tbResList Print — CUR Curcumin

Filters: qv=65, qv2=%, rfv=%

Product

CUR Curcumin
Description: <b>Curcumin</b> is the main active ingredient in Tumeric. Member of the ginger family.Curcumin is a polyphenol extracted from turmeric with anti-inflammatory and antioxidant properties.<br>
- Has <a href="tbResList.php?qv=65&tsv=835&wNotes=on">iron-chelating</a>, iron-chelating properties.
<a href="tbResList.php?qv=65&tsv=573&wNotes=on">Ferritin</a>.
But still known to increase
<a href="tbResList.php?qv=65&tsv=160&wNotes=on">Iron</a> in Cancer cells.
<br>
- <a href="tbResList.php?qv=65&tsv=137&wNotes=on&word=GSH↓">GSH</a>
depletion in cancer cells, exhaustion of the antioxidant defense system.
But still raises
<a href="tbResList.php?qv=65&tsv=137&wNotes=on&word=GSH↑">GSH↑</a> in normal cells.<br>
- Higher concentrations (5-10 μM) of curcumin induce autophagy and ROS production<br>
- Inhibition of
<a href="tbResList.php?qv=65&wNotes=on&word=Trx">TrxR</a>,
shifting the enzyme from an antioxidant to a prooxidant<br>
- Strong inhibitor of
<a href="tbResList.php?qv=65&tsv=125&wNotes=on">Glo-I</a>,
, causes depletion of cellular ATP and GSH<br>
- Curcumin has been found to act as an activator of
<a href="tbResList.php?qv=65&tsv=226&wNotes=on&word=NRF2↑">Nrf2</a>,
(maybe bad in cancer cells?), hence could be combined with Nrf2 knockdown<br>
-may suppress CSC: suppresses self-renewal and pathways (Wnt/Notch/Hedgehog).

<br>
Clinical studies testing curcumin in cancer patients have used a range of dosages, often between 500 mg and 8 g per day; however, many studies note that doses on the lower end may not achieve sufficient plasma concentrations for a therapeutic anticancer effect in humans.<br>
• Formulations designed to improve curcumin absorption (like curcumin combined with piperine, nanoparticle formulations, or liposomal curcumin) are often employed in clinical trials to enhance its bioavailability.<br>

<br>
-Note <a href="tbResList.php?qv=65&tsv=1109&wNotes=on&exSp=open">half-life</a> 6 hrs.<br>
<a href="tbResList.php?qv=65&tsv=792&wNotes=on&exSp=open">BioAv</a> is poor, use piperine or other
<a href="https://nestronics.ca/dbx/tbResList.php?qv=65&qv2=&tsv=1310&ssv=%25&esv=2&wNotes=on&exSp=open"> enhancers</a>
<br>
Pathways:<br>

<!-- ROS : MMP↓, ER Stress↑, Ca+2↑, Cyt‑c↑, Casp3↑, Casp9↑, DNAdam↑, UPR↑, cl-PARP↑-->
- induce
<a href="tbResList.php?qv=65&tsv=275&wNotes=on">ROS</a> production at high concentration. Lowers ROS at lower concentrations<br>
curcumin can act as a pro-oxidant when blue light is applied<br>
- ROS↑ related:
<a href="tbResList.php?qv=65&tsv=197&wNotes=on&word=MMP↓">MMP↓</a>(ΔΨm),
<a href="tbResList.php?qv=65&tsv=103&wNotes=on">ER Stress↑</a>,
<a href="tbResList.php?qv=65&tsv=459&wNotes=on">UPR↑</a>,
<a href="tbResList.php?qv=65&tsv=356&wNotes=on">GRP78↑</a>,
<a href="tbResList.php?qv=65&tsv=77&wNotes=on">Cyt‑c↑</a>,
<a href="tbResList.php?qv=65&wNotes=on&word=Casp">Caspases↑</a>,
<a href="tbResList.php?qv=65&tsv=82&wNotes=on&word=DNAdam↑">DNA damage↑</a>,
<a href="tbResList.php?qv=65&tsv=239&wNotes=on">cl-PARP↑</a>,
<a href="tbResList.php?qv=65&wNotes=on&word=HSP">HSP↓</a>
<br>

<!-- ANTIOXIDANT : NRF2, SOD, GSH, CAT, HO-1, GPx, GPX4, -->
- Lowers AntiOxidant defense in Cancer Cells:
<a href="tbResList.php?qv=65&tsv=137&wNotes=on&word=GSH↓">GSH↓</a>
<a href="tbResList.php?qv=65&tsv=46&wNotes=on">Catalase↓</a>
<a href="tbResList.php?qv=65&tsv=597&wNotes=on">HO1↓</a>
<a href="tbResList.php?qv=65&wNotes=on&word=GPx">GPx↓</a>
<br>
but conversely is known as a
<a href="tbResList.php?qv=65&tsv=226&wNotes=on&word=NRF2↑">NRF2↑</a> activator in cancer
<br>
- Raises
<a href="tbResList.php?qv=65&tsv=1103&wNotes=on&word=antiOx↑">AntiOxidant</a>
defense in Normal Cells:
<a href="tbResList.php?qv=65&tsv=275&wNotes=on&word=ROS↓">ROS↓</a>,
<a href="tbResList.php?qv=65&tsv=226&wNotes=on&word=NRF2↑">NRF2↑</a>,
<a href="tbResList.php?qv=65&tsv=298&wNotes=on&word=SOD↑">SOD↑</a>,
<a href="tbResList.php?qv=65&tsv=137&wNotes=on&word=GSH↑">GSH↑</a>,
<a href="tbResList.php?qv=65&tsv=46&wNotes=on&word=Catalase↑">Catalase↑</a>,
<br>

<!-- INFLAMMATION : NF-kB↓, COX2↓, COX2↓ PRO-INFL CYTOKINES: IL-1β↓, TNF-α↓, IL-6↓, IL-8↓, -->
- lowers
<a href="tbResList.php?qv=65&tsv=953&wNotes=on&word=Inflam">Inflammation</a> :
<a href="tbResList.php?qv=65&tsv=214&wNotes=on&word=NF-kB↓">NF-kB↓</a>,
<a href="tbResList.php?qv=65&tsv=66&wNotes=on&word=COX2↓">COX2↓</a>,
<a href="tbResList.php?qv=65&tsv=235&wNotes=on&word=p38↓">p38↓</a>, Pro-Inflammatory Cytokines :
<a href="tbResList.php?qv=65&tsv=309&wNotes=on&word=TNF-α↓">TNF-α↓</a>,
<a href="tbResList.php?qv=65&tsv=158&wNotes=on&word=IL6↓">IL-6↓</a>,
<a href="tbResList.php?qv=65&tsv=368&wNotes=on&word=IL8↓">IL-8↓</a>
<br>



<!-- GROWTH/METASTASES : EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1, uPA↓, VEGF↓, ERK↓
inhibiting metastasis-associated proteins such as ROCK1, FAK, (RhoA), NF-κB and u-PA, MMP-1 and MMP-13.-->
- inhibit Growth/Metastases :
<a href="tbResList.php?qv=65&tsv=604&wNotes=on">TumMeta↓</a>,
<a href="tbResList.php?qv=65&tsv=323&wNotes=on">TumCG↓</a>,
<a href="tbResList.php?qv=65&tsv=96&wNotes=on">EMT↓</a>,
<a href="tbResList.php?qv=65&tsv=204&wNotes=on">MMPs↓</a>,
<a href="tbResList.php?qv=65&tsv=201&wNotes=on">MMP2↓</a>,
<a href="tbResList.php?qv=65&tsv=203&wNotes=on">MMP9↓</a>,
<a href="tbResList.php?qv=65&tsv=428&wNotes=on">uPA↓</a>,
<a href="tbResList.php?qv=65&tsv=334&wNotes=on">VEGF↓</a>,
<a href="tbResList.php?qv=65&tsv=214&wNotes=on">NF-κB↓</a>,
<a href="tbResList.php?qv=65&tsv=79&wNotes=on">CXCR4↓</a>,
<a href="tbResList.php?qv=65&tsv=1247&wNotes=on">SDF1↓</a>,
<a href="tbResList.php?qv=65&tsv=304&wNotes=on">TGF-β↓</a>,
<a href="tbResList.php?qv=65&tsv=719&wNotes=on">α-SMA↓</a>,
<a href="tbResList.php?qv=65&tsv=105&wNotes=on">ERK↓</a>
<br>

<!-- REACTIVATE GENES : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, -->
- reactivate genes thereby inhibiting cancer cell growth :
<a href="tbResList.php?qv=65&tsv=140&wNotes=on">HDAC↓</a>,
<a href="tbResList.php?qv=65&tsv=85&wNotes=on">DNMT1↓</a>,
<a href="tbResList.php?qv=65&tsv=86&wNotes=on">DNMT3A↓</a>,
<a href="tbResList.php?qv=65&tsv=108&wNotes=on">EZH2↓</a>,
<a href="tbResList.php?qv=65&tsv=236&wNotes=on">P53↑</a>,
<a href="tbResList.php?qv=65&wNotes=on&word=HSP">HSP↓</a>,
<a href="tbResList.php?qv=65&tsv=506&wNotes=on">Sp proteins↓</a>,
<br>

<!-- CELL CYCLE ARREST : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓ -->
- cause Cell cycle arrest :
<a href="tbResList.php?qv=65&tsv=322&wNotes=on">TumCCA↑</a>,
<a href="tbResList.php?qv=65&tsv=73&wNotes=on">cyclin D1↓</a>,
<a href="tbResList.php?qv=65&tsv=467&wNotes=on">CDK2↓</a>,
<a href="tbResList.php?qv=65&tsv=894&wNotes=on">CDK4↓</a>,
<a href="tbResList.php?qv=65&tsv=895&wNotes=on">CDK6↓</a>,
<br>

<!-- MIGRATION/INVASION : TumCMig↓, TumCI↓, FAK↓, ERK↓, -->
- inhibits Migration/Invasion :
<a href="tbResList.php?qv=65&tsv=326&wNotes=on">TumCMig↓</a>,
<a href="tbResList.php?qv=65&tsv=324&wNotes=on">TumCI↓</a>,
<a href="tbResList.php?qv=65&tsv=105&wNotes=on">ERK↓</a>,
<a href="tbResList.php?qv=65&tsv=96&wNotes=on">EMT↓</a>,
<a href="tbResList.php?qv=65&tsv=1117&wNotes=on">TOP1↓</a>,
<a href="tbResList.php?qv=65&tsv=657&wNotes=on">TET1↓</a>,
<br>

<!-- GLYCOLYSIS : ATP↓, HIF-1α↓, PKM2↓, cMyc↓, PDK1↓, GLUT1↓, LDHA↓, HK2↓, Glucose↓, GlucoseCon↓, lactateProd, OXPHOS -->
- inhibits
<a href="tbResList.php?qv=65&tsv=129&wNotes=on">glycolysis</a>
/<a href="tbResList.php?qv=65&tsv=947&wNotes=on">Warburg Effect</a> and
<a href="tbResList.php?qv=65&tsv=21&wNotes=on&word=ATP↓">ATP depletion</a> :
<a href="tbResList.php?qv=65&tsv=143&wNotes=on">HIF-1α↓</a>,
<a href="tbResList.php?qv=65&tsv=772&wNotes=on">PKM2↓</a>,
<a href="tbResList.php?qv=65&tsv=35&wNotes=on">cMyc↓</a>,
<a href="tbResList.php?qv=65&tsv=566&wNotes=on&word=GLUT">GLUT1↓</a>,
<a href="tbResList.php?qv=65&tsv=175&wNotes=on&word=LDH">LDHA↓</a>,
<a href="tbResList.php?qv=65&tsv=773&wNotes=on">HK2↓</a>,
<a href="tbResList.php?qv=65&wNotes=on&word=PFK">PFKs↓</a>,
<a href="tbResList.php?qv=65&wNotes=on&word=PDK">PDKs↓</a>,
<a href="tbResList.php?qv=65&tsv=773&wNotes=on">HK2↓</a>,
<a href="tbResList.php?qv=65&tsv=847&wNotes=on">ECAR↓</a>,
<a href="tbResList.php?qv=65&tsv=230&wNotes=on">OXPHOS↓</a>,
<a href="tbResList.php?qv=65&tsv=356&wNotes=on">GRP78↑</a>,
<a href="tbResList.php?qv=65&tsv=623&wNotes=on">GlucoseCon↓</a>
<br>


<!-- ANGIOGENESIS : VEGF↓, VEGFR2↓, HIF-1α↓, NOTCH↓, FGF↓, PDGF↓, EGFR↓ ITG(Integrins↓)-->
- inhibits
<a href="tbResList.php?qv=65&tsv=447&wNotes=on">angiogenesis↓</a> :
<a href="tbResList.php?qv=65&tsv=334&wNotes=on">VEGF↓</a>,
<a href="tbResList.php?qv=65&tsv=143&wNotes=on">HIF-1α↓</a>,
<a href="tbResList.php?qv=65&wNotes=on&word=NOTCH">Notch↓</a>,
<a href="tbResList.php?qv=65&wNotes=on&word=FGF">FGF↓</a>,
<a href="tbResList.php?qv=65&tsv=361&wNotes=on">PDGF↓</a>,
<a href="tbResList.php?qv=65&tsv=94&wNotes=on&word=EGFR↓">EGFR↓</a>,
<a href="tbResList.php?qv=65&&wNotes=on&word=ITG">Integrins↓</a>,
<br>

