tbResList Print — DHA Docosahexaenoic Acid

Filters: qv=70, qv2=%, rfv=%

Product

DHA Docosahexaenoic Acid
Description: <p><b>Docosahexaenoic Acid (DHA)</b> = long-chain omega-3 polyunsaturated fatty acid (22:6n-3); major structural lipid of neuronal membranes and retina; dietary sources: fatty fish (salmon, sardine), algae oils; often combined with EPA in supplements.<br>
<b>Primary mechanisms (conceptual rank):</b><br>
1) Membrane incorporation → alters fluidity, lipid rafts, receptor signaling domains.<br>
2) Pro-resolving lipid mediator precursor (resolvins, protectins, maresins) → inflammation resolution.<br>
3) Mitochondrial modulation → can ↑ lipid-ROS in cancer (pro-ferroptotic bias) yet stabilize neuronal bioenergetics.<br>
4) Synaptic function / neurogenesis support (BDNF-linked, model-dependent).<br>
<b>PK / bioavailability:</b> absorbed with dietary fat; re-esterified into phospholipids; crosses BBB; brain incorporation is gradual (weeks–months); higher RBC-DHA correlates with intake.<br>
<b>In-vitro vs systemic exposure:</b> many cancer studies use ≥25–100 µM free DHA; achievable plasma levels from oral dosing are typically lower and largely esterified, limiting direct comparability.<br>
<b>Clinical evidence status:</b> strong cardiometabolic data; oncology evidence largely preclinical/adjunct; AD/MCI data mixed but mechanistically coherent.</p>


<b>Omega-3 fatty acid</b> found in cold-water fish and some supplements.<br>
– DHA is a major structural component of cell membranes in the brain, retina, and other tissues and plays a critical role in neural function and development.<br>
<br>
Role in Cancer<br>
<br>
Anti-Inflammatory Effects: – A reduction in chronic inflammation<br>
Modulation of Cell Proliferation and Apoptosis<br>
 –Omega-3 fatty acids appear to influence cell cycle regulation and apoptosis (programmed cell death). By enhancing apoptosis and inhibiting proliferation, these agents may limit the growth of cancer cells.<br>
Alteration of Membrane Composition and Signaling<br>
 –May affect processes such as angiogenesis (formation of new blood vessels), cell adhesion, and metastasis in cancer cells.<br>
Impact on Oxidative Stress<br>
 –Although omega-3 fatty acids are prone to oxidation, their metabolites can have antioxidant properties. Balancing oxidation and antioxidant defenses is important in preventing oxidative stress—a known contributor to DNA damage and cancer development.<br>
Anti-Angiogenic Effects<br>
 – Some studies have shown that EPA and DHA can inhibit angiogenesis.<br>



<br>
<h3>Docosahexaenoic Acid (DHA) — Cancer-Relevant Pathways</h3>
<table>
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells</th>
<th>Normal Cells</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>Lipid peroxidation / Ferroptosis axis</td>
<td>↑ (pro-ferroptotic bias; dose-dependent)</td>
<td>↔ / mild ↑ (buffered)</td>
<td>P→R</td>
<td>PUFA enrichment → lipid-ROS susceptibility</td>
<td>DHA increases membrane PUFA content; tumors with weak GPX4 defenses more vulnerable (model-dependent).</td>
</tr>

<tr>
<td>2</td>
<td>ROS tone</td>
<td>↑ (high concentration only)</td>
<td>↔</td>
<td>P→R</td>
<td>Oxidative stress induction</td>
<td>Free DHA oxidation can elevate ROS in cancer; physiologic dosing less pronounced.</td>
</tr>

<tr>
<td>3</td>
<td>Inflammation (NF-κB / COX-2)</td>
<td>↓</td>
<td>↓</td>
<td>R→G</td>
<td>Anti-inflammatory / pro-resolving</td>
<td>Via resolvins/protectins; may reduce tumor-promoting inflammation.</td>
</tr>

<tr>
<td>4</td>
<td>Membrane signaling / lipid rafts</td>
<td>↓ oncogenic signaling (context-dependent)</td>
<td>Modulates receptor clustering</td>
<td>R→G</td>
<td>Alters RTK / Akt pathway localization</td>
<td>Changes raft composition; can dampen EGFR/PI3K signaling (model-dependent).</td>
</tr>

