tbResList Print — Cu Copper and Cu NanoParticles

Filters: qv=64, qv2=%, rfv=%

Product

Cu Copper and Cu NanoParticles
Description: <b>Copper</b><br>
Metal<br>
Copper levels are considerably elevated in various malignancies.<br>
Copper [Cu(II)] is a transition and trace element in living organisms. It increases reactive oxygen species (ROS) and free-radical generation that might damage biomolecules like DNA, proteins, and lipids.<br>
<br>
Copper (dietary/physiology) ≠ copper-loading therapeutics ≠ copper nanoparticles.<br>
For Cu nanoparticles, the dominant and most reproducible theme is toxicity via ROS → mitochondrial damage/genotoxicity, not clean tumor selectivity.<br>
- Copper acts as a critical cofactor for numerous enzymes involved in redox reactions, energy production, and connective tissue formation.<br>
- Increased copper levels in the tumor microenvironment can enhance angiogenic signaling and thus supply the tumor with necessary oxygen and nutrients, facilitating tumor growth and metastasis.<br>
- Copper can participate in redox cycling reactions, similar to the Fenton reaction, leading to the production of reactive oxygen species (ROS).<br>
- Cancer cells often exhibit altered copper homeostasis, with some studies showing elevated copper levels in tumor tissues relative to normal tissues.<br>
<br>
Two main approaches are:<br>
- Copper Chelation: Drugs that bind copper (chelators) can reduce the bioavailability of copper, potentially inhibiting angiogenesis and other copper-dependent tumor processes.<br>
- Copper Ionophores: These agents facilitate the transport of copper into cancer cells to induce cytotoxicity by elevating intracellular copper levels beyond a tolerable threshold, leading to cell death.<br>
<br>
- Depletion of glutathione and stimulation of lipid peroxidation, catalase and superoxide dismutase.<br>
- Studies have shown that the level of copper in tumour cells and blood serum from cancer patients is elevated, and the conclusion is that cancer cells need more copper than healthy cells. (but also sometimes depleted).<br>
- Copper is a double-edged sword, maintaining normal cell development and promoting tumor development.<br>
- Tumor tissue has a higher demand for copper and is more susceptible to copper homeostasis, copper may modulate cancer cell survival through reactive oxygen species (ROS) excessive accumulation, proteasome inhibition and anti-angiogenesis.<br>
<br>



Natural Product: Cu, Copper (ion biology)<br>
<!-- Copper (Cu) — Cancer/Oncology-Focused Time-Scale Flagged Pathway Table -->
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer / Tumor Context</th>
<th>Normal Tissue Context</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>Cuproptosis (copper-triggered mitochondrial cell death)</td>
<td>Cu accumulation → binding to lipoylated TCA proteins → aggregation; Fe–S proteins ↓; proteotoxic stress ↑</td>
<td>Tight copper homeostasis usually prevents this</td>
<td>R, G</td>
<td>Regulated cell death (mitochondria-linked)</td>
<td>Cuproptosis is a distinct copper-dependent death pathway tied to mitochondrial metabolism and lipoylated TCA components. :contentReference[oaicite:0]{index=0}</td>
</tr>

<tr>
<td>2</td>
<td>Copper homeostasis machinery (transport/chaperones)</td>
<td>Copper trafficking affects tumor programs (growth/metastasis; context)</td>
<td>Essential micronutrient; homeostasis prevents toxicity</td>
<td>R, G</td>
<td>Homeostasis / signaling coupling</td>
<td>Copper import/export and chaperones couple copper availability to signaling and phenotype; dysregulation is increasingly discussed in cancer biology. :contentReference[oaicite:1]{index=1}</td>
</tr>

<tr>
<td>3</td>
<td>Angiogenesis support (copper-dependent tumor vascularization)</td>
<td>Pro-angiogenic tone supported by copper availability (context)</td>
<td>Physiologic angiogenesis/wound repair support</td>
<td>G</td>
<td>Vascular program modulation</td>
<td>Copper deficiency/chelation has been reported to impair tumor angiogenesis in preclinical/clinical contexts. :contentReference[oaicite:2]{index=2}</td>
</tr>