<!-- CSCs : CSC↓, CK2↓, Hh↓, GLi↓, GLi1↓, -->
- inhibits Cancer Stem Cells :
<a href="tbResList.php?qv=65&tsv=795&wNotes=on">CSC↓</a>,
<a href="tbResList.php?qv=65&tsv=524&wNotes=on">CK2↓</a>,
<a href="tbResList.php?qv=65&tsv=141&wNotes=on">Hh↓</a>,
<a href="tbResList.php?qv=65&tsv=124&wNotes=on">GLi1↓</a>,
<a href="tbResList.php?qv=65&tsv=677&wNotes=on">CD133↓</a>,
<a href="tbResList.php?qv=65&tsv=655&wNotes=on">CD24↓</a>,
<a href="tbResList.php?qv=65&tsv=342&wNotes=on">β-catenin↓</a>,
<a href="tbResList.php?qv=65&tsv=357&wNotes=on">n-myc↓</a>,
<a href="tbResList.php?qv=65&tsv=656&wNotes=on">sox2↓</a>,
<a href="tbResList.php?qv=65&tsv=508&wNotes=on">OCT4↓</a>,
<br>

<!-- OTHERS : -->
- Others: <a href="tbResList.php?qv=65&tsv=252&wNotes=on">PI3K↓</a>,
<a href="tbResList.php?qv=65&tsv=4&wNotes=on">AKT↓</a>,
<a href="tbResList.php?qv=65&wNotes=on&word=JAK">JAK↓</a>,
<a href="tbResList.php?qv=65&wNotes=on&word=STAT">STAT↓</a>,
<a href="tbResList.php?qv=65&tsv=377&wNotes=on">Wnt↓</a>,
<a href="tbResList.php?qv=65&tsv=342&wNotes=on">β-catenin↓</a>,
<a href="tbResList.php?qv=65&tsv=9&wNotes=on">AMPK↓</a>,
<a href="tbResList.php?qv=65&tsv=105&wNotes=on">ERK↓</a>,
<a href="tbResList.php?qv=65&tsv=168&wNotes=on">JNK</a>,
<a href="tbResList.php?qv=65&tsv=825&wNotes=on">TrxR**</a>,
<br>


<!-- SYNERGIES : -->
- Synergies:
<a href="tbResList.php?qv=65&tsv=1106&wNotes=on">chemo-sensitization</a>,
<a href="tbResList.php?qv=65&tsv=1171&wNotes=on">chemoProtective</a>,
<a href="tbResList.php?qv=65&tsv=1107&wNotes=on">RadioSensitizer</a>,
<a href="tbResList.php?qv=65&tsv=1185&wNotes=on">RadioProtective</a>,
<a href="tbResList.php?qv=65&tsv=961&esv=2&wNotes=on&exSp=open">Others(review target notes)</a>,
<a href="tbResList.php?qv=65&tsv=1105&wNotes=on">Neuroprotective</a>,
<a href="tbResList.php?qv=65&tsv=557&wNotes=on">Cognitive</a>,
<a href="tbResList.php?qv=65&tsv=1175&wNotes=on">Renoprotection</a>,
<a href="tbResList.php?qv=65&tsv=1179&wNotes=on">Hepatoprotective</a>,
<a href="tbResList.php?&qv=65&tsv=1188&wNotes=on">CardioProtective</a>,

<br>
<br>
<!-- SELECTIVE: -->
- Selectivity:
<a href="tbResList.php?qv=65&tsv=1110&wNotes=on">Cancer Cells vs Normal Cells</a><br>
<br>


<table border="1" cellspacing="0" cellpadding="4">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells</th>
<th>Normal Cells</th>
<th>Label</th>
<th>Primary Interpretation</th>
<th>Notes</th>
</tr>

<tr>
<td>1</td>
<td>NF-κB signaling</td>
<td>↓ NF-κB activation</td>
<td>↓ inflammatory NF-κB tone</td>
<td>Driver</td>
<td>Suppression of survival and inflammatory transcription</td>
<td>NF-κB is a primary, repeatedly validated curcumin target explaining pleiotropic downstream effects</td>
</tr>

<tr>
<td>2</td>
<td>STAT3 signaling</td>
<td>↓ STAT3 phosphorylation / activity</td>
<td>↔ or mild suppression</td>
<td>Driver</td>
<td>Loss of pro-survival and proliferative signaling</td>
<td>STAT3 inhibition contributes to growth arrest, apoptosis sensitization, and reduced cytokine signaling in tumors</td>
</tr>

<tr>
<td>3</td>
<td>Reactive oxygen species (ROS)</td>
<td>↑ ROS (dose- & context-dependent)</td>
<td>↓ ROS / buffered</td>
<td>Conditional Driver</td>
<td>Biphasic redox modulation</td>
<td>Curcumin can act as a pro-oxidant in cancer cells with high basal stress while acting antioxidant in normal cells</td>
</tr>

<tr>
<td>4</td>
<td>Mitochondrial integrity / intrinsic apoptosis</td>
<td>↓ ΔΨm; ↑ caspase activation</td>
<td>↔ preserved</td>
<td>Driver</td>
<td>Execution of intrinsic apoptosis</td>
<td>Mitochondrial dysfunction and caspase activation occur downstream of NF-κB/STAT3 and ROS effects</td>
</tr>

<tr>
<td>5</td>
<td>PI3K → AKT → mTOR axis</td>
<td>↓ AKT / ↓ mTOR</td>
<td>↔ or adaptive suppression</td>
<td>Secondary</td>
<td>Reduced growth and anabolic signaling</td>
<td>AKT/mTOR inhibition contributes to growth suppression and autophagy induction in cancer cells</td>
</tr>

<tr>
<td>6</td>
<td>Autophagy</td>
<td>↑ autophagy (protective or pro-death)</td>
<td>↑ adaptive autophagy</td>
<td>Secondary</td>
<td>Stress adaptation vs cell death</td>
<td>Autophagy may be cytoprotective or cooperate with apoptosis depending on context and dose</td>
</tr>

<tr>
<td>7</td>
<td>HIF-1α / VEGF hypoxia–angiogenesis axis</td>
<td>↓ HIF-1α; ↓ VEGF</td>
<td>↔ minimal effect</td>
<td>Secondary</td>
<td>Anti-angiogenic pressure</td>
<td>Suppression of hypoxia-driven transcription limits angiogenesis and tumor adaptation</td>
</tr>

<tr>
<td>8</td>
<td>Cell cycle regulation</td>
<td>↑ G2/M or G1 arrest</td>
<td>↔ largely spared</td>
<td>Phenotypic</td>
<td>Cytostatic growth control</td>
<td>Cell-cycle arrest reflects upstream signaling and epigenetic effects rather than direct CDK inhibition</td>
</tr>

<tr>
<td>9</td>
<td>Migration / invasion (EMT, MMP axis)</td>
<td>↓ migration & invasion</td>
<td>↔</td>
<td>Phenotypic</td>
<td>Anti-metastatic phenotype</td>
<td>Reduced EMT markers and protease activity limit invasive behavior</td>
</tr>

<tr>
<td>10</td>
<td>Epigenetic regulation (p300/CBP HAT activity)</td>
<td>↓ histone acetylation</td>
<td>↔ modest</td>
<td>Secondary</td>
<td>Transcriptional reprogramming</td>
<td>Curcumin modulates chromatin via HAT inhibition rather than classic HDAC inhibition</td>
</tr>

</table>

Pathway results for Effect on Cancer / Diseased Cells

NA, unassigned

H3K4↓, 1,  

Redox & Oxidative Stress

antiOx↓, 1,   ARE/EpRE↑, 1,   ATF3↑, 1,   Catalase↓, 1,   Fenton↑, 2,   Ferroptosis↑, 3,   GPx↓, 2,   GPx1↓, 1,   GPx4↓, 1,   GSH↑, 1,   GSH↓, 3,   mt-GSH↓, 1,   GSH/GSSG↓, 1,   GSTP1/GSTπ↓, 1,   GSTs↑, 1,   GSTs↓, 1,   HO-1↑, 4,   HO-1↓, 1,   Iron↑, 5,   IRP1↑, 1,   lipid-P↓, 1,   lipid-P↑, 3,   MDA↑, 3,   NFE2L2↑, 1,   NQO1↑, 1,   NRF2↑, 4,   NRF2↝, 1,   NRF2↓, 1,   OXPHOS↑, 1,   PAO↑, 1,   ROS↝, 1,   ROS↑, 11,   ROS⇅, 1,   ROS↓, 1,   SOD↑, 1,   SOD1↓, 1,   Trx↓, 1,   Trx1↓, 1,   Trx2↓, 1,   TrxR↓, 6,   TrxR1↓, 1,   xCT↓, 1,  

Metal & Cofactor Biology

Ferritin↓, 1,   FTH1↑, 1,   FTL↑, 1,   IronCh↑, 2,   TfR1/CD71↑, 1,  

Mitochondria & Bioenergetics

AIF↑, 2,   ATP↓, 1,   CDC25↓, 2,   EGF↑, 1,   MEK↑, 1,   MEK↓, 1,   MKP5↑, 1,   MMP↓, 4,   MPT↑, 2,   mtDam↑, 2,   p‑p42↓, 1,   Raf↓, 2,   SDH↑, 1,   XIAP↓, 1,  

Core Metabolism/Glycolysis

p‑ACC-α↑, 1,   ACOX1↑, 1,   ALAT↑, 1,   ALDOA↓, 1,   AMPK↑, 2,   p‑AMPK↑, 1,   cMyc↓, 3,   CPT1A↑, 1,   DGAT1↓, 1,   ECAR↓, 1,   Elvol3↓, 1,   ENO2↓, 1,   ERCC1↓, 1,   FASN↓, 2,   GAPDH↓, 1,   GLO-I↓, 4,   glucose↓, 1,   GlucoseCon↓, 2,   glut↓, 1,   GlutMet↑, 1,   Glycolysis↓, 1,   HK2↓, 1,   IR↓, 1,   lactateProd↓, 2,   LAR↓, 1,   LDHA↓, 2,   LDHB↓, 1,   MCT4↓, 1,   NADPH↓, 1,   NNMT↓, 1,   PDK1↓, 1,   p‑PDK1↓, 1,   PFK1↓, 1,   PFKP↓, 1,   PGAM1↓, 1,   PGC1A↑, 1,   PGK1↓, 1,   PGM1↓, 1,   PI3K/Akt↓, 2,   PI3k/Akt/mTOR↓, 1,   PI3K/mTOR/ETS2↓, 1,   p‑PIK3R1↓, 1,   PKM2↓, 6,   PPARα↝, 1,   PPARγ↑, 2,   PSMB5↓, 1,   Pyruv↓, 1,   p‑S6↓, 1,   p‑S6K↓, 1,   S6K↓, 1,   SCD1↓, 1,   SREBF2↓, 1,   SSAT↑, 1,   TCA↑, 2,   Warburg↓, 2,  

Cell Death

14-3-3 proteins↓, 1,   Akt↓, 1,   Akt↝, 1,   Akt↑, 1,   p‑Akt↓, 6,   Apoptosis↑, 24,   Apoptosis↝, 1,   BAD↝, 1,   BAD↑, 1,   p‑BAD↓, 1,   Bak↑, 2,   BAX↝, 2,   BAX↑, 9,   Bax:Bcl2↑, 3,   Bcl-2↓, 15,   Bcl-2↝, 1,   Bcl-xL↝, 1,   Bcl-xL↓, 5,   BID↑, 2,   BIM↑, 1,   Casp↑, 2,   Casp12↑, 1,   Casp3↑, 3,   Casp3↝, 1,   Casp3↓, 1,   cl‑Casp3↑, 2,   proCasp3↓, 1,   Casp8↑, 4,   Casp9↑, 2,   cl‑Casp9↑, 1,   proCasp9↑, 1,   CBP↓, 1,   CK2↓, 1,   Cyt‑c↝, 1,   Cyt‑c↑, 7,   DR5↑, 1,   Fas↑, 1,   Ferroptosis↑, 3,   Hippo↑, 1,   hTERT/TERT↓, 1,   iNOS↓, 1,   JNK↑, 3,   JNK↝, 1,   JNK↓, 1,   p‑JNK↓, 1,   p‑JNK↑, 1,   MAPK↓, 1,   MAPK↑, 1,   Mcl-1↓, 4,   Mcl-1↑, 1,   MCT1↓, 1,   MDM2↓, 2,   MEG3↑, 1,   miR-497↑, 1,   miR-548ah-5p↑, 1,   miR-7641↓, 1,   Myc↓, 1,   NOXA↑, 1,   p27↑, 1,   p38↓, 3,   p‑p38↑, 1,   Paraptosis↑, 1,   PUMA↑, 1,   survivin↓, 3,   Telomerase↓, 1,   TRAIL↑, 1,   TRAILR↑, 1,   TumCD↑, 1,   β-TRCP↑, 1,  

Kinase & Signal Transduction

FOXD3↑, 1,   H3K18↓, 1,   HER2/EBBR2↓, 3,   miR-25-5p↓, 1,   p‑p70S6↓, 1,   PAK↓, 1,   RTK-RAS↓, 1,   SOX9?, 1,   Sp1/3/4↓, 6,  

Transcription & Epigenetics

cJun↓, 1,   COMP↓, 1,   EZH2↓, 2,   H19↓, 1,   HATs↓, 1,   KCNQ1OT1↓, 1,   Matr↓, 1,   MeCP2↓, 1,   miR-143↑, 1,   miR-145↑, 1,   miR-192-5p↑, 1,   miR-205↑, 1,   miR-21↓, 1,   miR-27a-3p↓, 5,   miR-30a-5p↑, 1,   miR-409-3p↑, 1,   other↝, 5,   other↓, 1,   other↑, 1,   p‑pRB↓, 1,   sonoS↑, 1,   tumCV↓, 2,   USF1↑, 1,  

Protein Folding & ER Stress

ATF6↑, 1,   ATFs↑, 1,   CHOP↑, 2,   eIF2α↑, 2,   p‑eIF2α↑, 1,   ER Stress↑, 8,   GRP78/BiP↑, 2,   GRP78/BiP↓, 1,   HSF1↓, 1,   HSP27↑, 1,   HSP70/HSPA5↑, 1,   HSP70/HSPA5↓, 1,   e-HSP70/HSPA5↓, 1,   UPR↑, 1,   XBP-1↑, 1,  