<tr>
<td>5</td>
<td>HIF-1α / hypoxia signaling</td>
<td>↓ (model-dependent)</td>
<td>↔</td>
<td>G</td>
<td>Reduced hypoxic adaptation</td>
<td>Reported in some solid tumor models; not universal.</td>
</tr>

<tr>
<td>6</td>
<td>NRF2 axis</td>
<td>↔ / ↑ (adaptive)</td>
<td>↑ (protective)</td>
<td>G</td>
<td>Antioxidant adaptation</td>
<td>Lipid peroxidation may secondarily activate NRF2; can limit ferroptosis in resistant tumors.</td>
</tr>

<tr>
<td>7</td>
<td>Ca²⁺ signaling / ER stress</td>
<td>↑ (high concentration only)</td>
<td>↔</td>
<td>R</td>
<td>Stress-induced apoptosis (select models)</td>
<td>High free DHA can perturb ER Ca²⁺ handling; typically supra-physiologic exposure.</td>
</tr>

<tr>
<td>8</td>
<td>Clinical Translation Constraint</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Adjunct potential</td>
<td>In-vitro dosing often exceeds systemic free DHA; best studied as chemo-sensitizing adjunct rather than monotherapy.</td>
</tr>
</table>

<p><b>TSF Legend:</b> P: 0–30 min | R: 30 min–3 hr | G: &gt;3 hr</p>




<br>
<h3>Docosahexaenoic Acid (DHA) — Alzheimer’s Disease–Relevant Axes</h3>
<table>
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cells (neurons/glia)</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>Membrane fluidity / synaptic integrity</td>
<td>↑</td>
<td>G</td>
<td>Synaptic stabilization</td>
<td>DHA major neuronal phospholipid; supports dendritic spine density and neurotransmission.</td>
</tr>

<tr>
<td>2</td>
<td>Neuroinflammation resolution</td>
<td>↓ (pro-resolving)</td>
<td>R→G</td>
<td>Resolvins / protectins</td>
<td>Promotes resolution rather than suppression of inflammation; relevant in microglial activation.</td>
</tr>

<tr>
<td>3</td>
<td>Mitochondrial efficiency</td>
<td>↑ (stabilizing)</td>
<td>R→G</td>
<td>Bioenergetic support</td>
<td>Improves membrane dynamics of mitochondria; may enhance ATP coupling (model-dependent).</td>
</tr>

<tr>
<td>4</td>
<td>Aβ processing / amyloid burden</td>
<td>↓ (preclinical)</td>
<td>G</td>
<td>Modulates APP cleavage</td>
<td>Animal/cell data supportive; human trials mixed, stronger in early/MCI stages.</td>
</tr>

<tr>
<td>5</td>
<td>BDNF / neuroplasticity</td>
<td>↑ (model-dependent)</td>
<td>G</td>
<td>Neurotrophic support</td>
<td>Reported increase in BDNF signaling in experimental models.</td>
</tr>

<tr>
<td>6</td>
<td>Clinical Translation Constraint</td>
<td>—</td>
<td>—</td>
<td>Stage-dependent benefit</td>
<td>MCI/early AD may benefit; established AD shows limited cognitive reversal in RCTs; incorporation requires sustained intake.</td>
</tr>
</table>

<p><b>TSF Legend:</b> P: 0–30 min | R: 30 min–3 hr | G: &gt;3 hr</p>

Pathway results for Effect on Cancer / Diseased Cells

Mitochondria & Bioenergetics

ATP↓, 1,   OCR↓, 1,  

Core Metabolism/Glycolysis

p‑AMPK↑, 1,   cMyc↓, 1,   ECAR↓, 1,   FASN↓, 1,   GlucoseCon↓, 1,   lactateProd↓, 1,   LDH↓, 1,   p‑PCK1↓, 1,  