<tr>
<td>4</td>
<td>LOX/LOXL family (ECM remodeling; copper-dependent enzymes)</td>
<td>ECM crosslinking / invasion-metastasis programs ↑ (context)</td>
<td>Normal ECM maturation and tissue repair</td>
<td>G</td>
<td>Microenvironment remodeling</td>
<td>LOX enzymes are copper-dependent and implicated in tumor stroma remodeling and metastatic niche biology. :contentReference[oaicite:3]{index=3}</td>
</tr>

<tr>
<td>5</td>
<td>ROS / redox chemistry (Cu redox cycling)</td>
<td>Oxidative stress ↑ (context); DNA/protein damage ↑</td>
<td>Redox enzyme cofactor; excess is toxic</td>
<td>P, R, G</td>
<td>Stress amplification (conditional)</td>
<td>Copper can catalyze redox reactions; whether this is tumor-selective depends on copper handling, antioxidants, and exposure context.</td>
</tr>

<tr>
<td>6</td>
<td>Copper ionophores / copper-loading strategies (research/therapy concept)</td>
<td>Intracellular Cu ↑ → stress/death programs ↑ (context)</td>
<td>—</td>
<td>R, G</td>
<td>Therapeutic lever (conceptual)</td>
<td>Reviews discuss copper ionophores as tools to drive copper accumulation and explore cuproptosis/ROS mechanisms; clinical positioning varies. :contentReference[oaicite:4]{index=4}</td>
</tr>

<tr>
<td>7</td>
<td>Copper chelation (anti-angiogenic / microenvironment strategy)</td>
<td>Angiogenesis and tumor progression pressure ↓ (context)</td>
<td>Risk of deficiency if excessive</td>
<td>G</td>
<td>Translation/strategy axis</td>
<td>Tetrathiomolybdate and related chelation strategies have been studied clinically as anti-angiogenic approaches. :contentReference[oaicite:5]{index=5}</td>
</tr>

</table>

<p><b>Time-Scale Flag (TSF):</b> P / R / G</p>
<ul>
<li><b>P</b>: 0–30 min (rapid redox interactions)</li>
<li><b>R</b>: 30 min–3 hr (acute mitochondrial/proteotoxic stress signaling)</li>
<li><b>G</b>: &gt;3 hr (gene-regulatory adaptation and phenotype outcomes)</li>
</ul>





<br>
Copper Nanoparticles: CuNP / CuO-NP (tox + “anticancer” claims are mostly preclinical)<br>
<!-- Copper Nanoparticles (CuNP / CuO-NP) — Preclinical Cancer + Toxicology Time-Scale Flagged Table -->
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Axis</th>
<th>Cell/Tumor Context</th>
<th>Whole-Body / Normal Tissue Context</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>Oxidative stress (ROS generation) + antioxidant depletion</td>
<td>ROS ↑; lipid peroxidation ↑; DNA damage ↑ (reported)</td>
<td>Liver/kidney oxidative injury risk ↑ in animal studies</td>
<td>P, R, G</td>
<td>Primary toxicity driver</td>
<td>CuO nanoparticles are widely reported to cause cytotoxicity primarily via oxidative stress leading to genotoxicity. :contentReference[oaicite:6]{index=6}</td>
</tr>

<tr>
<td>2</td>
<td>Mitochondrial dysfunction</td>
<td>ΔΨm ↓; ATP ↓; apoptosis signaling ↑ (reported)</td>
<td>Organ toxicity links include mitochondrial impairment</td>
<td>R, G</td>
<td>Energy failure / apoptosis coupling</td>
<td>Mitochondria-mediated apoptosis has been reported with CuO NPs in cell models (e.g., HepG2). :contentReference[oaicite:7]{index=7}</td>
</tr>

<tr>
<td>3</td>
<td>Inflammation / immune activation</td>
<td>Inflammatory signaling ↑ (context)</td>
<td>Inflammation contributes to organ injury in vivo</td>
<td>R, G</td>
<td>Tissue injury amplification</td>
<td>Sub-chronic exposure reviews describe inflammation as part of CuNP/CuO-NP toxicity patterns. :contentReference[oaicite:8]{index=8}</td>
</tr>

<tr>
<td>4</td>
<td>Genotoxicity</td>
<td>DNA strand breaks ↑; chromosomal damage ↑ (reported)</td>
<td>Potential long-term risk signal (model-dependent)</td>
<td>R, G</td>
<td>Genome damage</td>
<td>Often downstream of ROS; repeatedly reported across CuO NP toxicity literature. :contentReference[oaicite:9]{index=9}</td>
</tr>