Autophagy & Lysosomes

ATG3↑, 1,   ATG5↑, 1,   autolysosome↑, 1,   Beclin-1↑, 3,   LC3‑Ⅱ/LC3‑Ⅰ↑, 2,   LC3I↓, 1,   LC3II↑, 1,   LC3II↓, 1,   LC3s↑, 1,   p62↓, 3,   p62↑, 3,   TumAuto↑, 4,   TumAuto↓, 1,  

DNA Damage & Repair

ATR↑, 1,   BRCA1↑, 1,   DFF45↓, 1,   DNA-PK↑, 1,   DNAdam↑, 3,   mt-DNAdam↑, 1,   DNMT1↓, 4,   DNMT3A↑, 1,   DNMT3A↓, 1,   DNMTs↓, 3,   GADD45A↑, 1,   NBR2↑, 1,   p16↑, 1,   P53↑, 1,   P53↝, 1,   P53↓, 1,   P53?, 1,   p‑P53↑, 2,   p73↑, 1,   PARP↑, 1,   PARP↓, 1,   cl‑PARP↑, 2,   p‑PARP↑, 1,   cl‑PARP1↑, 1,   PARP1↓, 1,   PCLAF↓, 1,   PCNA↓, 1,   RAD51↑, 1,   SAPK↑, 1,   SMG1↑, 1,   TP53↑, 1,   γH2AX↑, 2,   p‑γH2AX↑, 1,  

Cell Cycle & Senescence

CDK1↓, 1,   CDK2↓, 1,   CDK4↓, 1,   Cyc↝, 1,   cycA1/CCNA1↓, 1,   CycB/CCNB1↓, 1,   cycD1/CCND1↓, 2,   cycD1/CCND1↝, 1,   cycE1↓, 1,   cycF↓, 1,   P21↑, 3,   P21↝, 1,   TAp63α↑, 2,   TFAP2A↓, 1,   TumCCA↑, 10,   TumCCA↓, 2,  

Proliferation, Differentiation & Cell State

p‑4E-BP1↓, 1,   ALDH↓, 1,   ALDH1A1↓, 1,   AXIN1↓, 1,   CD133↓, 1,   CD24↓, 2,   CD44↑, 1,   CD44↓, 5,   cDC2↓, 1,   CDX2↓, 1,   p‑cMET↓, 1,   CSCs↓, 17,   CSCsMark↓, 1,   EIF4E↓, 1,   EMT↓, 6,   EP300↓, 1,   EpCAM↓, 1,   p‑ERK↓, 1,   p‑ERK↑, 2,   ERK↓, 4,   ERK↑, 1,   FGF↓, 1,   FOXM1↓, 1,   Gli1↓, 1,   Gli1↝, 1,   GSK‐3β↓, 2,   GSK‐3β↝, 1,   HDAC↓, 3,   HDAC1↓, 1,   HDAC3↓, 1,   HDAC4↓, 1,   HDAC8↓, 1,   HH↓, 8,   HH↝, 1,   Id1↓, 1,   IGF-1↓, 1,   IGFR↓, 1,   p‑Jun↑, 1,   LGR5↓, 2,   miR-101↑, 1,   miR-142-3p↑, 1,   miR-330-5p↑, 1,   miR-34a↑, 1,   miR-429↑, 1,   miR-99↑, 1,   mTOR↝, 1,   mTOR↓, 1,   p‑mTOR↓, 4,   n-MYC↓, 1,   Nanog↓, 1,   Neurog1↑, 1,   NKD2↑, 1,   NOTCH↓, 3,   NOTCH↝, 1,   NOTCH1↓, 1,   NOTCH1↝, 1,   OCT4↓, 2,   p300↓, 2,   p‑P70S6K↓, 1,   PI3K↝, 1,   PI3K↓, 4,   p‑PI3K↓, 1,   PIAS-3↑, 1,   Pirin↓, 1,   circ‑PLEKHM3↑, 1,   PRKCG↑, 1,   PTCH1↓, 1,   PTEN↝, 1,   PTEN↑, 2,   RAS↓, 2,   RPS6KA1↓, 1,   SFRP5↑, 1,   Shh↓, 1,   Smo↓, 2,   SOX2↓, 2,   Src↓, 2,   STAT↓, 2,   STAT1↓, 1,   p‑STAT1↓, 2,   p‑STAT2↓, 1,   STAT3↓, 2,   p‑STAT3↓, 4,   STAT4↓, 1,   STAT5↓, 1,   TAZ↓, 1,   p‑TAZ↑, 1,   TCF↓, 2,   TOP1↑, 1,   TOP1↓, 1,   TOP2↑, 2,   TOP2↓, 1,   TumCG↓, 4,   Wnt↓, 2,   Wnt↝, 1,   Wnt/(β-catenin)↓, 1,  

Migration

AGRN↓, 1,   AKR1C2↓, 1,   AP-1↝, 2,   AP-1↓, 3,   ATPase↓, 1,   BACH1↑, 1,   Ca+2↑, 2,   CAFs/TAFs↓, 1,   CD31↓, 1,   CDK4/6↓, 1,   circ-PRKCA↓, 1,   COL2A1↓, 1,   COL9A3↓, 1,   CXCL12↓, 1,   DLC1↑, 2,   E-cadherin↑, 6,   E-cadherin↓, 3,   EFEMP↓, 1,   FAK↓, 3,   FAK↝, 1,   fascin↓, 1,   Fibronectin↓, 1,   Galectin-9↓, 1,   GLI2↝, 1,   GP1BB↓, 1,   ITGB1↓, 1,   ITGB4↓, 1,   ITGB6↓, 1,   LAMA5↓, 1,   LAMs↓, 1,   MET↑, 1,   miR-130a↓, 2,   miR-141↑, 1,   miR-155↓, 1,   miR-19b↓, 1,   miR-20↓, 1,   miR-200b↑, 1,   miR-200c↑, 1,   miR-206↑, 2,   miR-221↓, 1,   miR-29b↓, 1,   miR-29b↑, 1,   miR-301a-3p↓, 1,   miR-320a↓, 1,   miR-340↑, 1,   miR-384↑, 1,   miR-491↑, 1,   miR‐222↓, 1,   MMP2↝, 1,   MMP2↓, 6,   MMP9↓, 10,   pro‑MMP9↓, 1,   MMPs↓, 2,   MRGPRF↓, 1,   MUC1↓, 1,   N-cadherin↓, 2,   NEDD9↓, 2,   p‑p44↓, 1,   PDGF↓, 1,   p‑PDGF↓, 1,   PIR↓, 1,   PTP1B↓, 1,   Rho↓, 1,   Slug↓, 2,   p‑SMAD2↓, 1,   p‑SMAD3↓, 1,   Snail↓, 1,   SPARC↓, 1,   TET1↑, 2,   TGF-β↓, 1,   TregCell↓, 1,   TRIB3↑, 1,   Trop2↓, 1,   TumCI↓, 5,   TumCMig↓, 10,   TumCP↓, 17,   TumMeta↓, 1,   TumMeta↑, 1,   Twist↓, 1,   TXNIP↑, 1,   uPA↓, 1,   Vim↓, 4,   Vim↑, 1,   Zeb1↓, 2,   ZO-1↑, 1,   α-SMA↓, 1,   β-catenin/ZEB1↓, 2,   β-catenin/ZEB1↝, 1,   p‑β-catenin/ZEB1↑, 1,  

Angiogenesis & Vasculature

angioG↓, 1,   angioS↑, 1,   ATF4↑, 1,   ECM/TCF↓, 2,   EGFR↓, 8,   EGFR↝, 1,   EPR↑, 1,   HIF-1↓, 1,   Hif1a↓, 3,   Hif1a↝, 1,   LOX1↓, 1,   miR-126↑, 1,   miR-15↑, 1,   miR-17↓, 1,   NO↑, 1,   NO↓, 1,   PDI↑, 1,   REL↑, 1,   VEGF↝, 1,   VEGF↓, 2,   ZBTB10↑, 1,  

Barriers & Transport

GLUT1↓, 1,   MRP↓, 1,   P-gp↓, 1,  

Immune & Inflammatory Signaling

CD25+↓, 1,   CD4+↓, 1,   COX1↓, 1,   COX2↓, 1,   COX2↝, 1,   CRP↓, 1,   CXCc↓, 2,   CXCR4↓, 1,   DCells↑, 1,   FoxP3+↓, 1,   GM-CSF↓, 2,   HCAR1↓, 1,   IFN-γ↓, 1,   IFN-γ↑, 1,   IKKα↓, 1,   p‑IKKα↓, 1,   IL1↓, 1,   IL10↓, 1,   IL12↓, 1,   IL18↓, 1,   IL2↓, 1,   IL5↓, 1,   IL6↓, 1,   IL6↝, 1,   IL8↓, 2,   Inflam↓, 2,   IκB↓, 1,   JAK↓, 1,   p‑JAK↓, 1,   p‑JAK2↓, 1,   JAK2↓, 2,   p‑JAK3↓, 1,   Macrophages↓, 1,   MDSCs↓, 2,   MyD88↓, 1,   Neut↓, 1,   NF-kB↓, 1,   NF-kB↝, 1,   NK cell↑, 1,   p50↓, 1,   p65↓, 3,   p‑p65↓, 1,   PD-1↓, 1,   PD-L1↓, 2,   PD-L2↓, 1,   PGE2↓, 1,   PSA↝, 1,   PSA↓, 6,   SOCS-3↑, 1,   SOCS1↑, 1,   T-Cell↑, 4,   TILs↑, 1,   TLR4↓, 3,   TNF-α↝, 1,   TNF-α↓, 1,   TRIF↓, 1,  

Cellular Microenvironment

pH↑, 1,   TIM-3↓, 1,  

Synaptic & Neurotransmission

ADAM10↓, 1,   cholinesterase↓, 1,   MAOA↓, 1,  

Protein Aggregation

SNCG↓, 1,  

Hormonal & Nuclear Receptors

AR↝, 1,   AR↓, 12,   AR↑, 1,   CDK6↓, 1,   CYP11A1↓, 1,   CYP19↓, 1,   DHT↓, 1,   ER(estro)↓, 1,   ERβ/ESR2↑, 1,   HSD3B↓, 1,   SRD5A1↑, 1,   StAR↓, 1,   testos↓, 1,  

Drug Metabolism & Resistance

BioAv↑, 12,   BioAv↓, 10,   ChemoSen↑, 20,   CT-I↓, 1,   CYP17A1↓, 1,   Dose↝, 8,   Dose↑, 5,   Dose∅, 5,   Dose?, 1,   eff↑, 25,   eff↓, 10,   eff↝, 1,   Half-Life∅, 1,   Half-Life↝, 1,   Half-Life↓, 1,   MDR1↓, 1,   RadioS↑, 9,   RadioS∅, 1,   selectivity↑, 4,  

Clinical Biomarkers

ALAT↑, 1,   Albumin↑, 1,   ALP↑, 1,   AR↝, 1,   AR↓, 12,   AR↑, 1,   AST↑, 1,   BMPs↑, 1,   BRCA1↑, 1,   CRP↓, 1,   CTC↓, 1,   EGFR↓, 8,   EGFR↝, 1,   EZH2↓, 2,   Ferritin↓, 1,   FOXM1↓, 1,   GutMicro↝, 1,   HER2/EBBR2↓, 3,   hTERT/TERT↓, 1,   IL6↓, 1,   IL6↝, 1,   Myc↓, 1,   PD-L1↓, 2,   PSA↝, 1,   PSA↓, 6,   TP53↑, 1,   TRIB3↑, 1,  

Functional Outcomes

AntiCan↑, 5,   AntiTum↑, 1,   chemoP↑, 3,   chemoPv↑, 7,   ChemoSideEff↓, 1,   neuroP↑, 1,   OS↑, 2,   OS↓, 1,   QoL↑, 1,   radioP↑, 2,   Remission↑, 1,   toxicity↓, 3,   TumVol↑, 1,   TumVol↓, 5,   TumW↓, 1,  

Infection & Microbiome

Bacteria↑, 1,   CD8+↑, 1,   IRF3↓, 1,  
Total Targets: 642

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 26,   Catalase↑, 6,   GPx↑, 3,   GSH↑, 11,   GSR↓, 1,   GSTs↑, 1,   H2O2↓, 1,   HO-1↑, 7,   HO-2↓, 1,   lipid-P↓, 7,   MDA↓, 6,   MDA↑, 2,   MPO↓, 1,   NQO1↑, 1,   Nrf1↑, 1,   NRF2↑, 13,   RNS↓, 1,   ROS↓, 30,   SIRT3↑, 1,   SOD↑, 9,   SOD↓, 1,   TAC↑, 1,   Trx↑, 1,  

Metal & Cofactor Biology

Ferritin↑, 1,   IronCh↑, 6,  

Mitochondria & Bioenergetics

AIF↓, 1,   ATP↑, 1,   MMP↑, 1,  

Core Metabolism/Glycolysis

12LOX↑, 1,   ALAT↓, 2,   AMPK↑, 1,   CREB↑, 2,   LDH↓, 1,   LDL↓, 3,   NADPH↑, 1,   NADPH↓, 1,   PPARγ↑, 1,   SIRT1↑, 3,  

Cell Death

Akt↓, 1,   Akt↑, 1,   p‑Akt↑, 1,   Apoptosis↓, 1,   Bcl-2↑, 1,   Casp3↓, 3,   Casp9↓, 1,   CK2↑, 1,   Cyt‑c↓, 1,   iNOS↓, 4,  

