tbResList Print — EA Ellagic acid

Filters: qv=74, qv2=%, rfv=%

Product

EA Ellagic acid
Description: <b>Polyphenol</b> found in fruits, vegetables, nuts and some mushrooms. Strawberries, raspberries, blackberries, cherries and walnuts, green tea and red wine. Pomegranate arils are a well known source.<br>
Ellagic acid (EA) is a dietary polyphenol found in berries and pomegranate-related foods, with reported anti-inflammatory (NF-κB↓), survival-pathway suppression (PI3K/AKT↓), and anti-proliferative effects including G1 arrest and apoptosis in many cancer models. A key practical nuance is that EA/ellagitannins are extensively transformed by gut microbiota into urolithins, which are more bioavailable and may account for a large share of systemic effects.<br>
<br>
- Ellagitannins are high molecular weight polyphenols with a complex structure that includes one or more HHDP groups attached to a sugar.<br>
- Ellagic Acid is the simpler, bioactive compound released when the HHDP groups in ellagitannins cyclize during hydrolysis.<br>
- one best source is raspberries. 100g gives ~50mg(reasonable dose)<br>
- Ellagic acid has very poor oral bioavailability<br>
- Peak plasma EA after high oral intake is typically: <50–100 nM, often much lower, this is far below concentrations used in many in-vitro anticancer studies (5–50 µM).<br>
- efficacy depends on gut metabolism (ie ability to produce Urolithin A)<br>
- also look at <a href="https://nestronics.ca/dbx/tbProdEdit.php?pid=383">Urolithin</a> supplements<br>
<br>
Pathways:<br>
Apoptosis Regulation: (Bax, Bad) (Bcl-2, Bcl-xL) <br>
Cell Cycle Arrest: G0/G1 or G2/M phases)<br>
NF-κB (inhibit):<br>
MAPK Pathways: (including ERK1/2, JNK, and p38 MAPK) <br>
PI3K/Akt/mTOR: might downregulate this pathway<br>
p53 Pathway: may influence the expression or activation of p53<br>
Oxidative Stress and Nrf2 Pathway:exhibits antioxidant properties, <ROS, may modulate the Nrf2
Angiogenesis Inhibition<br>
<br>
Summary:<br>
- Anti-oxidant and metal chelating<br>
- with some evidence it can induce ROS in cancer tumor conditions (mitochondrial stress, redox-unstable cells) <br>
- reported synergy with Curcumin<br>
- Reported, reduced the viability of cancer cells at a concentration of 10 µmol/L, while in healthy cells, this effect was observed only at a concentration of 200 µmol/L<br>
- Pomegranate juice (PJ) (180 ml) containing EA (25 mg) and ETs (318 mg, as punicalagins, the major fruit ellagitannin). Plasma concentration (31.9 ng/ml) after 1 h post-ingestion but was rapidly eliminated by 4 h. (Hence might be difficult to consume enough EA!!!! to match vitro requirements)<br>
- Increased the expression of p53 and p21 proteins as well as markers of apoptosis (Bax and caspase-3), and decreases Bcl-2, NF-кB, and iNOS<br>
- EA has restricted bioavailability, primarily due to its hydrophobic nature and very low water solubility.<br>
- Processing methods can alter EA content; peel extraction often increases measured EA, while prolonged storage/freezing may reduce levels.<br>
<br>
Total ellagic acid equivalents (free + bound).<br>
Punica granatum L. Pomegranate 700mg/kg (arils), 38700mg/kg(mesocarp)<br>
Rubus idaeus L. Raspberry 2637–3309mg/kg <br>
jaglandaceae Walnut 410mg/kg(freeEA) 8230mg/kg(totalEA)<br>

<br>


<!-- Ellagic Acid (EA) — Time-Scale Flagged Pathway Table (web-page ready) -->
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells</th>
<th>Normal Cells</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>NF-κB inflammatory transcription</td>
<td>NF-κB ↓; pro-inflammatory cytokine programs ↓ (context)</td>
<td>Inflammation tone ↓</td>
<td>R, G</td>
<td>Anti-inflammatory / anti-survival transcription</td>
<td>EA is repeatedly reported to suppress NF-κB activity and reduce inflammatory cytokine expression in tumor and inflammation models.</td>
</tr>

<tr>
<td>2</td>
<td>PI3K → AKT (± mTOR) survival axis</td>
<td>PI3K/AKT ↓ (reported); proliferation ↓</td>
<td>↔</td>
<td>R, G</td>
<td>Growth/survival suppression</td>
<td>Multiple cancer studies/reviews report EA-associated suppression of PI3K/AKT signaling linked to G1 arrest and apoptosis.</td>
</tr>

