reverses TAMs-Mediated Growth-Promoting Effects in Non-Small Cell Lung CancerXinglinzi Tang https://www.mdpi.com/1424-8247/17/4/5150
2023Chrysin a promising anticancer agent: recent perspectivesMuhammad Shahbazhttps://www.tandfonline.com/doi/full/10.1080/10942912.2023.2246678#abstract0
2022Evidence-based mechanistic role of chrysin towards protection of cardiac hypertrophy and fibrosis in ratsSonali Meshramhttps://www.cambridge.org/core/journals/british-journal-of-nutrition/article/evidencebased-mechanistic-role-of-chrysin-towards-protection-of-cardiac-hypertrophy-and-fibrosis-in-rats/F981072347E66679932F162E177229890
2022Anti-cancer Activity of Chrysin in Cancer Therapy: a Systematic ReviewNader SalariPMC9845454https://pmc.ncbi.nlm.nih.gov/articles/PMC9845454/0
2021Chrysin inhibits hepatocellular carcinoma progression through suppressing programmed death ligand 1 expressionWeihao Rong34923234https://pubmed.ncbi.nlm.nih.gov/34923234/0
2021Emerging cellular and molecular mechanisms underlying anticancer indications of chrysinMarjan Talebihttps://cancerci.biomedcentral.com/articles/10.1186/s12935-021-01906-y0
2021Chrysin inhibits propagation of HeLa cells by attenuating cell survival and inducing apoptotic pathwaysR Raina33755959https://pubmed.ncbi.nlm.nih.gov/33755959/0
2021An updated review on the versatile role of chrysin in neurological diseases: Chemistry, pharmacology, and drug delivery approachesMarjan Talebihttps://www.sciencedirect.com/science/article/pii/S07533322210068800
2020Potentiating activities of chrysin in the therapeutic efficacy of 5-fluorouracil in gastric cancer cellsSunyi LeePMC7681229https://pmc.ncbi.nlm.nih.gov/articles/PMC7681229/0
2020Broad-Spectrum Preclinical Antitumor Activity of Chrysin: Current Trends and Future PerspectivesEbrahim Rahmani MoghadamPMC7600196https://pmc.ncbi.nlm.nih.gov/articles/PMC7600196/0
2020Chrysin serves as a novel inhibitor of DGKα/FAK interaction to suppress the malignancy of esophageal squamous cell carcinoma (ESCC)Jie ChenPMC7838054https://pmc.ncbi.nlm.nih.gov/articles/PMC7838054/0
2020Chrysin Induced Cell Apoptosis and Inhibited Invasion Through Regulation of TET1 Expression in Gastric Cancer CellsXiaowei ZhongPMC7182457https://pmc.ncbi.nlm.nih.gov/articles/PMC7182457/0
2020Inhibition of Hypoxia-Inducible Factor-1α and Vascular Endothelial Growth Factor by Chrysin in a Rat Model of Choroidal NeovascularizationJi Hun SongPMC7215732https://pmc.ncbi.nlm.nih.gov/articles/PMC7215732/0
2019Chrysin: Pharmacological and therapeutic propertiesSaima Nazhttps://www.sciencedirect.com/science/article/abs/pii/S00243205193072460
2019Gamma-Irradiated Chrysin Improves Anticancer Activity in HT-29 Colon Cancer Cells Through Mitochondria-Related PathwayHa-Yeon Song31158040https://pubmed.ncbi.nlm.nih.gov/31158040/0
2018Chrysin attenuates progression of ovarian cancer cells by regulating signaling cascades and mitochondrial dysfunctionWhasun Limhttps://pubmed.ncbi.nlm.nih.gov/28816359/0
2018Chrysin suppresses proliferation, migration, and invasion in glioblastoma cell lines via mediating the ERK/Nrf2 signaling pathwayJuan WangPMC5892952https://pmc.ncbi.nlm.nih.gov/articles/PMC5892952/0
2018Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of actionRenuka Manihttps://www.sciencedirect.com/science/article/abs/pii/S00319422173032170
2017Chrysin induces death of prostate cancer cells by inducing ROS and ER stressSoomin Ryu28213961https://pubmed.ncbi.nlm.nih.gov/28213961/0