Kinase & Signal Transduction

Sp1/3/4↓, 2,  

Transcription & Epigenetics

Ach↑, 3,   HATs↓, 1,   other↓, 6,  

DNA Damage & Repair

DNAdam↓, 1,   P53↓, 1,  

Proliferation, Differentiation & Cell State

ERK↑, 1,   FOXO↑, 1,   GSK‐3β↓, 4,   HDAC↑, 1,   mTOR↓, 1,   p300↓, 1,   PI3K↑, 1,   STAT↓, 1,   STAT3↓, 1,  

Migration

5LO↓, 1,   AntiAg↑, 2,   AP-1↓, 2,   APP↓, 1,   mt-ATPase↑, 1,   Ca+2↓, 1,   CDK5↓, 3,   COL3A1↓, 1,   miR-22↑, 1,   MMP2↓, 1,   MMP3↓, 1,   MMP9↓, 1,   MMPs↑, 1,   MMPs↓, 1,   TGF-β↓, 1,   TIMP1↑, 1,   TXNIP↓, 1,   α-SMA↓, 1,  

Angiogenesis & Vasculature

NO↓, 4,   NO↑, 1,   TXA2↓, 1,  

Barriers & Transport

BBB↑, 7,   MRP↓, 1,  

Immune & Inflammatory Signaling

COX2↓, 8,   COX2↑, 1,   COX2?, 1,   ICAM-1↓, 1,   IL1↓, 2,   IL10↑, 1,   IL12↓, 3,   IL17↓, 1,   IL1β↓, 8,   IL2↑, 1,   IL2↓, 2,   IL23↓, 1,   IL4↓, 2,   IL4↑, 1,   IL6↓, 6,   IL8↓, 2,   INF-γ↓, 2,   Inflam↓, 29,   Inflam↑, 1,   MCP1↓, 3,   NF-kB↓, 15,   PGE2↓, 4,   TLR2↓, 1,   TNF-α↓, 9,  

Synaptic & Neurotransmission

AChE↓, 15,   ADAM10↑, 2,   ADAM10↝, 1,   BChE↓, 2,   BDNF↑, 6,   ChAT↑, 1,   MAOA↓, 1,   PSD95↑, 1,   tau↓, 2,   p‑tau↓, 4,   TrkB↑, 1,  

Protein Aggregation

Aβ↓, 12,   BACE↓, 3,   NLRP3↓, 2,  

Drug Metabolism & Resistance

BioAv↓, 7,   BioAv↝, 3,   BioAv↑, 10,   BioEnh↑, 3,   Dose∅, 1,   Dose↝, 3,   eff↑, 7,   Half-Life↝, 1,   selectivity↑, 1,  

Clinical Biomarkers

ALAT↓, 2,   ALP↓, 1,   AST↓, 2,   creat↓, 1,   Ferritin↑, 1,   GutMicro↑, 2,   IL6↓, 6,   LDH↓, 1,  

Functional Outcomes

AntiAge↑, 3,   AntiCan↑, 1,   AntiDiabetic↑, 1,   cardioP↑, 1,   chemoPv↑, 1,   cognitive↑, 13,   cognitive∅, 1,   cognitive↝, 1,   GFR↑, 1,   hepatoP↑, 3,   memory↑, 10,   Mood↑, 1,   neuroP↑, 11,   OS↑, 2,   RenoP↑, 2,   toxicity∅, 1,   toxicity↓, 2,   Wound Healing↑, 1,  