<tr>
<td>3</td>
<td>Cell-cycle control (G1 arrest emphasis)</td>
<td>Cell-cycle arrest ↑ (often G1); Cyclin/CDK programs ↓ (context)</td>
<td>↔</td>
<td>G</td>
<td>Cytostasis</td>
<td>Frequently observed as a later phenotype-level outcome; commonly reported alongside reduced proliferation.</td>
</tr>

<tr>
<td>4</td>
<td>Intrinsic apoptosis (mitochondrial / caspase-linked)</td>
<td>Apoptosis ↑; caspase activation ↑ (context)</td>
<td>↔ (generally less activation)</td>
<td>G</td>
<td>Apoptosis execution</td>
<td>Often downstream of survival signaling suppression and/or stress signaling; reported across multiple tumor types.</td>
</tr>

<tr>
<td>5</td>
<td>Nrf2 antioxidant response (Keap1/Nrf2/ARE)</td>
<td>Stress adaptation modulation (context-dependent)</td>
<td>Nrf2 ↑; antioxidant enzymes ↑ (context)</td>
<td>R, G</td>
<td>Endogenous antioxidant upshift</td>
<td>EA is commonly described as activating Nrf2/ARE programs in oxidative-stress models; tumor direction is model-dependent and should not be overstated.</td>
</tr>

<tr>
<td>6</td>
<td>ROS / oxidative stress</td>
<td>Oxidative stress tone ↓ (often); ROS direction can vary by model</td>
<td>ROS injury ↓</td>
<td>P, R, G</td>
<td>Redox buffering (context-dependent)</td>
<td>EA is widely characterized as antioxidant/anti-inflammatory; in cancer models, oxidative stress effects can be secondary to pathway reprogramming.</td>
</tr>

<tr>
<td>7</td>
<td>Invasion / metastasis programs (MMPs / EMT)</td>
<td>MMPs ↓; migration/invasion ↓ (reported)</td>
<td>↔</td>
<td>G</td>
<td>Anti-invasive phenotype</td>
<td>Often reported as downstream outcomes tied to NF-κB and survival signaling changes; keep as “reported” (not universal).</td>
</tr>

<tr>
<td>8</td>
<td>Angiogenesis signaling (VEGF & angiogenic outputs)</td>
<td>VEGF ↓; angiogenic outputs ↓ (reported)</td>
<td>↔</td>
<td>G</td>
<td>Anti-angiogenic support</td>
<td>Typically observed as later reductions in pro-angiogenic expression/secretion or angiogenesis assays.</td>
</tr>

<tr>
<td>9</td>
<td>One-carbon / microbiome conversion to urolithins (translation driver)</td>
<td>Systemic activity often mediated by urolithins (e.g., urolithin A) rather than free EA</td>
<td>—</td>
<td>—</td>
<td>PK / metabolite constraint</td>
<td>EA and ellagitannins are transformed by gut microbiota into urolithins, bioavailable metabolites; inter-individual variation in “metabotypes” affects exposure and effects.</td>
</tr>

<tr>
<td>10</td>
<td>Bioavailability constraint (oral exposure)</td>
<td>Free EA systemic exposure often limited (without formulation / metabolite reliance)</td>
<td>—</td>
<td>—</td>
<td>Translation constraint</td>
<td>EA has absorption/metabolism constraints; measuring metabolites (urolithins) is often more informative than EA alone.</td>
</tr>
</table>

<p><b>Time-Scale Flag (TSF):</b> P / R / G</p>
<ul>
<li><b>P</b>: 0–30 min (primary/rapid effects; early redox interactions)</li>
<li><b>R</b>: 30 min–3 hr (acute stress-response + transcription signaling shifts)</li>
<li><b>G</b>: &gt;3 hr (gene-regulatory adaptation and phenotype-level outcomes)</li>
</ul>

Pathway results for Effect on Cancer / Diseased Cells

NA, unassigned

NA↓, 1,  

Redox & Oxidative Stress

antiOx↓, 1,   antiOx↑, 1,   GSH↓, 1,   GSTs↓, 1,   GSTs↑, 1,   HO-1↓, 2,   HO-2↓, 1,   MAD↓, 1,   ROS↑, 11,   ROS↓, 1,   TBARS↑, 1,  

Mitochondria & Bioenergetics

AIF↑, 1,   MMP↓, 3,   OCR↓, 1,   XIAP↓, 2,  

Core Metabolism/Glycolysis

ACLY↓, 1,   ALAT↓, 1,   AMPK↑, 1,   cMyc↓, 2,   ECAR↝, 1,   GlucoseCon↓, 2,   Glycolysis↓, 2,   lactateProd↓, 1,   LDH↓, 2,   PDH↝, 1,   PDK1?, 2,   PDK1↓, 1,   PKL↓, 1,   PKM2↓, 1,   SIRT1↓, 2,  