2017Chrysin inhibited tumor glycolysis and induced apoptosis in hepatocellular carcinoma by targeting hexokinase-2Dong XuPMC5359903https://pmc.ncbi.nlm.nih.gov/articles/PMC5359903/0
2017Chrysin as an Anti-Cancer Agent Exerts Selective Toxicity by Directly Inhibiting Mitochondrial Complex II and V in CLL B-lymphocytesAhmad Salimi28301251https://pubmed.ncbi.nlm.nih.gov/28301251/0
2016Chemopreventive effect of chrysin, a dietary flavone against benzo(a)pyrene induced lung carcinogenesis in Swiss albino miceEshvendar Reddy Kasala26922533https://pubmed.ncbi.nlm.nih.gov/26922533/0
2015Chemopreventive and therapeutic potential of chrysin in cancer: mechanistic perspectivesEshvendar Reddy Kasala25596314https://pubmed.ncbi.nlm.nih.gov/25596314/0
2015Selenium-containing chrysin and quercetin derivatives: attractive scaffolds for cancer therapyInês L Martins25906385https://pubmed.ncbi.nlm.nih.gov/25906385/0
2015Combination of chrysin and cisplatin promotes the apoptosis of Hep G2 cells by up-regulating p53Xin Li25770930https://pubmed.ncbi.nlm.nih.gov/25770930/0
2014Chrysin inhibits metastatic potential of human triple-negative breast cancer cells by modulating matrix metalloproteinase-10, epithelial to mesenchymal transition, and PI3K/Akt signaling pathwayBing Yang24122885https://pubmed.ncbi.nlm.nih.gov/24122885/0
2014Chrysin Activates Notch1 Signaling and Suppresses Tumor Growth of Anaplastic Thyroid Carcinoma In vitro and In vivoXiao-Min YuPMC3528831https://pmc.ncbi.nlm.nih.gov/articles/PMC3528831/0
2013Chrysin suppresses renal carcinogenesis via amelioration of hyperproliferation, oxidative stress and inflammation: plausible role of NF-κBMuneeb U Rehman23194824https://pubmed.ncbi.nlm.nih.gov/23194824/0
2013A flavonoid chrysin suppresses hypoxic survival and metastatic growth of mouse breast cancer cellsKriengsak Lirdprapamongkol23969634https://pubmed.ncbi.nlm.nih.gov/23969634/0
2013Chrysin enhances sensitivity of BEL-7402/ADM cells to doxorubicin by suppressing PI3K/Akt/Nrf2 and ERK/Nrf2 pathwayAi-Mei Gao23994249https://pubmed.ncbi.nlm.nih.gov/23994249/0
2012AMP-activated protein kinase (AMPK) activation is involved in chrysin-induced growth inhibition and apoptosis in cultured A549 lung cancer cellsJun-jie Shao22659738https://pubmed.ncbi.nlm.nih.gov/22659738/0
2012Chrysin: a histone deacetylase 8 inhibitor with anticancer activity and a suitable candidate for the standardization of Chinese propolisLi-Ping Sun23134323https://pubmed.ncbi.nlm.nih.gov/23134323/0
20108-bromo-7-methoxychrysin-induced apoptosis of hepatocellular carcinoma cells involves ROS and JNKXiao-Hong YangPMC2904884https://pmc.ncbi.nlm.nih.gov/articles/PMC2904884/0
2010Apoptotic Effects of Chrysin in Human Cancer Cell LinesBoon Yin KhooPMC2885101https://pmc.ncbi.nlm.nih.gov/articles/PMC2885101/0
2007Chrysin inhibits expression of hypoxia-inducible factor-1alpha through reducing hypoxia-inducible factor-1alpha stability and inhibiting its protein synthesisBeibei Fu17237281https://pubmed.ncbi.nlm.nih.gov/17237281/0
2014Flavonoid-induced glutathione depletion: Potential implications for cancer treatmentRemy KachadourianPMC3983951https://pmc.ncbi.nlm.nih.gov/articles/PMC3983951/0
2022An update of Nrf2 activators and inhibitors in cancer prevention/promotionFarhad PouremamaliPMC9245222https://pmc.ncbi.nlm.nih.gov/articles/PMC9245222/0
2006Luteolin and chrysin differentially inhibit cyclooxygenase-2 expression and scavenge reactive oxygen species but similarly inhibit prostaglandin-E2 formation in RAW 264.7 cellsGabriel K Harris16702314https://pubmed.ncbi.nlm.nih.gov/16702314/0