Infection & Microbiome

Bacteria↓, 1,  
Total Targets: 160

Research papers

Year Title Authors PMID Link Flag
2015Increased chemopreventive effect by combining arctigenin, green tea polyphenol and curcumin in prostate and breast cancer cellsPiwen WangPMC4166488https://pmc.ncbi.nlm.nih.gov/articles/PMC4166488/0
2025Examining the Impact of Sonodynamic Therapy With Ultrasound Wave in the Presence of Curcumin-Coated Silver Nanoparticles on the Apoptosis of MCF7 Breast Cancer CellsZeinab Hormozi-MoghaddamPMC12283205https://pmc.ncbi.nlm.nih.gov/articles/PMC12283205/0
2022The Potential Protective Effect of Curcumin and α-Lipoic Acid on N-(4-Hydroxyphenyl) Acetamide-induced Hepatotoxicity Through Downregulation of α-SMA and Collagen III ExpressionAhlam AlhusainPMC8891863https://pmc.ncbi.nlm.nih.gov/articles/PMC8891863/0
2021Synergistic Effect of Apigenin and Curcumin on Apoptosis, Paraptosis and Autophagy-related Cell Death in HeLa CellsSERA KAYACANhttps://ar.iiarjournals.org/content/41/3/12710
2018Apigenin suppresses PD-L1 expression in melanoma and host dendritic cells to elicit synergistic therapeutic effectsLu XuPMC6206930https://pmc.ncbi.nlm.nih.gov/articles/PMC6206930/0
2017Naturally occurring anti-cancer agents targeting EZH2Fahimeh Shahabipourhttps://www.sciencedirect.com/science/article/abs/pii/S03043835173018420
2017Traditional Chinese medicinal herbs as potential AChE inhibitors for anti-Alzheimer’s disease: A reviewYingying Jianghttps://www.sciencedirect.com/science/article/abs/pii/S00452068173058490
2020Effects of Curcumin and Boric Acid Against Neurodegenerative Damage Induced by Amyloid BetaCeyhan Haciogluhttps://link.springer.com/article/10.1007/s12011-020-02511-20
2016Novel evidence for curcumin and boswellic acid induced chemoprevention through regulation of miR-34a and miR-27a in colorectal cancerShusuke TodenPMC4417447https://pmc.ncbi.nlm.nih.gov/articles/PMC4417447/0
2015The anti-cancer effects of carotenoids and other phytonutrients resides in their combined activityKarin Linnewiel-Hermoni25711533https://pubmed.ncbi.nlm.nih.gov/25711533/0
2023Anti-cancer Activity of Sustained Release Capsaicin FormulationsJustin C MerrittPMC9510151https://pmc.ncbi.nlm.nih.gov/articles/PMC9510151/0
2021Chitosan-based nanoparticle co-delivery of docetaxel and curcumin ameliorates anti-tumor chemoimmunotherapy in lung cancer Xiongjie Zhu 34127219https://pubmed.ncbi.nlm.nih.gov/34127219/0
2016Vitamin E, Turmeric and Saffron in Treatment of Alzheimer’s DiseaseNur Adalier Barlashttps://www.researchgate.net/publication/309452537_Vitamin_E_Turmeric_and_Saffron_in_Treatment_of_Alzheimer's_Disease0
2025Curcumin reverses cognitive deficits through promoting neurogenesis and synapse plasticity via the upregulation of PSD95 and BDNF in miceGaifen LiPMC11706931https://pmc.ncbi.nlm.nih.gov/articles/PMC11706931/0
2025Curcumin induces IL-6 receptor shedding via the ADAM10 proteinaseToshiyuki Muraihttps://www.sciencedirect.com/science/article/abs/pii/S0006291X250065390
2025An old spice with new tricks: Curcumin targets adenoma and colorectal cancer stem-like cells associated with poor survival outcomesSam Khanhttps://www.sciencedirect.com/science/article/pii/S03043835250045370
2025Curcumin Shows Promise in Targeting Colorectal Cancer Stem-like Cells: Mechanistic Insights and Clinical ImplicationsMedXYhttps://news.medxy.ai/curcumin-shows-promise-in-targeting-colorectal-cancer-stem-like-cells-mechanistic-insights-and-clinical-implications/0
2025The Potential Role of Curcumin as a Regulator of microRNA in Colorectal Cancer: A Systematic ReviewAmir Mohammad Salehihttps://www.benthamdirect.com/content/journals/mirna/10.2174/01221153663041142409040514290
2024The Bright Side of Curcumin: A Narrative Review of Its Therapeutic Potential in Cancer ManagementAndrea AmaroliPMC11275093https://pmc.ncbi.nlm.nih.gov/articles/PMC11275093/0
2024A Novel Galantamine–Curcumin Hybrid Inhibits Butyrylcholinesterase: A Molecular Dynamics StudyEvdokiya Salamanovahttps://www.ddg-pharmfac.net/ddg/publications_files/2024_Chemistry.pdf0
2024Natural acetylcholinesterase inhibitors: A multi-targeted therapeutic potential in Alzheimer's diseaseKumar Gajendrahttps://www.sciencedirect.com/science/article/pii/S27724174240002680
2024Curcumin as a novel therapeutic candidate for cancer: can this natural compound revolutionize cancer treatment?Shadiya Fawzul AmeerPMC11537944https://pmc.ncbi.nlm.nih.gov/articles/PMC11537944/0
2024Curcumin in Cancer and Inflammation: An In-Depth Exploration of Molecular Interactions, Therapeutic Potentials, and the Role in Disease ManagementDong-Oh MoonPMC10932100https://pmc.ncbi.nlm.nih.gov/articles/PMC10932100/0
2024Curcumin induces ferroptosis and apoptosis in osteosarcoma cells by regulating Nrf2/GPX4 signaling pathwayChuanjian YuanPMC10903231https://pmc.ncbi.nlm.nih.gov/articles/PMC10903231/0
2024Curcumin hybrid molecules for the treatment of Alzheimer's disease: Structure and pharmacological activitiesWei-Biao Zanghttps://www.sciencedirect.com/science/article/abs/pii/S02235234230103710
2024Curcumin: A Golden Approach to Healthy Aging: A Systematic Review of the EvidenceYandra Cervelim NunesPMC11357524https://pmc.ncbi.nlm.nih.gov/articles/PMC11357524/0
2024Nrf2 depletion enhanced curcumin therapy effect in gastric cancer by inducing the excessive accumulation of ROSYan WangPMC11615379https://pmc.ncbi.nlm.nih.gov/articles/PMC11615379/0
2024Inhibition of Cancer Stem-like Cells by Curcumin and Other Polyphenol Derivatives in MDA-MB-231 TNBC CellsMaria RosPMC11242520https://pmc.ncbi.nlm.nih.gov/articles/PMC11242520/0
2023Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical EvidenceZohra Nausheen NizamiPMC10295724https://pmc.ncbi.nlm.nih.gov/articles/PMC10295724/0
2023Dual Action of Curcumin as an Anti- and Pro-Oxidant from a Biophysical PerspectiveAgnieszka Wolnicka-Glubiszhttps://www.researchgate.net/publication/373728355_Dual_Action_of_Curcumin_as_an_Anti-_and_Pro-Oxidant_from_a_Biophysical_Perspective0
2023Curcumin analog WZ26 induces ROS and cell death via inhibition of STAT3 in cholangiocarcinomaMinxiao ChenPMC9851268https://pmc.ncbi.nlm.nih.gov/articles/PMC9851268/0
2023Effects of curcumin and ursolic acid in prostate cancer: A systematic reviewBenjamin D BesasiePMC10976464https://pmc.ncbi.nlm.nih.gov/articles/PMC10976464/0
2023Antioxidant curcumin induces oxidative stress to kill tumor cells (Review)Ye HuPMC10773205https://pmc.ncbi.nlm.nih.gov/articles/PMC10773205/0
2023Curcumin as a hepatoprotective agent against chemotherapy-induced liver injuryVicenç Ruiz de Porrashttps://www.sciencedirect.com/science/article/pii/S00243205230075430
2023Curcumin activates a ROS/KEAP1/NRF2/miR-34a/b/c cascade to suppress colorectal cancer metastasisChunfeng Liu,https://www.nature.com/articles/s41418-023-01178-10
2022Curcumin, but not its degradation products, in combination with silibinin is primarily responsible for the inhibition of colon cancer cell proliferationAlhan SayyedPMC9372765https://pmc.ncbi.nlm.nih.gov/articles/PMC9372765/0
2022Therapeutic and Preventive Effects of Piperine and its Combination with Curcumin as a Bioenhancer Against Aluminum-Induced Damage in the Astrocyte CellsŞebnem Erfen36342584https://pubmed.ncbi.nlm.nih.gov/36342584/0
2022Curcumin inhibits the invasion and metastasis of triple negative breast cancer via Hedgehog/Gli1 signaling pathwayMengjie Li34592340https://pubmed.ncbi.nlm.nih.gov/34592340/0
2022Regulatory Effects of Curcumin on Platelets: An Update and Future DirectionsYaseen HussainPMC9775400https://pmc.ncbi.nlm.nih.gov/articles/PMC9775400/0
2022Potential complementary and/or synergistic effects of curcumin and boswellic acids for management of osteoarthritisVidhu SethiPMC9511324https://pmc.ncbi.nlm.nih.gov/articles/PMC9511324/0
2022An update of Nrf2 activators and inhibitors in cancer prevention/promotionFarhad PouremamaliPMC9245222https://pmc.ncbi.nlm.nih.gov/articles/PMC9245222/0
2022Curcumin induces autophagic cell death in human thyroid cancer cellsLi Zhang 34634291https://pubmed.ncbi.nlm.nih.gov/34634291/0
2022Curcumin and colorectal cancer: An update and current perspective on this natural medicineWenhao Wenghttps://www.sciencedirect.com/science/article/abs/pii/S1044579X203004440
2022Curcumin and Its Derivatives Induce Apoptosis in Human Cancer Cells by Mobilizing and Redox Cycling Genomic Copper IonsMohammed Ahmed Ismail Alhasawihttps://www.mdpi.com/1420-3049/27/21/74100
2022Extending the lore of curcumin as dipteran Butyrylcholine esterase (BChE) inhibitor: A holistic molecular interplay assessmentPriyashi Raohttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.02690360
2021Gut microbiota enhances the chemosensitivity of hepatocellular carcinoma to 5-fluorouracil in vivo by increasing curcumin bioavailability Meng Jin 34374130https://pubmed.ncbi.nlm.nih.gov/34374130/0
2021Curcumin and its derivatives in cancer therapy: Potentiating antitumor activity of cisplatin and reducing side effectsAsal Jalal Abadi34697839https://pubmed.ncbi.nlm.nih.gov/34697839/0
2021Antiproliferative and ROS Regulation Activity of Photoluminescent Curcumin-Derived NanodotsDurga M Arvapalli35005943https://pubmed.ncbi.nlm.nih.gov/35005943/0
2021New Insights into Curcumin- and Resveratrol-Mediated Anti-Cancer EffectsAndrea ArenaPMC8622305https://pmc.ncbi.nlm.nih.gov/articles/PMC8622305/0
2021Curcumin and Its New Derivatives: Correlation between Cytotoxicity against Breast Cancer Cell Lines, Degradation of PTP1B Phosphatase and ROS GenerationTomasz KostrzewaPMC8508995 https://pmc.ncbi.nlm.nih.gov/articles/PMC8508995/0
2021Molecular mechanisms underlying curcumin-mediated microRNA regulation in carcinogenesis; Focused on gastrointestinal cancersAbolfazl Akbarihttps://www.sciencedirect.com/science/article/pii/S07533322210063140
2021Dual Role of Reactive Oxygen Species and their Application in Cancer TherapyRun Huanghttps://www.jcancer.org/v12p5543.htm0
2021Curcumin Regulates Cancer Progression: Focus on ncRNAs and Molecular Signaling PathwaysHaijun Wanghttps://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2021.660712/full0
2021Curcumin suppresses the malignancy of non-small cell lung cancer by modulating the circ-PRKCA/miR-384/ITGB1 pathway Xiaoqing Xu 33684690https://www.sciencedirect.com/science/article/pii/S0753332221002249?via%3Dihub0
2021TAp63α Is Involved in Tobacco Smoke-Induced Lung Cancer EMT and the Anti-cancer Activity of Curcumin via miR-19 Transcriptional SuppressionChunfeng XiePMC7970191https://pmc.ncbi.nlm.nih.gov/articles/PMC7970191/0
2021Curcumin inhibits ovarian cancer progression by regulating circ-PLEKHM3/miR-320a/SMG1 axisSifan SunPMC8594156https://pmc.ncbi.nlm.nih.gov/articles/PMC8594156/0
2021Cellular uptake and apoptotic properties of gemini curcumin in gastric cancer cellsAli Emami 34623595https://pubmed.ncbi.nlm.nih.gov/34623595/0
2021Curcumin suppresses tumor growth of gemcitabine-resistant non-small cell lung cancer by regulating lncRNA-MEG3 and PTEN signalingL Gao 33566305https://pubmed.ncbi.nlm.nih.gov/33566305/0
2021Curcumin inhibits the growth of liver cancer by impairing myeloid-derived suppressor cells in murine tumor tissuesSha TianPMC7905673https://pmc.ncbi.nlm.nih.gov/articles/PMC7905673/0
2021Curcumin suppresses the stemness of non-small cell lung cancer cells via promoting the nuclear-cytoplasm translocation of TAZYuzhen Zheng 33539684https://pubmed.ncbi.nlm.nih.gov/33539684/0
2021Curcumin-Induced Global Profiling of Transcriptomes in Small Cell Lung Cancer CellsFei MoPMC7835540https://pmc.ncbi.nlm.nih.gov/articles/PMC7835540/0
2021Counteracting Action of Curcumin on High Glucose-Induced Chemoresistance in Hepatic Carcinoma CellsVivek Kumar Sonihttps://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2021.738961/full0
2021Anti-cancer activity of amorphous curcumin preparation in patient-derived colorectal cancer organoidsMohamed Elbadawy34411919https://www.sciencedirect.com/science/article/pii/S075333222100826X?via%3Dihub0
2021Curcumin inhibits the viability, migration and invasion of papillary thyroid cancer cells by regulating the miR-301a-3p/STAT3 axisYing LiangPMC8237388https://pmc.ncbi.nlm.nih.gov/articles/PMC8237388/0
2021Curcumin Reduces Colorectal Cancer Cell Proliferation and Migration and Slows In Vivo Growth of Liver Metastases in RatsBorja Herrero de la PartePMC8467247https://pmc.ncbi.nlm.nih.gov/articles/PMC8467247/0
2021Curcumin suppresses LGR5(+) colorectal cancer stem cells by inducing autophagy and via repressing TFAP2A-mediated ECM pathwayXiaohong MaoPMC8159825https://pmc.ncbi.nlm.nih.gov/articles/PMC8159825/0
2021Curcumin Reverses NNMT-Induced 5-Fluorouracil Resistance via Increasing ROS and Cell Cycle Arrest in Colorectal Cancer CellsGuoli LiPMC8470329https://pmc.ncbi.nlm.nih.gov/articles/PMC8470329/0
2021The effect of Curcumin on multi-level immune checkpoint blockade and T cell dysfunction in head and neck cancerLihua Liu 34592487https://pubmed.ncbi.nlm.nih.gov/34592487/0
2021Curcumin inhibits prostate cancer progression by regulating the miR-30a-5p/PCLAF axisLiang PanPMC8290411https://pmc.ncbi.nlm.nih.gov/articles/PMC8290411/0
2021Curcumin induces ferroptosis in non-small-cell lung cancer via activating autophagyXin TangPMC8046146https://pmc.ncbi.nlm.nih.gov/articles/PMC8046146/0
2021Revealing the molecular interplay of curcumin as Culex pipiens Acetylcholine esterase 1 (AChE1) inhibitorPriyashi RaoPMC8410813https://pmc.ncbi.nlm.nih.gov/articles/PMC8410813/0
2021Metal–Curcumin Complexes in Therapeutics: An Approach to Enhance Pharmacological Effects of CurcuminSahdeo PrasadPMC8268053https://pmc.ncbi.nlm.nih.gov/articles/PMC8268053/0
2021A Novel Galantamine-Curcumin Hybrid as a Potential Multi-Target Agent against Neurodegenerative DisordersRumyana SimeonovaPMC8037483https://pmc.ncbi.nlm.nih.gov/articles/PMC8037483/0
2021Curcumin Attenuated Neurotoxicity in Sporadic Animal Model of Alzheimer's DiseaseInes ELBini-DhouibPMC8158738https://pmc.ncbi.nlm.nih.gov/articles/PMC8158738/0