Cell Death

p‑Akt↓, 2,   Akt↑, 1,   Akt↓, 6,   Apoptosis↑, 6,   Bak↑, 1,   BAX↑, 6,   Bax:Bcl2↑, 3,   Bcl-2↓, 4,   Bcl-xL↓, 2,   Casp↑, 1,   Casp3↑, 5,   Casp8↑, 1,   Casp9↑, 1,   Cyt‑c↑, 3,   Diablo↑, 1,   DR4↑, 1,   DR5↑, 1,   HEY1↓, 1,   iNOS↓, 1,   MAPK↓, 2,   Mcl-1↓, 1,   MDM2↓, 1,   Myc↓, 1,   NOXA↑, 1,   PUMA↑, 1,   survivin↓, 2,   Telomerase↓, 1,  

Transcription & Epigenetics

tumCV↓, 1,  

Protein Folding & ER Stress

CHOP↑, 1,   ER Stress↑, 1,  

Autophagy & Lysosomes

LC3II↑, 1,   TumAuto↑, 1,  

DNA Damage & Repair

DNAdam↓, 1,   DNAdam↑, 4,   P53↑, 5,   cl‑PARP↑, 3,   PCNA↓, 3,   SIRT6↑, 1,  

Cell Cycle & Senescence

CDK1/2/5/9↓, 1,   CDK2↓, 3,   CDK2↑, 1,   CDK4↓, 1,   cycD1/CCND1↓, 5,   cycE/CCNE↓, 1,   cycE1↓, 1,   P21↑, 5,   p‑RB1↓, 1,   TumCCA↑, 8,  

Proliferation, Differentiation & Cell State

CDK8↓, 2,   CIP2A↓, 1,   EMT↓, 2,   p‑ERK↓, 1,   Gli1↓, 1,   HH↓, 1,   IGFBP7↑, 1,   mTOR⇅, 1,   mTOR↓, 1,   NOTCH↓, 4,   NOTCH1↓, 1,   NOTCH3↓, 1,   P90RSK↓, 1,   PI3K↓, 4,   PTEN↑, 2,   Shh↓, 2,   STAT3↓, 3,   p‑STAT3↓, 2,   TumCG↓, 2,   Wnt/(β-catenin)↓, 2,  

Migration

Ca+2↝, 1,   E-cadherin↑, 2,   p‑FAK↓, 1,   GLI2↓, 1,   Ki-67↓, 1,   MMP2↓, 5,   MMP9↓, 5,   NEDD9↓, 1,   PKCδ↓, 2,   SMAD2↓, 1,   SMAD3↓, 3,   SMAD4↓, 1,   Snail↓, 4,   TGF-β↓, 4,   TGF-β↑, 1,   TSC1↑, 1,   TumCI↓, 2,   TumCMig↓, 2,   TumCP↓, 6,   TumMeta↓, 2,   Twist↓, 2,   Vim↓, 1,   β-catenin/ZEB1↓, 1,  

Angiogenesis & Vasculature

angioG↓, 5,   EGFR↓, 1,   Endoglin↑, 1,   Hif1a↓, 4,   VEGF↓, 5,   VEGFR2↓, 3,  

Barriers & Transport

GLUT1↓, 1,   NHE1↓, 3,  

Immune & Inflammatory Signaling

COX1↓, 2,   COX2↓, 5,   IL6↓, 3,   IL8↓, 1,   Inflam↓, 1,   JAK↓, 1,   NF-kB↓, 4,   p‑NF-kB↓, 1,   PD-1↓, 1,   PD-L1↓, 1,   TNF-α↓, 1,  

Cellular Microenvironment

i-pH↓, 1,  

Hormonal & Nuclear Receptors

CDK6↓, 6,  

Drug Metabolism & Resistance

BioAv↑, 1,   ChemoSen↑, 4,   Dose∅, 6,   Dose↝, 3,   Dose?, 1,   eff↑, 11,   eff↝, 1,   eff↓, 1,   RadioS↑, 6,   selectivity↑, 4,  

Clinical Biomarkers

ALAT↓, 1,   ALP↓, 2,   AST↓, 1,   E6↓, 1,   E7↓, 1,   EGFR↓, 1,   IL6↓, 3,   Ki-67↓, 1,   LDH↓, 2,   Myc↓, 1,   PD-L1↓, 1,  