<tr>
<td>5</td>
<td>“Anticancer” cytotoxicity claims (preclinical)</td>
<td>Viability ↓ in various cell lines (often at high concentrations)</td>
<td>Translation limited by toxicity and exposure constraints</td>
<td>G</td>
<td>Non-selective cytotoxicity risk</td>
<td>Many studies show tumor cell killing, but often at concentrations that also harm normal cells; selectivity is a major issue. :contentReference[oaicite:10]{index=10}</td>
</tr>

<tr>
<td>6</td>
<td>Reproductive/developmental toxicity signals (animal models)</td>
<td>—</td>
<td>Reported reproductive system impacts in animal studies</td>
<td>G</td>
<td>Safety constraint</td>
<td>Recent studies discuss reproductive toxicity and mitochondrial injury in germline cells with CuO NPs. :contentReference[oaicite:11]{index=11}</td>
</tr>

</table>

<p><b>Time-Scale Flag (TSF):</b> P / R / G</p>
<ul>
<li><b>P</b>: 0–30 min (rapid ROS/redox interactions at particle surfaces)</li>
<li><b>R</b>: 30 min–3 hr (mitochondrial stress + inflammatory signaling)</li>
<li><b>G</b>: &gt;3 hr (genotoxicity, apoptosis, organ-level outcomes)</li>
</ul>


Pathway results for Effect on Cancer / Diseased Cells

NA, unassigned

DrugR↓, 1,  

Redox & Oxidative Stress

antiOx↑, 1,   Catalase↓, 1,   Fenton↑, 5,   Ferroptosis↑, 3,   GSH↓, 4,   GSH/GSSG↓, 2,   GSR↓, 1,   ox-GSSG↑, 1,   H2O2↑, 2,   HNE↑, 1,   HO-1↑, 1,   HO-1↓, 1,   ICD↑, 2,   Iron↑, 2,   Keap1↓, 1,   lipid-P↑, 3,   lipid-P↓, 1,   NQO1↑, 1,   NRF2↓, 3,   ROS↑, 21,   mt-ROS↑, 1,   SOD↓, 1,   SOD1↓, 1,   TrxR↓, 2,  

Mitochondria & Bioenergetics

i-ATP↓, 1,   ATP↓, 1,   MMP↓, 2,   mtDam↑, 2,  

Core Metabolism/Glycolysis

ATG7↑, 1,   CREB↓, 1,   NAD↓, 1,  

Cell Death

Akt↓, 1,   Apoptosis↑, 7,   Apoptosis↓, 1,   ATF2↓, 1,   BAX↑, 1,   Bcl-2↓, 1,   Casp3↑, 1,   Cupro↑, 2,   Cyt‑c↑, 1,   Ferroptosis↑, 3,   JNK↑, 3,   p‑JNK↑, 1,   MAPK↑, 1,   MAPK↓, 1,   Myc↑, 1,   Paraptosis↑, 2,   Proteasome?, 1,   Proteasome↓, 1,   Pyro↑, 1,   TumCD↑, 5,  

Transcription & Epigenetics

other↑, 2,   other∅, 1,   sonoS↑, 1,   tumCV↓, 2,  

Protein Folding & ER Stress

CHOP↑, 1,   i-CRT↓, 1,   ER Stress↑, 3,  

Autophagy & Lysosomes

Beclin-1↑, 1,   p‑p62↑, 1,   TumAuto↑, 1,  

DNA Damage & Repair

DNAdam↑, 3,  

Cell Cycle & Senescence

cycA1/CCNA1↓, 1,   cycD1/CCND1↓, 1,   TumCCA↑, 3,  

Proliferation, Differentiation & Cell State

ALDH↓, 1,   CSCs↓, 4,   EMT↓, 1,   FOXO↑, 1,   TumCG↓, 3,  

Migration

AP-1↑, 1,   TGF-β↓, 1,   TumCI↓, 2,   TumCMig↓, 2,   TumCP↓, 3,   TumCP↑, 1,   TumMeta↓, 2,   Vim↓, 1,  

Angiogenesis & Vasculature

angioG↑, 2,   angioG↓, 6,   NO↑, 2,  

Barriers & Transport

P-gp↓, 1,  

Immune & Inflammatory Signaling

DCells↑, 1,   i-HMGB1↓, 1,   HMGB1↑, 1,   IFN-γ↑, 1,   IL12↑, 1,   Imm↑, 1,   NF-kB↓, 5,   NF-kB↑, 1,   p65↓, 1,   PD-L1↑, 1,  