2021Cytotoxic, chemosensitizing and radiosensitizing effects of curcumin based on thioredoxin system inhibition in breast cancer cells: 2D vs. 3D cell culture systemShaymaa Essam El FekyPMC8005724 https://pmc.ncbi.nlm.nih.gov/articles/PMC8005724/0
2021Curcumin suppresses the proliferation of oral squamous cell carcinoma through a specificity protein 1/nuclear factor‑κB‑dependent pathwayTian Liuhttps://www.spandidos-publications.com/10.3892/etm.2021.96350
2020Curcumin may reverse 5-fluorouracil resistance on colonic cancer cells by regulating TET1-NKD-Wnt signal pathway to inhibit the EMT progressYi Lu32887024https://www.sciencedirect.com/science/article/pii/S0753332220305746?via%3Dihub0
2020Curcumin inhibits migration and invasion of non-small cell lung cancer cells through up-regulation of miR-206 and suppression of PI3K/AKT/mTOR signaling pathwayNaizhi Wanghttps://www.researchgate.net/publication/344026895_Curcumin_inhibits_migration_and_invasion_of_non-small_cell_lung_cancer_cells_through_up-regulation_of_miR-206_and_suppression_of_PI3KAKTmTOR_signaling_pathway0
2020Reduced Caudal Type Homeobox 2 (CDX2) Promoter Methylation Is Associated with Curcumin’s Suppressive Effects on Epithelial-Mesenchymal Transition in Colorectal Cancer CellsTing ChenPMC7496454https://pmc.ncbi.nlm.nih.gov/articles/PMC7496454/0
2020LncRNA KCNQ1OT1 is a key factor in the reversal effect of curcumin on cisplatin resistance in the colorectal cancer cellsZhi-Hai Zheng 32757174https://pubmed.ncbi.nlm.nih.gov/32757174/0
2020The effect of Curcuma longa extract and its active component (curcumin) on gene expression profiles of lipid metabolism pathway in liver cancer cell line (HepG2)Reyhaneh Taebihttps://www.sciencedirect.com/science/article/abs/pii/S24520144193022370
2020Cell-Type Specific Metabolic Response of Cancer Cells to CurcuminAnamarija MojzešPMC7084320https://pmc.ncbi.nlm.nih.gov/articles/PMC7084320/0
2020Curcumin may be a potential adjuvant treatment drug for colon cancer by targeting CD44Xu Fan33182071https://pubmed.ncbi.nlm.nih.gov/33182071/0
2020Curcumin downregulates the PI3K-AKT-mTOR pathway and inhibits growth and progression in head and neck cancer cellsGabriel Alvares Borges32628350https://pubmed.ncbi.nlm.nih.gov/32628350/0
2020Curcumin in Health and Diseases: Alzheimer’s Disease and Curcumin Analogues, Derivatives, and HybridsEirini ChainoglouPMC7139886https://pmc.ncbi.nlm.nih.gov/articles/PMC7139886/0
2020Curcumin-Induced DNA Demethylation in Human Gastric Cancer Cells Is Mediated by the DNA-Damage Response PathwayRuiying TongPMC7317311https://pmc.ncbi.nlm.nih.gov/articles/PMC7317311/0
2020Curcumin Affects Gastric Cancer Cell Migration, Invasion and Cytoskeletal Remodeling Through Gli1-β-CateninXiao ZhangPMC7247599https://pmc.ncbi.nlm.nih.gov/articles/PMC7247599/0
2020Synthesis of novel 4-Boc-piperidone chalcones and evaluation of their cytotoxic activity against highly-metastatic cancer cellsCarlimar Ocasio-MalavéPMC7460386https://pmc.ncbi.nlm.nih.gov/articles/PMC7460386/0
2020Curcumin promotes cancer-associated fibroblasts apoptosis via ROS-mediated endoplasmic reticulum stressYanqiong Zeng 33010228https://pubmed.ncbi.nlm.nih.gov/33010228/0
2020The dual role of curcumin and ferulic acid in counteracting chemoresistance and cisplatin-induced ototoxicityFabiola PacielloPMC6978317https://pmc.ncbi.nlm.nih.gov/articles/PMC6978317/0
2020Curcumin circumvent lactate-induced chemoresistance in hepatic cancer cells through modulation of hydroxycarboxylic acid receptor-1 Vivek Kumar Soni 32325281https://pubmed.ncbi.nlm.nih.gov/32325281/0
2020The inhibitory effect of curcumin via fascin suppression through JAK/STAT3 pathway on metastasis and recurrence of ovary cancer cellsMi Ju Kim PMC7678137https://pmc.ncbi.nlm.nih.gov/articles/PMC7678137/0
2020Curcumin inhibits epithelial-mesenchymal transition in oral cancer cells via c-Met blockadeYuichi OhnishiPMC7204627https://pmc.ncbi.nlm.nih.gov/articles/PMC7204627/0
2020Modification of radiosensitivity by Curcumin in human pancreatic cancer cell linesKatharina SchwarzPMC7052161https://pmc.ncbi.nlm.nih.gov/articles/PMC7052161/0
2020Curcumin induces G2/M arrest and triggers autophagy, ROS generation and cell senescence in cervical cancer cellsTuan WangPMC7545669https://pmc.ncbi.nlm.nih.gov/articles/PMC7545669/0
2020Curcumin Has Anti-Proliferative and Pro-Apoptotic Effects on Tongue Cancer in vitro: A Study with Bioinformatics Analysis and in vitro ExperimentsChao MaPMC7007779https://pmc.ncbi.nlm.nih.gov/articles/PMC7007779/0
2020Curcumin Regulates ERCC1 Expression and Enhances Oxaliplatin Sensitivity in Resistant Colorectal Cancer Cells through Its Effects on miR-409-3pWei HanPMC7519441https://pmc.ncbi.nlm.nih.gov/articles/PMC7519441/0
2020Curcumin inhibits the growth of triple‐negative breast cancer cells by silencing EZH2 and restoring DLC1 expressionXueliang ZhouPMC7521266https://pmc.ncbi.nlm.nih.gov/articles/PMC7521266/0
2020Curcumin inhibits proteasome activity in triple-negative breast cancer cells through regulating p300/miR-142-3p/PSMB5 axisLe Liu 32866906https://pubmed.ncbi.nlm.nih.gov/32866906/0
2020Neuroprotection by curcumin: A review on brain delivery strategiesAnis Askarizadehhttps://www.sciencedirect.com/science/article/abs/pii/S03785173203046090
2020Novel Insight to Neuroprotective Potential of Curcumin: A Mechanistic Review of Possible Involvement of Mitochondrial Biogenesis and PI3/Akt/ GSK3 or PI3/Akt/CREB/BDNF Signaling PathwaysNiyoosha KandeziPMC7422850https://pmc.ncbi.nlm.nih.gov/articles/PMC7422850/0
2020Curcumin induces re-expression of BRCA1 and suppression of γ synuclein by modulating DNA promoter methylation in breast cancer cell linesNujoud Al-YousefPMC7041105https://pmc.ncbi.nlm.nih.gov/articles/PMC7041105/0
2020Curcumin Inhibits the Migration and Invasion of Non-Small-Cell Lung Cancer Cells Through Radiation-Induced Suppression of Epithelial-Mesenchymal Transition and Soluble E-Cadherin ExpressionXinzhou DengPMC7607721https://pmc.ncbi.nlm.nih.gov/articles/PMC7607721/0
2020Curcumin induces apoptosis in lung cancer cells by 14-3-3 protein-mediated activation of BadHiroshi Endo32841581https://pubmed.ncbi.nlm.nih.gov/32841581/0
2020Enhanced anti‐tumor effects of the PD‐1 blockade combined with a highly absorptive form of curcumin targeting STAT3Taeko HayakawaPMC7734012https://pmc.ncbi.nlm.nih.gov/articles/PMC7734012/0
2020Transcriptome Investigation and In Vitro Verification of Curcumin-Induced HO-1 as a Feature of Ferroptosis in Breast Cancer CellsRuihua LiPMC7691002https://pmc.ncbi.nlm.nih.gov/articles/PMC7691002/0
2020Traditional Chinese Medicine: Role in Reducing β-Amyloid, Apoptosis, Autophagy, Neuroinflammation, Oxidative Stress, and Mitochondrial Dysfunction of Alzheimer’s DiseaseShi-Yu ChenPMC7188934https://pmc.ncbi.nlm.nih.gov/articles/PMC7188934/0
2020Curcumin attenuates lncRNA H19-induced epithelial-mesenchymal transition in tamoxifen-resistant breast cancer cellsJiaqin CaiPMC7673326https://pmc.ncbi.nlm.nih.gov/articles/PMC7673326/0
2019Regulation of carcinogenesis and modulation through Wnt/β-catenin signaling by curcumin in an ovarian cancer cell lineHsing-Yu YenPMC6872918https://pmc.ncbi.nlm.nih.gov/articles/PMC6872918/0
2019Synergistic Effects of Curcumin and Piperine as Potent Acetylcholine and Amyloidogenic Inhibitors With Significant Neuroprotective Activity in SH-SY5Y Cells via Computational Molecular Modeling and in vitro AssayAimi Syamima Abdul ManapPMC6718453https://pmc.ncbi.nlm.nih.gov/articles/PMC6718453/0
2019Bioactivity of Curcumin on the Cytochrome P450 Enzymes of the Steroidogenic PathwayPatricia Rodríguez CastañoPMC6770025https://pmc.ncbi.nlm.nih.gov/articles/PMC6770025/0
2019Curcumin Acts as Post-protective Effects on Rat Hippocampal Synaptosomes in a Neuronal Model of Aluminum-Induced ToxicityFatih Kar31264110https://pubmed.ncbi.nlm.nih.gov/31264110/0
2019Inhibition of TLR4/TRIF/IRF3 Signaling Pathway by Curcumin in Breast Cancer CellsGamze Güney Eskiler 31287789https://pubmed.ncbi.nlm.nih.gov/31287789/0
2019Curcumin induces apoptotic cell death and protective autophagy by inhibiting AKT/mTOR/p70S6K pathway in human ovarian cancer cellsLi-Dong Liu 31006841https://pubmed.ncbi.nlm.nih.gov/31006841/0
2019Anti-metastasis activity of curcumin against breast cancer via the inhibition of stem cell-like properties and EMTChenxia Hu31005718https://pubmed.ncbi.nlm.nih.gov/31005718/0
2019Curcumin Downregulates GSK3 and Cdk5 in Scopolamine-Induced Alzheimer’s Disease Rats Abrogating Aβ40/42 and Tau HyperphosphorylationTushar Kanti DasPMC6839535https://pmc.ncbi.nlm.nih.gov/articles/PMC6839535/0
2019Stem Cell Therapy: Curcumin Does the TrickSimin Sharifi31452263https://pubmed.ncbi.nlm.nih.gov/31452263/0
2019Curcumin decreases epithelial‑mesenchymal transition by a Pirin‑dependent mechanism in cervical cancer cellsVictor Aedo-Aguilera 31436299https://pubmed.ncbi.nlm.nih.gov/31436299/0
2019The chromatin remodeling protein BRG1 links ELOVL3 trans-activation to prostate cancer metastasisYuyu Yang31154107https://pubmed.ncbi.nlm.nih.gov/31154107/0
2019The Antitumor Effect of Curcumin in Urothelial Cancer Cells Is Enhanced by Light Exposure In Vitro Frederik RoosPMC6432698https://pmc.ncbi.nlm.nih.gov/articles/PMC6432698/0
2019Evaluation of biophysical as well as biochemical potential of curcumin and resveratrol during prostate cancerWei Guo30943812https://pubmed.ncbi.nlm.nih.gov/30943812/0
2019Curcumin-Gene Expression Response in Hormone Dependent and Independent Metastatic Prostate Cancer CellsShilpa KattaPMC6801832https://pmc.ncbi.nlm.nih.gov/articles/PMC6801832/0
2019A randomized, double-blind, placebo-controlled trial to evaluate the role of curcumin in prostate cancer patients with intermittent androgen deprivationYoung Hyo Choi30671976https://pubmed.ncbi.nlm.nih.gov/30671976/0
2019Curcumin overcome primary gefitinib resistance in non-small-cell lung cancer cells through inducing autophagy-related cell deathPing Chenhttps://pmc.ncbi.nlm.nih.gov/articles/PMC6567416/0
2019Curcumin Regulates the Progression of Colorectal Cancer via LncRNA NBR2/AMPK PathwayHua YuPMC6732852https://pmc.ncbi.nlm.nih.gov/articles/PMC6732852/0
2019The Influence of Curcumin on the Downregulation of MYC, Insulin and IGF-1 Receptors: A Possible Mechanism Underlying the Anti-Growth and Anti-Migration in Chemoresistant Colorectal Cancer CellsSeyed Ahmad Hosseini PMC6524349https://pmc.ncbi.nlm.nih.gov/articles/PMC6524349/0
2019Curcumin reverses oxaliplatin resistance in human colorectal cancer via regulation of TGF-β/Smad2/3 signaling pathwayJiahuan YinPMC6529728https://pmc.ncbi.nlm.nih.gov/articles/PMC6529728/0
2019Curcumin Down-Regulates Toll-Like Receptor-2 Gene Expression and Function in Human Cystic Fibrosis Bronchial Epithelial CellsNiraj Chaudharyhttps://www.jstage.jst.go.jp/article/bpb/42/3/42_b18-00928/_html/-char/en0
2019Curcumin inhibits proliferation, migration and neointimal formation of vascular smooth muscle via activating miR-22Minghua Zhangahttps://www.tandfonline.com/doi/full/10.1080/13880209.2020.1781904#abstract0
2019Curcumin: a potent agent to reverse epithelial-to-mesenchymal transitionAfsane Bahrami30980365https://pubmed.ncbi.nlm.nih.gov/30980365/0
2019Curcumin Promoted miR-34a Expression and Suppressed Proliferation of Gastric Cancer CellsChunlin Sun 31539270https://pubmed.ncbi.nlm.nih.gov/31539270/0
2019Biochemical and cellular mechanism of protein kinase CK2 inhibition by deceptive curcuminGiorgio Cozzahttps://febs.onlinelibrary.wiley.com/doi/10.1111/febs.151110
2019Mitochondrial targeting nano-curcumin for attenuation on PKM2 and FASNRui Yanghttps://www.sciencedirect.com/science/article/abs/pii/S09277765193054910
2019Effective electrochemotherapy with curcumin in MDA-MB-231-human, triple negative breast cancer cells: A global proteomics studyLakshya Mittal31518962https://pubmed.ncbi.nlm.nih.gov/31518962/0
2019Iron chelation by curcumin suppresses both curcumin-induced autophagy and cell death together with iron overload neoplastic transformationNathan E RaineyPMC6901436https://pmc.ncbi.nlm.nih.gov/articles/PMC6901436/0
2019The effect of curcumin on cognition in Alzheimer’s disease and healthy aging: A systematic review of pre-clinical and clinical studiesS.D. Voulgaropoulouhttps://www.sciencedirect.com/science/article/pii/S000689931930530X0
2019The Holy Grail of Curcumin and its Efficacy in Various Diseases: Is Bioavailability Truly a Big Concern?Shusuke TodenPMC6424351https://pmc.ncbi.nlm.nih.gov/articles/PMC6424351/0
2018Role of curcumin in regulating p53 in breast cancer: an overview of the mechanism of actionWamidh H TalibPMC6276637https://pmc.ncbi.nlm.nih.gov/articles/PMC6276637/0
2018Anti-Cancer and Radio-Sensitizing Effects of Curcumin in Nasopharyngeal CarcinomaAmir Abbas Momtazi-Borojeni29788875https://pubmed.ncbi.nlm.nih.gov/29788875/0
2018Alpha-Secretase ADAM10 Regulation: Insights into Alzheimer’s Disease TreatmentRafaela PeronPMC5874708https://pmc.ncbi.nlm.nih.gov/articles/PMC5874708/0
2018Curcumin suppressed the prostate cancer by inhibiting JNK pathways via epigenetic regulationWanli Zhao29485738https://www.researchgate.net/publication/323436442_Curcumin_suppressed_the_prostate_cancer_by_inhibiting_JNK_pathways_via_epigenetic_regulation0
2018Curcumin Suppresses microRNA-7641-Mediated Regulation of p16 Expression in Bladder CancerKai Wang 30149755https://pubmed.ncbi.nlm.nih.gov/30149755/0
2018Chondroprotective effect of curcumin and lecithin complex in human chondrocytes stimulated by IL-1β via an anti-inflammatory mechanismLeeseon KimPMC6431345https://pmc.ncbi.nlm.nih.gov/articles/PMC6431345/0
2018Curcumin inhibits autocrine growth hormone-mediated invasion and metastasis by targeting NF-κB signaling and polyamine metabolism in breast cancer cellsAjda Coker-Gurkan29770869https://pubmed.ncbi.nlm.nih.gov/29770869/0