Cell Death

Akt↓, 1,   BAD↓, 1,  

Transcription & Epigenetics

other↑, 1,  

Cell Cycle & Senescence

cycD1/CCND1↓, 1,   TumCCA↑, 1,  

Proliferation, Differentiation & Cell State

EMT↓, 1,   p‑ERK↓, 1,   GREM1↓, 1,   TCF↓, 1,   TumCG↓, 1,   Wnt/(β-catenin)↓, 1,  

Migration

LEF1↓, 1,   SDC1↑, 1,   TumCMig↓, 1,   TumMeta↓, 1,   β-catenin/ZEB1↓, 1,  

Angiogenesis & Vasculature

Hif1a↓, 1,  

Barriers & Transport

GLUT1↓, 1,  

Immune & Inflammatory Signaling

PD-L1↓, 1,  

Clinical Biomarkers

LDH↓, 1,   PD-L1↓, 1,  
Total Targets: 31

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

ROS↓, 1,   SOD↑, 1,  

Mitochondria & Bioenergetics

ATP↑, 1,  

Core Metabolism/Glycolysis

CREB↑, 2,  

Cell Death

Apoptosis↓, 1,  

Immune & Inflammatory Signaling

COX2↓, 1,   IL6↓, 1,   NF-kB↓, 1,   NF-kB↑, 1,   PGE2↓, 1,  

Synaptic & Neurotransmission

BDNF↑, 2,  

Drug Metabolism & Resistance

eff↑, 1,  

Clinical Biomarkers

IL6↓, 1,  

Functional Outcomes

cognitive↑, 2,   toxicity↓, 1,  
Total Targets: 15

Research papers

Year Title Authors PMID Link Flag
2022Docosahexaenoic acid reverses PD-L1-mediated immune suppression by accelerating its ubiquitin-proteasome degradationHan Zhang36309154https://pubmed.ncbi.nlm.nih.gov/36309154/0
2020DHA inhibits Gremlin-1-induced epithelial-to-mesenchymal transition via ERK suppression in human breast cancer cellsNam Ji SungPMC7087330https://pmc.ncbi.nlm.nih.gov/articles/PMC7087330/0
2014Docosahexaenoic Acid Attenuates Breast Cancer Cell Metabolism and the Warburg Phenotype by Targeting Bioenergetic FunctionMichael Mouradianhttps://www.researchgate.net/publication/261568779_Docosahexaenoic_Acid_Attenuates_Breast_Cancer_Cell_Metabolism_and_the_Warburg_Phenotype_by_Targeting_Bioenergetic_Function0
2014Docosahexaenoic acid inhibited the Wnt/β-catenin pathway and suppressed breast cancer cells in vitro and in vivoMeilan Xue24290517https://pubmed.ncbi.nlm.nih.gov/24290517/0
2011The salutary effects of DHA dietary supplementation on cognition, neuroplasticity, and membrane homeostasis after brain traumaAiguo WuPMC3191367https://pmc.ncbi.nlm.nih.gov/articles/PMC3191367/0
2010Syndecan-1-Dependent Suppression of PDK1/Akt/Bad Signaling by Docosahexaenoic Acid Induces Apoptosis in Prostate CancerYunping HuPMC2950332https://pmc.ncbi.nlm.nih.gov/articles/PMC2950332/0
2009DHA and EPA Down-regulate COX-2 Expression through Suppression of NF-kappaB Activity in LPS-treated Human Umbilical Vein Endothelial CellsSoon Ae LeePMC2766710https://pmc.ncbi.nlm.nih.gov/articles/PMC2766710/0
2004Dietary omega-3 fatty acids normalize BDNF levels, reduce oxidative damage, and counteract learning disability after traumatic brain injury in ratsAiguo Wu15672635https://pubmed.ncbi.nlm.nih.gov/15672635/0
2016Dietary Crude Lecithin Increases Systemic Availability of Dietary Docosahexaenoic Acid with Combined Intake in RatsNick van WijkPMC4903106https://pmc.ncbi.nlm.nih.gov/articles/PMC4903106/0
2022A Synergistic Combination of DHA, Luteolin, and Urolithin A Against Alzheimer’s DiseaseDona P W JayatungaPMC8890506https://pmc.ncbi.nlm.nih.gov/articles/PMC8890506/0