tbResList Print — Cin Cinnamon

Filters: qv=62, qv2=%, rfv=%

Product

Cin Cinnamon
Description: <b>Cinnamon</b> is a spice from inner bark from several tree species.<br>
Cinnamon refers primarily to bark extracts from Cinnamomum verum (Ceylon cinnamon) and Cinnamomum cassia. Bioactive constituents include cinnamaldehyde, cinnamic acid derivatives, procyanidins, and polyphenols. In cancer models, cinnamon extracts and cinnamaldehyde are most frequently reported to exert anti-proliferative, pro-apoptotic, anti-inflammatory, and anti-angiogenic effects. Mechanistic themes include suppression of NF-κB and PI3K/AKT signaling, modulation of MAPK pathways, induction of mitochondrial apoptosis, and context-dependent ROS elevation in tumor cells. Some studies report inhibition of HIF-1α and glycolytic signaling, though cinnamon is not a direct enzymatic Warburg inhibitor. Effects vary substantially depending on species (Ceylon vs Cassia), preparation (aqueous vs ethanol extract), and dose. Human oncology data remain limited and largely preclinical.
<br>
<br>
Biological activity, cinnamaldehyde from Ceylon cinnamon:<br>
Antimicrobial activity: 10-50 μM<br>
Antioxidant activity: 10-100 μM<br>
Anti-inflammatory activity: 20-50 μM<br>
Anticancer activity: 50-100 μM<br>
Cardiovascular health: 20-50 μM<br>
<br>
5 g of Ceylon cinnamon might contain roughly between 30 mg and 150 mg of cinnamaldehyde, with an approximate mid-range estimate of about 70 mg.<br>
Assuming a moderate supplemental intake 50–200 mg of cinnamaldehyde, peak plasma levels might be anticipated in the vicinity of 1–10 μM.<br>



<br>
<h3>Cancer Pathway Table: Cinnamon</h3>
<!-- Cancer Pathway Table: Cinnamon -->
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer / Tumor Context</th>
<th>Normal Tissue Context</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>NF-κB inflammatory / survival signaling</td>
<td>NF-κB ↓; COX-2 ↓; cytokines ↓ (reported)</td>
<td>Inflammatory tone ↓</td>
<td>R, G</td>
<td>Anti-inflammatory / anti-survival</td>
<td>One of the more consistently reported mechanisms across tumor models.</td>
</tr>

<tr>
<td>2</td>
<td>PI3K → AKT → mTOR axis</td>
<td>PI3K/AKT ↓; proliferation ↓ (model-dependent)</td>
<td>↔</td>
<td>R, G</td>
<td>Growth signaling suppression</td>
<td>Frequently observed downstream of cinnamaldehyde exposure.</td>
</tr>

<tr>
<td>3</td>
<td>Intrinsic apoptosis (mitochondrial pathway)</td>
<td>Bax ↑; Bcl-2 ↓; caspases ↑ (reported)</td>
<td>Minimal activation at lower exposure</td>
<td>G</td>
<td>Apoptotic induction</td>
<td>Apoptosis induction often associated with mitochondrial depolarization.</td>
</tr>

<tr>
<td>4</td>
<td>ROS modulation (dose-dependent)</td>
<td>ROS ↑ (tumor contexts); apoptosis ↑</td>
<td>Antioxidant activity at low exposure</td>
<td>P, R</td>
<td>Redox modulation</td>
<td>Cinnamaldehyde may increase ROS in cancer cells while acting antioxidant at lower doses.</td>
</tr>

<tr>
<td>5</td>
<td>MAPK pathways (ERK / JNK / p38)</td>
<td>Stress-MAPK modulation (context-dependent)</td>
<td>↔</td>
<td>P, R, G</td>
<td>Signal reprogramming</td>
<td>JNK/p38 activation reported in apoptosis models; ERK modulation varies.</td>
</tr>

<tr>
<td>6</td>
<td>HIF-1α / glycolysis signaling</td>
<td>HIF-1α ↓; glycolytic gene expression ↓ (reported)</td>
<td>↔</td>
<td>R, G</td>
<td>Indirect Warburg modulation</td>
<td>Not a direct enzyme inhibitor; metabolic effects appear secondary to survival pathway suppression.</td>
</tr>

<tr>
<td>7</td>
<td>Angiogenesis (VEGF signaling)</td>
<td>VEGF ↓; angiogenesis ↓ (reported)</td>
<td>↔</td>
<td>G</td>
<td>Anti-angiogenic</td>
<td>Observed in some in vitro and animal models.</td>
</tr>

<tr>
<td>8</td>
<td>Cell-cycle regulation (G1/G2-M arrest)</td>
<td>Cell-cycle arrest ↑ (reported)</td>
<td>↔</td>
<td>G</td>
<td>Cytostasis</td>
<td>Associated with reduced Cyclin/CDK expression.</td>
</tr>

<tr>
<td>9</td>
<td>Metastasis / EMT modulation</td>
<td>MMPs ↓; migration ↓ (reported)</td>
<td>↔</td>
<td>G</td>
<td>Anti-invasive phenotype</td>
<td>Likely downstream of NF-κB and PI3K modulation.</td>
</tr>

<tr>
<td>10</td>
<td>Safety / composition constraint (coumarin content)</td>
<td>High cassia intake may pose hepatotoxicity risk</td>
<td>Generally safe in culinary amounts</td>
<td>—</td>
<td>Translation constraint</td>
<td>Cassia cinnamon contains higher coumarin; Ceylon cinnamon preferred for higher intake.</td>
</tr>