Drug Metabolism & Resistance

BioAv↓, 1,   BioAv↑, 1,   ChemoSen↑, 7,   Dose∅, 3,   Dose↓, 1,   Dose↝, 2,   eff↑, 29,   eff↓, 14,   eff?, 1,   Half-Life↑, 1,   RadioS↑, 5,   selectivity↑, 8,  

Clinical Biomarkers

Myc↑, 1,   PD-L1↑, 1,  

Functional Outcomes

AntiTum↑, 3,   chemoP↑, 1,   OS∅, 1,   Remission↑, 1,   toxicity↑, 1,   toxicity↓, 1,   toxicity↝, 1,  

Infection & Microbiome

CD8+↑, 1,  
Total Targets: 115

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

ROS∅, 1,   ROS↑, 1,  

DNA Damage & Repair

DNAdam↑, 1,   DNAdam∅, 1,  

Drug Metabolism & Resistance

BioAv↑, 1,   Dose∅, 1,  

Functional Outcomes

toxicity↝, 2,   toxicity?, 1,   toxicity∅, 1,  
Total Targets: 9

Research papers

Year Title Authors PMID Link Flag
2025Cytotoxicity and targeted drug delivery of green synthesized metallic nanoparticles against oral Cancer: A reviewMaghimaa Mhttps://www.sciencedirect.com/science/article/pii/S13877003240179690
2017Current Progresses in Metal-based Anticancer Complexes as Mammalian TrxR InhibitorsYizhe Cheng28270080https://pubmed.ncbi.nlm.nih.gov/28270080/0
2011In vitro antitumour activity of water soluble Cu(I), Ag(I) and Au(I) complexes supported by hydrophilic alkyl phosphine ligandsCarlo Santini21194623https://pubmed.ncbi.nlm.nih.gov/21194623/0
2024Unveiling the promising anticancer effect of copper-based compounds: a comprehensive reviewSara AbdolmalekiPMC11045632https://pmc.ncbi.nlm.nih.gov/articles/PMC11045632/0
2024Cu(II) complex that synergistically potentiates cytotoxicity and an antitumor immune response by targeting cellular redox homeostasisKe-Bin HuangPMC11181140https://pmc.ncbi.nlm.nih.gov/articles/PMC11181140/0
2024The copper (II) complex of salicylate phenanthroline induces immunogenic cell death of colorectal cancer cells through inducing endoplasmic reticulum stressMing Chen38555819https://pubmed.ncbi.nlm.nih.gov/38555819/0
2024Glutathione Depletion-Induced ROS/NO Generation for Cascade Breast Cancer Therapy and Enhanced Anti-Tumor Immune ResponseJing WangPMC10926878https://pmc.ncbi.nlm.nih.gov/articles/PMC10926878/0
2024Copper-assisted anticancer activity of hydroxycinnamic acid terpyridine conjugates on triple-negative breast cancerAnindya Roy39479915https://pubmed.ncbi.nlm.nih.gov/39479915/0
2023Development of copper nanoparticles and their prospective uses as antioxidants, antimicrobials, anticancer agents in the pharmaceutical sectorPankaj K. Tyagihttps://www.researchgate.net/publication/372188923_Development_of_copper_nanoparticles_and_their_prospective_uses_as_antioxidants_antimicrobials_anticancer_agents_in_the_pharmaceutical_sector0
2023Copper in cancer: From pathogenesis to therapyDefeng Guanhttps://www.sciencedirect.com/science/article/pii/S07533322230058020
2023Recent Advances in Cancer Therapeutic Copper-Based Nanomaterials for Antitumor TherapyReyida AishajiangPMC10005215https://pmc.ncbi.nlm.nih.gov/articles/PMC10005215/0
2023Targeting copper metabolism: a promising strategy for cancer treatmentRuimin Konghttps://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2023.1203447/full0
2022Copper in tumors and the use of copper-based compounds in cancer treatmentDaniela Almeida da Silvahttps://www.sciencedirect.com/science/article/abs/pii/S01620134210028160
2020The Multifaceted Roles of Copper in Cancer: A Trace Metal Element with Dysregulated Metabolism, but Also a Target or a Bullet for TherapyPierre LelièvrePMC7760327https://pmc.ncbi.nlm.nih.gov/articles/PMC7760327/0