2018Curcumin inhibits proliferation and promotes apoptosis of breast cancer cellsShan HuPMC6090267https://pmc.ncbi.nlm.nih.gov/articles/PMC6090267/0
2018Antitumor activity of curcumin by modulation of apoptosis and autophagy in human lung cancer A549 cells through inhibiting PI3K/Akt/mTOR pathwayFurong Liu29328421https://pubmed.ncbi.nlm.nih.gov/29328421/0
2018Protective Effects of Indian Spice Curcumin Against Amyloid-β in Alzheimer's DiseaseP Hemachandra Reddy29332042https://pubmed.ncbi.nlm.nih.gov/29332042/0
2018Heat shock protein 27 influences the anti-cancer effect of curcumin in colon cancer cells through ROS production and autophagy activation Hung-Hua Liang 30056019https://pubmed.ncbi.nlm.nih.gov/30056019/0
2018Curcumin regulates proliferation, autophagy, and apoptosis in gastric cancer cells by affecting PI3K and P53 signalingHongbing Fu28926094https://pubmed.ncbi.nlm.nih.gov/28926094/0
2018Curcumin inhibits cell proliferation and motility via suppression of TROP2 in bladder cancer cellsLianhua ZhangPMC6017220https://pmc.ncbi.nlm.nih.gov/articles/PMC6017220/0
2018Anticancer effect of curcumin on breast cancer and stem cellsHui-Tien Liuhttps://www.sciencedirect.com/science/article/pii/S22134530183005330
2018Curcumin inhibits liver cancer by inhibiting DAMP molecule HSP70 and TLR4 signalingBiqiong Ren 29901164https://pubmed.ncbi.nlm.nih.gov/29901164/0
2018Curcumin decreases Warburg effect in cancer cells by down-regulating pyruvate kinase M2 via mTOR-HIF1α inhibitionFarid Ahmad SiddiquiPMC5974195https://pmc.ncbi.nlm.nih.gov/articles/PMC5974195/0
2018Modulation of AKR1C2 by curcumin decreases testosterone production in prostate cancerHisamitsu IdePMC5891173https://pmc.ncbi.nlm.nih.gov/articles/PMC5891173/0
2018Maspin Enhances the Anticancer Activity of Curcumin in Hormone-refractory Prostate Cancer Cells29374713https://pubmed.ncbi.nlm.nih.gov/29374713/0
2017Mitochondrial targeted curcumin exhibits anticancer effects through disruption of mitochondrial redox and modulation of TrxR2 activitySundarraj Jayakumar29080841https://pubmed.ncbi.nlm.nih.gov/29080841/0
2017Combination therapy in combating cancerReza Bayat MokhtariPMC5514969https://pmc.ncbi.nlm.nih.gov/articles/PMC5514969/0
2017Hepatoprotective Effect of Curcumin on Hepatocellular Carcinoma Through Autophagic and Apoptic PathwaysAhmed M. Elmansihttps://www.sciencedirect.com/science/article/pii/S16652681193109930
2017Long-term stabilisation of myeloma with curcuminDr Abbas Zaidi,https://casereports.bmj.com/content/2017/bcr-2016-2181480
2017Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAsJames A. McCubreyhttps://www.aging-us.com/article/101250/text0
2017The metalloproteinase ADAM10: A useful therapeutic target?Sebastian Wetzelhttps://www.sciencedirect.com/science/article/pii/S016748891730157X0
2017Curcumin Suppresses Lung Cancer Stem Cells via Inhibiting Wnt/β-catenin and Sonic Hedgehog PathwaysJian-Yun Zhu28198062https://pubmed.ncbi.nlm.nih.gov/28198062/0
2017Regulation of GSK-3 activity by curcumin, berberine and resveratrol: Potential effects on multiple diseasesJames A McCubrey28579298https://pubmed.ncbi.nlm.nih.gov/28579298/0
2017Curcumin inhibited growth of human melanoma A375 cells via inciting oxidative stressWang Liao https://www.sciencedirect.com/science/article/abs/pii/S07533322173114720
2017Integrated microRNA and gene expression profiling reveals the crucial miRNAs in curcumin anti‐lung cancer cell invasionJian‐wei ZhanPMC5582578https://pmc.ncbi.nlm.nih.gov/articles/PMC5582578/0
2017Curcumin Suppresses the Colon Cancer Proliferation by Inhibiting Wnt/β-Catenin Pathways via miR-130aHuiqiang DouPMC5705620https://pmc.ncbi.nlm.nih.gov/articles/PMC5705620/0
2017Curcumin suppresses gastric cancer by inhibiting gastrin‐mediated acid secretionShufen ZhouPMC5537064https://pmc.ncbi.nlm.nih.gov/articles/PMC5537064/0
2017Curcumin induces apoptotic cell death in human pancreatic cancer cells via the miR-340/XIAP signaling pathwayDeying YangPMC5529934https://pmc.ncbi.nlm.nih.gov/articles/PMC5529934/0
2017The effects of curcumin on proliferation, apoptosis, invasion, and NEDD4 expression in pancreatic cancerJingna Su 28535906https://pubmed.ncbi.nlm.nih.gov/28535906/0
2017Curcumin exerts its tumor suppressive function via inhibition of NEDD4 oncoprotein in glioma cancer cellsXue WangPMC5505128https://pmc.ncbi.nlm.nih.gov/articles/PMC5505128/0
2017Combinatorial effect of curcumin with docetaxel modulates apoptotic and cell survival molecules in prostate cancerSaswati BanerjeePMC5545125https://pmc.ncbi.nlm.nih.gov/articles/PMC5545125/0
2017Curcumin induces apoptosis and protective autophagy in castration-resistant prostate cancer cells through iron chelationChunguang YangPMC5317247https://pmc.ncbi.nlm.nih.gov/articles/PMC5317247/0
2017Thioredoxin 1 modulates apoptosis induced by bioactive compounds in prostate cancer cellsAida Rodriguez-Garcia28391184https://pubmed.ncbi.nlm.nih.gov/28391184/0
2017Curcumin inhibits prostate cancer by targeting PGK1 in the FOXD3/miR-143 axisHongwen Cao28391351https://pubmed.ncbi.nlm.nih.gov/28391351/0
2017Targeting multiple pro-apoptotic signaling pathways with curcumin in prostate cancer cellsMariela RiveraPMC5476315https://pmc.ncbi.nlm.nih.gov/articles/PMC5476315/0
2017Screening for Circulating Tumour Cells Allows Early Detection of Cancer and Monitoring of Treatment Effectiveness: An Observational StudyPMC5697492https://pmc.ncbi.nlm.nih.gov/articles/PMC5697492/0
2017Increased Intracellular Reactive Oxygen Species Mediates the Anti-Cancer Effects of WZ35 via Activating Mitochondrial Apoptosis Pathway in Prostate Cancer CellsMinxiao Chen27990666https://pubmed.ncbi.nlm.nih.gov/27990666/0
2016Modulation of miR-34a in curcumin-induced antiproliferation of prostate cancer cellsMingming Zhu31042325https://pubmed.ncbi.nlm.nih.gov/31042325/0
2016Effect of Curcumin Supplementation During Radiotherapy on Oxidative Status of Patients with Prostate Cancer: A Double Blinded, Randomized, Placebo-Controlled StudyJalal Hejazihttps://www.researchgate.net/publication/290597698_Effect_of_Curcumin_Supplementation_During_Radiotherapy_on_Oxidative_Status_of_Patients_with_Prostate_Cancer_A_Double_Blinded_Randomized_Placebo-Controlled_Study0
2016Curcumin inhibits hypoxia-induced epithelial‑mesenchymal transition in pancreatic cancer cells via suppression of the hedgehog signaling pathwayLei Caohttps://www.spandidos-publications.com/or/35/6/37280
2016Relationship and interactions of curcumin with radiation therapyVivek VermaPMC4896895https://pmc.ncbi.nlm.nih.gov/articles/PMC4896895/0
2016Curcumin Ameliorates Memory Decline via Inhibiting BACE1 Expression and β-Amyloid Pathology in 5×FAD Transgenic MiceKunmu Zhenghttps://link.springer.com/article/10.1007/s12035-016-9802-90
2016Curcumin induces G0/G1 arrest and apoptosis in hormone independent prostate cancer DU-145 cells by down regulating Notch signalingJian Sha27657825https://pubmed.ncbi.nlm.nih.gov/27657825/0
2016Curcumin and Ellagic acid synergistically induce ROS generation, DNA damage, p53 accumulation and apoptosis in HeLa cervical carcinoma cellsDevbrat Kumar27261574https://pubmed.ncbi.nlm.nih.gov/27261574/0
2016Dimethoxycurcumin, a metabolically stable analogue of curcumin enhances the radiosensitivity of cancer cells: Possible involvement of ROS and thioredoxin reductaseSundarraj Jayakumar27381867https://pubmed.ncbi.nlm.nih.gov/27381867/0
2016Kinetics of Inhibition of Monoamine Oxidase Using Curcumin and Ellagic AcidDharmendra Kumar KhatriPMC4883067https://pmc.ncbi.nlm.nih.gov/articles/PMC4883067/0
2015Effect of curcumin on Bcl-2 and Bax expression in nude mice prostate cancerJiayi YangPMC4583908https://pmc.ncbi.nlm.nih.gov/articles/PMC4583908/0
2015Curcumin analog WZ35 induced cell death via ROS-dependent ER stress and G2/M cell cycle arrest in human prostate cancer cellsXiuhua ZhangPMC4636884https://pmc.ncbi.nlm.nih.gov/articles/PMC4636884/0
2015Curcumin inhibits cancer-associated fibroblast-driven prostate cancer invasion through MAOA/mTOR/HIF-1α signalingYuefeng DuPMC4665143https://pmc.ncbi.nlm.nih.gov/articles/PMC4665143/ 0
2015Effect of curcumin on the interaction between androgen receptor and Wnt/β-catenin in LNCaP xenograftsJeong Hee HongPMC4565901https://pmc.ncbi.nlm.nih.gov/articles/PMC4565901/0
2015Curcumin and cancer stem cells: curcumin has asymmetrical effects on cancer and normal stem cellsPeter P Sordillo25667437https://pubmed.ncbi.nlm.nih.gov/25667437/0
2015Nonautophagic cytoplasmic vacuolation death induction in human PC-3M prostate cancer by curcumin through reactive oxygen species -mediated endoplasmic reticulum stressWei-Jiunn LeePMC4445067https://pmc.ncbi.nlm.nih.gov/articles/PMC4445067/0
2015Combination of curcumin and bicalutamide enhanced the growth inhibition of androgen-independent prostate cancer cells through SAPK/JNK and MEK/ERK1/2-mediated targeting NF-κB/p65 and MUC1-CJing LiPMC4446835https://pmc.ncbi.nlm.nih.gov/articles/PMC4446835/0
2015Synergistic effect of curcumin on epigallocatechin gallate-induced anticancer action in PC3 prostate cancer cellsDae-Woon EomPMC4576954https://pmc.ncbi.nlm.nih.gov/articles/PMC4576954/0
2015Curcumin inhibits aerobic glycolysis and induces mitochondrial-mediated apoptosis through hexokinase II in human colorectal cancer cells in vitroKe Wang25229889https://pubmed.ncbi.nlm.nih.gov/25229889/0
2015Anti-cancer activity of curcumin loaded nanoparticles in prostate cancerMurali M YallapuPMC4220612https://pmc.ncbi.nlm.nih.gov/articles/PMC4220612/0
2015Effect of curcuminoids on oxidative stress: A systematic review and meta-analysis of randomized controlled trialsAmirhossein Sahebkarhttps://www.sciencedirect.com/science/article/pii/S17564646150000920
2015Curcumin improves the efficacy of cisplatin by targeting cancer stem-like cells through p21 and cyclin D1-mediated tumour cell inhibition in non-small cell lung cancer cell linesPUTERI BAHARUDDINPMC4699625https://pmc.ncbi.nlm.nih.gov/articles/PMC4699625/0
2015Curcumin suppresses stem-like traits of lung cancer cells via inhibiting the JAK2/STAT3 signaling pathwayLICHuAN Wuhttps://www.spandidos-publications.com/10.3892/or.2015.4279/download0
2015Targeting colorectal cancer stem cells using curcumin and curcumin analogues: insights into the mechanism of the therapeutic efficacyThamil Selvee RamasamyPMC4599442https://pmc.ncbi.nlm.nih.gov/articles/PMC4599442/0
2015Curcumin and epigallocatechin gallate inhibit the cancer stem cell phenotype via down-regulation of STAT3-NFκB signalingSeyung S ChungPMC4290892https://pmc.ncbi.nlm.nih.gov/articles/PMC4290892/0
2015Red Light Combined with Blue Light Irradiation Regulates Proliferation and Apoptosis in Skin Keratinocytes in Combination with Low Concentrations of CurcuminTianhui NiuPMC4575166https://pmc.ncbi.nlm.nih.gov/articles/PMC4575166/0
2014Comparative absorption of curcumin formulationsRalf JägerPMC3918227https://pmc.ncbi.nlm.nih.gov/articles/PMC3918227/0
2014Effects of curcumin (Curcuma longa) on learning and spatial memory as well as cell proliferation and neuroblast differentiation in adult and aged mice by upregulating brain-derived neurotrophic factor and CREB signalingSung Min NamPMC4060834https://pmc.ncbi.nlm.nih.gov/articles/PMC4060834/0
2014Effects of curcumin on learning and memory deficits, BDNF, and ERK protein expression in rats exposed to chronic unpredictable stressDexiang Liu24914461https://pubmed.ncbi.nlm.nih.gov/24914461/0
2014Curcumin and lung cancer--a reviewHiren J Mehta24840628https://pubmed.ncbi.nlm.nih.gov/24840628/0
2014Targeting cancer stem cells by curcumin and clinical applicationsYanyan Li24463298https://pubmed.ncbi.nlm.nih.gov/24463298/0
2014Flavonoid-induced glutathione depletion: Potential implications for cancer treatmentRemy KachadourianPMC3983951https://pmc.ncbi.nlm.nih.gov/articles/PMC3983951/0
2014Curcumin: a promising agent targeting cancer stem cellsShufei Zang24851881https://pubmed.ncbi.nlm.nih.gov/24851881/0
2014Curcumin analogues with high activity for inhibiting human prostate cancer cell growth and androgen receptor activationDai-Ying Zhou25060817https://pubmed.ncbi.nlm.nih.gov/25060817/0
2014Curcumin Inhibits Prostate Cancer Bone Metastasis by Up-Regulating Bone Morphogenic Protein-7 in VivoThambi DoraiPMC4060744https://pmc.ncbi.nlm.nih.gov/articles/PMC4060744/0
2014Curcumin inhibits expression of inhibitor of DNA binding 1 in PC3 cells and xenograftsXiao-Ling Yu24606484https://pubmed.ncbi.nlm.nih.gov/24606484/0
2014Oxidative Metabolites of Curcumin Poison Human Type II TopoisomerasesAdam C KetronPMC3541001https://pmc.ncbi.nlm.nih.gov/articles/PMC3541001/0
2013Curcumin Suppresses Metastasis via Sp-1, FAK Inhibition, and E-Cadherin Upregulation in Colorectal CancerChun-Chieh ChenPMC3736531https://pmc.ncbi.nlm.nih.gov/articles/PMC3736531/0
2013Curcumin: an orally bioavailable blocker of TNF and other pro-inflammatory biomarkersBharat B AggarwalPMC3753829https://pmc.ncbi.nlm.nih.gov/articles/PMC3753829/0
2013Osteopontin and MMP9: Associations with VEGF Expression/Secretion and Angiogenesis in PC3 Prostate Cancer CellsPMC3730333https://pmc.ncbi.nlm.nih.gov/articles/PMC3730333/0
2013Curcumin Suppresses Malignant Glioma Cells Growth and Induces Apoptosis by Inhibition of SHH/GLI1 Signaling Pathway in Vitro and VivoWen‐Zhong Duhttps://pmc.ncbi.nlm.nih.gov/articles/PMC6493544/0
2013Curcumin induces cell cycle arrest and apoptosis of prostate cancer cells by regulating the expression of IkappaBalpha, c-Jun and androgen receptorHui Guo23875250https://pubmed.ncbi.nlm.nih.gov/23875250/0
2013Curcumin-targeting pericellular serine protease matriptase role in suppression of prostate cancer cell invasion, tumor growth, and metastasisTai-Shan Cheng23466486https://pubmed.ncbi.nlm.nih.gov/23466486/0
2013Visible light and/or UVA offer a strong amplification of the anti-tumor effect of curcuminAugust BerndPMC3928504https://pmc.ncbi.nlm.nih.gov/articles/PMC3928504/0