</table>

<p><small>
TSF: P = 0–30 min (redox and early signaling effects), R = 30 min–3 hr (acute pathway modulation), G = >3 hr (apoptosis, angiogenesis, phenotype changes).
</small></p>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

antiOx↑, 1,   lipid-P↓, 1,  

Core Metabolism/Glycolysis

G6PD↓, 1,   Glycolysis↓, 1,   HK2↓, 1,  

Cell Death

p‑Akt↓, 1,   Apoptosis↑, 1,   Bcl-2↓, 1,   Bcl-xL↓, 1,   survivin↓, 1,  

Transcription & Epigenetics

other∅, 1,  

Proliferation, Differentiation & Cell State

p‑STAT3↓, 1,   TumCG↓, 1,  

Migration

AP-1↓, 1,   TumCI↓, 1,   TumCP↓, 1,  

Angiogenesis & Vasculature

angioG↓, 1,   Hif1a↓, 2,   VEGF↓, 2,  

Immune & Inflammatory Signaling

COX2↓, 1,   NF-kB↓, 1,  

Clinical Biomarkers

ascitic↓, 1,  

Functional Outcomes

cognitive↑, 1,   TumW↓, 1,  
Total Targets: 24

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 3,   lipid-P↓, 2,   ROS↓, 3,  

Core Metabolism/Glycolysis

LDL↓, 1,  

Protein Folding & ER Stress

ER Stress↓, 1,  

Proliferation, Differentiation & Cell State

p‑GSK‐3β↑, 1,  

Migration

AntiAg↑, 1,  

Angiogenesis & Vasculature

angioG↑, 1,  

Barriers & Transport

BBB↑, 2,  

Immune & Inflammatory Signaling

Inflam↓, 4,   Inflam↑, 1,   TNF-α↓, 1,  

Synaptic & Neurotransmission

AChE↓, 1,   BDNF↑, 1,   GABA↑, 1,   tau↓, 5,  

Protein Aggregation

Aβ↓, 3,  

Drug Metabolism & Resistance

eff↑, 1,  

Clinical Biomarkers

GutMicro↑, 1,  

Functional Outcomes

cardioP↑, 3,   cognitive↑, 2,   Mood↑, 2,   neuroP↑, 1,   toxicity↓, 2,  
Total Targets: 24

Research papers

Year Title Authors PMID Link Flag
2022Cinnamon Extract Reduces VEGF Expression Via Suppressing HIF-1α Gene Expression and Inhibits Tumor Growth in MiceKeqiang ZhangPMC8830771https://pmc.ncbi.nlm.nih.gov/articles/PMC8830771/0
2022Cinnamon bark extract suppresses metastatic dissemination of cancer cells through inhibition of glycolytic metabolismJoji Nakayama35445961https://pubmed.ncbi.nlm.nih.gov/35445961/0
2022The Therapeutic Roles of Cinnamaldehyde against Cardiovascular DiseasesLi LuPMC9569207https://pmc.ncbi.nlm.nih.gov/articles/PMC9569207/0
2022Identification of potential targets of cinnamon for treatment against Alzheimer's disease-related GABAergic synaptic dysfunction using network pharmacologyDongdong QianPMC9675738https://pmc.ncbi.nlm.nih.gov/articles/PMC9675738/0
2021The Potential of Cinnamon as Anti-DepressantChris Alberto Aminhttps://eurekabiomedical.com/index.php/EHI/article/download/19/76/0
2017Can Cinnamon be the Silver Bullet for Cancer?Ekaterina Peretshttps://www.advancedsciencenews.com/can-cinnamon-silver-bullet-cancer/0
2017Cinnamon, a promising prospect towards Alzheimer's diseaseSaeideh Momtaz29258915https://pubmed.ncbi.nlm.nih.gov/29258915/0
2015Cinnamon: Mystic powers of a minute ingredientPallavi KawatraPMC4466762https://pmc.ncbi.nlm.nih.gov/articles/PMC4466762/0
2015Cinnamon from the selection of traditional applications to its novel effects on the inhibition of angiogenesis in cancer cells and prevention of Alzheimer's disease, and a series of functions such as antioxidant, anticholesterol, antidiabetes, antibacterial, antifungal, nematicidal, acaracidal, and repellent activitiesRafie HamidpourPMC4488098https://pmc.ncbi.nlm.nih.gov/articles/PMC4488098/0
2013Interaction of cinnamaldehyde and epicatechin with tau: implications of beneficial effects in modulating Alzheimer's disease pathogenesisRoshni C George23531502https://pubmed.ncbi.nlm.nih.gov/23531502/0
2011Orally administrated cinnamon extract reduces β-amyloid oligomerization and corrects cognitive impairment in Alzheimer's disease animal modelsAnat Frydman-MaromPMC3030596https://pmc.ncbi.nlm.nih.gov/articles/PMC3030596/0
2010Cinnamon extract induces tumor cell death through inhibition of NFκB and AP1Ho-Keun KwonPMC2920880https://pmc.ncbi.nlm.nih.gov/articles/PMC2920880/0
2009Cinnamon extract inhibits tau aggregation associated with Alzheimer's disease in vitroDylan W Peterson19433898https://pubmed.ncbi.nlm.nih.gov/19433898/0