2020Anticancer potency of copper(II) complexes of thiosemicarbazonesNarendra Kumar Singh32673842https://pubmed.ncbi.nlm.nih.gov/32673842/0
2020A simultaneously GSH-depleted bimetallic Cu(ii) complex for enhanced chemodynamic cancer therapy†Shuhua Caohttps://pubs.rsc.org/en/content/articlelanding/2020/dt/d0dt01742f0
2019Green synthesis of copper oxide nanoparticles using sinapic acid: an underpinning step towards antiangiogenic therapy for breast cancer312301300
2018Copper Nanoparticles as Therapeutic Anticancer AgentsEleftherios Halevashttps://www.researchgate.net/publication/328381782_Copper_Nanoparticles_as_Therapeutic_Anticancer_Agents0
2015Targeting copper in cancer therapy: 'Copper That Cancer'Delphine Denoyer26313539https://pubmed.ncbi.nlm.nih.gov/26313539/0
2026Disulfiram/Copper Combined with Irradiation Induces Immunogenic Cell Death in MelanomaEnwen Wanghttps://www.researchgate.net/publication/399939116_DisulfiramCopper_Combined_with_Irradiation_Induces_Immunogenic_Cell_Death_in_Melanoma0
2024Disulfiram: A novel repurposed drug for cancer therapyZeng, Minhttps://journals.lww.com/cmj/fulltext/2024/06200/disulfiram__a_novel_repurposed_drug_for_cancer.2.aspx0
2023The immunomodulatory function and antitumor effect of disulfiram: paving the way for novel cancer therapeuticsSijia Zhanghttps://link.springer.com/article/10.1007/s12672-023-00729-90
2023Effect of Disulfiram and Copper Plus Chemotherapy vs Chemotherapy Alone on Survival in Patients With Recurrent GlioblastomaKatja Werlenius, MDhttps://jamanetwork.com/journals/jamanetworkopen/fullarticle/28029660
2023Nrf2/HO-1 Alleviates Disulfiram/Copper-Induced Ferroptosis in Oral Squamous Cell CarcinomaYanjuan Zhaohttps://link.springer.com/article/10.1007/s10528-023-10405-w0
2023Advancing Cancer Therapy with Copper/Disulfiram Nanomedicines and Drug Delivery SystemsXuejia Kanghttps://www.mdpi.com/1999-4923/15/6/15670
2022Leveraging disulfiram to treat cancer: Mechanisms of action, delivery strategies, and treatment regimensYao Luhttps://www.sciencedirect.com/science/article/abs/pii/S01429612210069180
2021Overcoming the compensatory elevation of NRF2 renders hepatocellular carcinoma cells more vulnerable to disulfiram/copper-induced ferroptosisXueying Renhttps://www.sciencedirect.com/science/article/pii/S22132317210028100
2014Disulfiram targeting lymphoid malignant cell lines via ROS-JNK activation as well as Nrf2 and NF-kB pathway inhibitionJie ZhaPMC4075939https://pmc.ncbi.nlm.nih.gov/articles/PMC4075939/0
2012Activation of Oxidative Stress and Down-Regulation of Nuclear Factor Erythroid 2-Related Factor May Be Responsible for Disulfiram/Copper Complex Induced Apoptosis in Lymphoid Malignancy Cell LinesFeili Chenhttps://ashpublications.org/blood/article/120/21/4869/85384/Activation-of-Oxidative-Stress-and-Down-Regulation0
2004Disulfiram inhibits activating transcription factor/cyclic AMP-responsive element binding protein and human melanoma growth in a metal-dependent manner in vitro, in mice and in a patient with metastatic diseaseSukhdev S. Brahttps://aacrjournals.org/mct/article/3/9/1049/234373/Disulfiram-inhibits-activating-transcription0
1998DNA strand break induction and enhanced cytotoxicity of propyl gallate in the presence of copper(II)H Jacobi9607607https://pubmed.ncbi.nlm.nih.gov/9607607/0
2010The antioxidant ascorbic acid mobilizes nuclear copper leading to a prooxidant breakage of cellular DNA: implications for chemotherapeutic action against cancerM F Ullah20213077https://pubmed.ncbi.nlm.nih.gov/20213077/0