2013Crosstalk from survival to necrotic death coexists in DU-145 cells by curcumin treatmentDongxu Kang23353183https://pubmed.ncbi.nlm.nih.gov/23353183/0
2013Enhanced apoptotic effects by the combination of curcumin and methylseleninic acid: potential role of Mcl-1 and FAKXiao Guo22711297https://pubmed.ncbi.nlm.nih.gov/22711297/0
2012Curcumin inhibits prostate cancer metastasis in vivo by targeting the inflammatory cytokines CXCL1 and -2Peter H Killian23042094https://pubmed.ncbi.nlm.nih.gov/23042094/0
2012Curcumin targeting the thioredoxin system elevates oxidative stress in HeLa cellsWenqing Cai22634334https://pubmed.ncbi.nlm.nih.gov/22634334/0
2012Oral curcumin for Alzheimer's disease: tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled studyJohn M RingmanPMC3580400https://pmc.ncbi.nlm.nih.gov/articles/PMC3580400/0
2011Thioredoxin reductase-1 (TxnRd1) mediates curcumin-induced radiosensitization of squamous carcinoma cellsPrashanthi JavvadiPMC2831122https://pmc.ncbi.nlm.nih.gov/articles/PMC2831122/0
2011Identification of curcumin derivatives as human glyoxalase I inhibitors: A combination of biological evaluation, molecular docking, 3D-QSAR and molecular dynamics simulation studiesMinggui Yuanhttps://www.researchgate.net/publication/49758037_Identification_of_curcumin_derivatives_as_human_glyoxalase_I_inhibitors_A_combination_of_biological_evaluation_molecular_docking_3D-QSAR_and_molecular_dynamics_simulation_studies0
2011Epigenetic CpG Demethylation of the Promoter and Reactivation of the Expression of Neurog1 by Curcumin in Prostate LNCaP CellsLimin ShuPMC3231852https://pmc.ncbi.nlm.nih.gov/articles/PMC3231852/0
2011Shattering the underpinnings of neoplastic architecture in LNCap: synergistic potential of nutraceuticals in dampening PDGFR/EGFR signaling and cellular proliferationAmmad Ahmad Farooqi 22070051https://pubmed.ncbi.nlm.nih.gov/22070051/0
2011Anti-tumor activity of curcumin against androgen-independent prostate cancer cells via inhibition of NF-κB and AP-1 pathway in vitroShuanglin Liu21823017https://pubmed.ncbi.nlm.nih.gov/21823017/0
2010Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemoprotector and radioprotector for normal organsAjay Goel20924967https://pubmed.ncbi.nlm.nih.gov/20924967/0
2010Curcumin-induced apoptosis in PC3 prostate carcinoma cells is caspase-independent and involves cellular ceramide accumulation and damage to mitochondriaAshley L Hilchie20358476https://pubmed.ncbi.nlm.nih.gov/20358476/0
2010Combined inhibitory effects of soy isoflavones and curcumin on the production of prostate-specific antigenHisamitsu Ide20503397https://pubmed.ncbi.nlm.nih.gov/20503397/0
2010Epigenetic targets of bioactive dietary components for cancer prevention and therapySyed M MeeranPMC3024548https://pmc.ncbi.nlm.nih.gov/articles/PMC3024548/#Sec110
2010Curcumin inhibits the Sonic Hedgehog signaling pathway and triggers apoptosis in medulloblastoma cellsMaha H Elamin20025076https://pubmed.ncbi.nlm.nih.gov/20025076/0
2010Curcumin produces neuroprotective effects via activating brain-derived neurotrophic factor/TrkB-dependent MAPK and PI-3K cascades in rodent cortical neuronsRui Wang19879308https://pubmed.ncbi.nlm.nih.gov/19879308/0
2010Binding of curcumin with glyoxalase I: Molecular docking, molecular dynamics simulations, and kinetics analysisMing Liuhttps://www.semanticscholar.org/paper/Binding-of-curcumin-with-glyoxalase-I%3A-Molecular-Liu-Yuan/71d6e398dbf5f7c92ad4b2d5232199e908a98a770
2010Curcumin interrupts the interaction between the androgen receptor and Wnt/β-catenin signaling pathway in LNCaP prostate cancer cellsH Y Choi20680030https://pubmed.ncbi.nlm.nih.gov/20680030/0
2010Inhibition of NF B and Pancreatic Cancer Cell and Tumor Growth by Curcumin Is Dependent on Specificity Protein Down-regulationIndira Jutooruhttps://www.researchgate.net/publication/44664092_Inhibition_of_NF_B_and_Pancreatic_Cancer_Cell_and_Tumor_Growth_by_Curcumin_Is_Dependent_on_Specificity_Protein_Down-regulation0
2010N-acetyl cysteine mitigates curcumin-mediated telomerase inhibition through rescuing of Sp1 reduction in A549 cellsI-Lun Hsinhttps://www.x-mol.net/paper/article/21463510
2009Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancerJ Shaikh19491009https://pubmed.ncbi.nlm.nih.gov/19491009/0
2008Inhibition of thioredoxin reductase by curcumin analogsZhong Liu18685195https://pubmed.ncbi.nlm.nih.gov/18685195/0
2008Synthesis and evaluation of curcumin analogues as potential thioredoxin reductase inhibitorsXu Qiu18678491https://pubmed.ncbi.nlm.nih.gov/18678491/0
2008Curcumin inhibits Akt/mammalian target of rapamycin signaling through protein phosphatase-dependent mechanismSiwang YuPMC2596943https://pmc.ncbi.nlm.nih.gov/articles/PMC2596943/0
2008NEUROPROTECTIVE EFFECTS OF CURCUMINGreg M ColePMC2527619https://pmc.ncbi.nlm.nih.gov/articles/PMC2527619/0
2008Curcumin inhibits the expression of vascular endothelial growth factor and androgen-independent prostate cancer cell line PC-3 in vitroGang Deng18390174https://pubmed.ncbi.nlm.nih.gov/18390174/0
2008Curcumin Inhibits Glyoxalase 1—A Possible Link to Its Anti-Inflammatory and Anti-Tumor ActivityThore SantelPMC2567432https://pmc.ncbi.nlm.nih.gov/articles/PMC2567432/0
2008Curcumin sensitizes TRAIL-resistant xenografts: molecular mechanisms of apoptosis, metastasis and angiogenesisSharmila ShankarPMC2249593https://pmc.ncbi.nlm.nih.gov/articles/PMC2249593/0
2008The effect of curcumin (turmeric) on Alzheimer's disease: An overviewShrikant MishraPMC2781139https://pmc.ncbi.nlm.nih.gov/articles/PMC2781139/0
2007Low concentrations of curcumin induce growth arrest and apoptosis in skin keratinocytes only in combination with UVA or visible lightJadranka Dujic17410200https://pubmed.ncbi.nlm.nih.gov/17410200/0
2007Role of pro-oxidants and antioxidants in the anti-inflammatory and apoptotic effects of curcumin (diferuloylmethane)Santosh K. Sandurhttps://www.sciencedirect.com/science/article/abs/pii/S08915849070032550
2007Chemopreventive anti-inflammatory activities of curcumin and other phytochemicals mediated by MAP kinase phosphatase-5 in prostate cellsLarisa Nonn17151092https://pubmed.ncbi.nlm.nih.gov/17151092/0
2007Curcumin, a Dietary Component, Has Anticancer, Chemosensitization, and Radiosensitization Effects by Down-regulating the MDM2 Oncogene through the PI3K/mTOR/ETS2 PathwayMao Lihttps://aacrjournals.org/cancerres/article/67/5/1988/534039/Curcumin-a-Dietary-Component-Has-Anticancer0
2007Curcumin Induces High Levels of Topoisomerase I− and II−DNA Complexes in K562 Leukemia CellsMiguel López-Lázarohttps://pubs.acs.org/doi/10.1021/np070332i0
2006Curcumin-Artemisinin Combination Therapy for MalariaDalavaikodihalli Nanjaiah Nandakumarhttps://journals.asm.org/doi/full/10.1128/aac.50.5.1859-1860.20060
2006The effects of curcumin on the invasiveness of prostate cancer in vitro and in vivoJ H Hong16389264https://pubmed.ncbi.nlm.nih.gov/16389264/0
2005Use of cancer chemopreventive phytochemicals as antineoplastic agents Maurizio D'Incalci 16257798https://pubmed.ncbi.nlm.nih.gov/16257798/0
2004Effect of curcumin on normal and tumor cells: Role of glutathione and bcl-2 Christine Syng-aihttps://aacrjournals.org/mct/article/3/9/1101/234394/Effect-of-curcumin-on-normal-and-tumor-cells-Role0
2002Curcumin down-regulates AR gene expression and activation in prostate cancer cell linesKeiichiro Nakamura12239622https://pubmed.ncbi.nlm.nih.gov/12239622/0
2001The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouseGiselle P LimPMC6762797https://pmc.ncbi.nlm.nih.gov/articles/PMC6762797/0
1999Inhibitory effect of curcumin, a food spice from turmeric, on platelet-activating factor- and arachidonic acid-mediated platelet aggregation through inhibition of thromboxane formation and Ca2+ signalingBukhtiar H Shahhttps://www.sciencedirect.com/science/article/abs/pii/S00062952990020630
1998Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteersG Shoba9619120https://pubmed.ncbi.nlm.nih.gov/9619120/0
1995Activation of Transcription Factor NF-κB Is Suppressed by Curcumin (Diferuloylmethane)Sanjaya Singhhttps://www.jbc.org/article/S0021-9258%2818%2987080-6/fulltext0
2015Antimutagenic Effect of the Ellagic Acid and Curcumin CombinationsZoubková Hhttps://www.hilarispublisher.com/open-access/antimutagenic-effect-of-the-ellagic-acid-and-curcumin-combinations-2161-0525-1000296.pdf0
2007The inhibition of human glutathione S-transferases activity by plant polyphenolic compounds ellagic acid and curcuminRose Hayeshihttps://www.sciencedirect.com/science/article/abs/pii/S02786915060024070
2024Targeting Cancer Hallmarks with Epigallocatechin Gallate (EGCG): Mechanistic Basis and Therapeutic TargetsWamidh H TalibPMC10976257https://pmc.ncbi.nlm.nih.gov/articles/PMC10976257/0
2020The “Big Five” Phytochemicals Targeting Cancer Stem Cells: Curcumin, EGCG, Sulforaphane, Resveratrol and GenisteinCord Naujokathttps://www.researchgate.net/publication/339583519_The_Big_Five_Phytochemicals_Targeting_Cancer_Stem_Cells_Curcumin_EGCG_Sulforaphane_Resveratrol_and_Genistein0
2018Case Report of Unexpectedly Long Survival of Patient With Chronic Lymphocytic Leukemia: Why Integrative Methods MatterGregory HaskinPMC6380985https://pmc.ncbi.nlm.nih.gov/articles/PMC6380985/0
2019The Additive Effects of Low Dose Intake of Ferulic Acid, Phosphatidylserine and Curcumin, Not Alone, Improve Cognitive Function in APPswe/PS1dE9 Transgenic MiceMichiaki Okuda31582657https://pubmed.ncbi.nlm.nih.gov/31582657/0
2013Differential effects of garcinol and curcumin on histone and p53 modifications in tumour cellsHilary M CollinsPMC3583671https://pmc.ncbi.nlm.nih.gov/articles/PMC3583671/0
2012Synergistic effect of garcinol and curcumin on antiproliferative and apoptotic activity in pancreatic cancer cellsMansi A ParasramkaPMC3366245https://pmc.ncbi.nlm.nih.gov/articles/PMC3366245/0
2001Induction of apoptosis by garcinol and curcumin through cytochrome c release and activation of caspases in human leukemia HL-60 cellsM H Pan11312881https://pubmed.ncbi.nlm.nih.gov/11312881/0
2022Targeting cancer stem cells by nutraceuticals for cancer therapyMan Chuhttps://www.sciencedirect.com/science/article/abs/pii/S1044579X210020290
2010Common botanical compounds inhibit the hedgehog signaling pathway in prostate cancerAnna Slusarz20395211https://pubmed.ncbi.nlm.nih.gov/20395211/0
2020Thioredoxin-dependent system. Application of inhibitorsAnna Jastrząbhttps://www.tandfonline.com/doi/full/10.1080/14756366.2020.1867121#abstract0
2014Subverting ER-Stress towards Apoptosis by Nelfinavir and Curcumin Coexposure Augments Docetaxel Efficacy in Castration Resistant Prostate Cancer CellsAditi MathurPMC4133210https://pmc.ncbi.nlm.nih.gov/articles/PMC4133210/0
2022Synthetic Pathways and the Therapeutic Potential of Quercetin and CurcuminAseel Ali HasanPMC9696847https://pmc.ncbi.nlm.nih.gov/articles/PMC9696847/0
2016Sensitization of androgen refractory prostate cancer cells to anti-androgens through re-expression of epigenetically repressed androgen receptor - Synergistic action of quercetin and curcuminVikas Sharma27132804https://pubmed.ncbi.nlm.nih.gov/27132804/0
2014Combination Effects of Quercetin, Resveratrol and Curcumin on In Vitro Intestinal AbsorptionKaleb C. Lund, PhDhttps://restorativemedicine.org/wp-content/uploads/2014/04/Combination-Effects-of-Quercetin-Resveratrol-and-Curcumin.pdf0
2006Anti- and pro-oxidant effects of oxidized quercetin, curcumin or curcumin-related compounds with thiols or ascorbate as measured by the induction period methodSeiichiro Fujisawa16433026https://pubmed.ncbi.nlm.nih.gov/16433026/0
2014Modulators of estrogen receptor inhibit proliferation and migration of prostate cancer cellsMargherita Piccolella24184124https://pubmed.ncbi.nlm.nih.gov/24184124/0
2025Physiological modulation of cancer stem cells by natural compounds: Insights from preclinical modelsAnkita Thakurhttps://www.sciencedirect.com/science/article/abs/pii/S29501997250030390
2025Targeting aging pathways with natural compounds: a review of curcumin, epigallocatechin gallate, thymoquinone, and resveratrolMohamed AhmedPMC12225039https://pmc.ncbi.nlm.nih.gov/articles/PMC12225039/0
2023The effect of resveratrol, curcumin and quercetin combination on immuno-suppression of tumor microenvironment for breast tumor-bearing miceChenchen Lihttps://www.nature.com/articles/s41598-023-39279-z0
2023The effect of resveratrol, curcumin and quercetin combination on immuno-suppression of tumor microenvironment for breast tumor-bearing miceChenchen LiPMC10432483https://pmc.ncbi.nlm.nih.gov/articles/PMC10432483/0
2019Development of Acetylcholinesterase (AChE) Inhibitorhttps://www.ukessays.com/essays/sciences/development-of-acetylcholinesterase-ache-inhibitor.php0
2021Co-delivery of Salinomycin and Curcumin for Cancer Stem Cell Treatment by Inhibition of Cell Proliferation, Cell Cycle Arrest, and Epithelial–Mesenchymal TransitionYongmei ZhaoPMC7843432https://pmc.ncbi.nlm.nih.gov/articles/PMC7843432/0
2024Curcumin-Modified Selenium Nanoparticles Improve S180 Tumour Therapy in Mice by Regulating the Gut Microbiota and ChemotherapyRong Zhanghttps://www.tandfonline.com/doi/full/10.2147/IJN.S4766860
2022Identification of Natural Compounds as Inhibitors of Pyruvate Kinase M2 for Cancer TreatmentIqra SarfrazPMC9609560https://pmc.ncbi.nlm.nih.gov/articles/PMC9609560/0
2015Combination of α-Tomatine and Curcumin Inhibits Growth and Induces Apoptosis in Human Prostate Cancer CellsHuarong HuangPMC4668011https://pmc.ncbi.nlm.nih.gov/articles/PMC4668011/0
2020Thymoquinone and curcumin combination protects cisplatin-induced kidney injury, nephrotoxicity by attenuating NFκB, KIM-1 and ameliorating Nrf2/HO-1 signallingMajed Al Fayihttps://www.tandfonline.com/doi/full/10.1080/1061186X.2020.17221360
2017Combinatorial treatment with natural compounds in prostate cancer inhibits prostate tumor growth and leads to key modulations of cancer cell metabolismAlessia LodiPMC5705091https://pmc.ncbi.nlm.nih.gov/articles/PMC5705091/0