Functional Outcomes

AntiCan↑, 1,   AntiTum↑, 1,   ChemoSideEff↓, 1,   Weight↑, 1,  
Total Targets: 168

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 2,   GSH↑, 1,   HDL↑, 1,   NRF2↓, 1,   ROS∅, 1,  

Core Metabolism/Glycolysis

p‑AKT1↑, 1,   LDL↓, 1,  

Migration

AntiAg↑, 2,  

Immune & Inflammatory Signaling

Inflam↓, 2,  

Synaptic & Neurotransmission

5HT↑, 1,   AChE↓, 1,   BDNF↑, 4,   MAOA↓, 1,  

Protein Aggregation

BACE↓, 1,   MAOB↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 5,   BioAv↑, 1,   BioAv∅, 1,   BioEnh↑, 1,   BioEnh↝, 1,   Dose∅, 1,   Half-Life∅, 2,  

Functional Outcomes

AntiCan↑, 2,   cardioP↑, 1,   chemoP↑, 1,   cognitive↑, 2,   hepatoP↑, 1,   memory↑, 1,   Mood↑, 1,   neuroP↑, 2,   QoL↑, 1,   toxicity∅, 4,  
Total Targets: 32

Research papers

Year Title Authors PMID Link Flag
2023Cancer Metabolism: Fasting Reset, the Keto-Paradox and Drugs for UndoingMaurice IsraëlPMC9960359https://pmc.ncbi.nlm.nih.gov/articles/PMC9960359/0
2023Polyphenol-rich diet mediates interplay between macrophage-neutrophil and gut microbiota to alleviate intestinal inflammationDandan HanPMC10562418https://pmc.ncbi.nlm.nih.gov/articles/PMC10562418/0
2016Kinetics of Inhibition of Monoamine Oxidase Using Curcumin and Ellagic AcidDharmendra Kumar KhatriPMC4883067https://pmc.ncbi.nlm.nih.gov/articles/PMC4883067/0
2016Curcumin and Ellagic acid synergistically induce ROS generation, DNA damage, p53 accumulation and apoptosis in HeLa cervical carcinoma cellsDevbrat Kumar27261574https://pubmed.ncbi.nlm.nih.gov/27261574/0
2025Effect of ellagic acid on BDNF/PI3K/AKT-mediated signaling pathways in mouse models of depressionHatice Aslı BedelPMC11831741https://pmc.ncbi.nlm.nih.gov/articles/PMC11831741/0
2024Exploring the Potential of Ellagic Acid in Gastrointestinal Cancer Prevention: Recent Advances and Future DirectionsAbhishek ChauhanPMC11574235https://pmc.ncbi.nlm.nih.gov/articles/PMC11574235/0
2023Ellagic Acid and Cancer Hallmarks: Insights from Experimental EvidenceMartina ČižmárikováPMC10669545https://pmc.ncbi.nlm.nih.gov/articles/PMC10669545/0
2023Ellagic Acid from Hull Blackberries: Extraction, Purification, and Potential Anticancer ActivityJialuan WangPMC10607623https://pmc.ncbi.nlm.nih.gov/articles/PMC10607623/0
2023Anticancer Effect of Pomegranate Peel Polyphenols against Cervical CancerSandra Lucía TenientePMC9854619https://pmc.ncbi.nlm.nih.gov/articles/PMC9854619/0
2023Targeting Myeloperoxidase Activity and Neutrophil ROS Production to Modulate Redox Process: Effect of Ellagic Acid and AnaloguesGilles DegottePMC10254444https://pmc.ncbi.nlm.nih.gov/articles/PMC10254444/0
2023The effects of Ellagic acid supplementation on neurotrophic, inflammation, and oxidative stress factors, and indoleamine 2, 3-dioxygenase gene expression in multiple sclerosis patients with mild to moderate depressive symptoms: A randomized, triple-blind, placebo-controlled trialGhazaleh Hajiluianhttps://www.sciencedirect.com/science/article/abs/pii/S09447113230045430
2023Ellagic Acid and Its Metabolites as Potent and Selective Allosteric Inhibitors of Liver Pyruvate KinaseUmberto Maria BattistiPMC9919951https://pmc.ncbi.nlm.nih.gov/articles/PMC9919951/0
2023A comprehensive review on Ellagic acid in breast cancer treatment: From cellular effects to molecular mechanisms of actionMaryam Golmohammadihttps://onlinelibrary.wiley.com/doi/10.1002/fsn3.36990
2023The multifaceted mechanisms of ellagic acid in the treatment of tumors: State-of-the-artGuangying Luhttps://www.sciencedirect.com/science/article/pii/S075333222300923X0
2022Effects of nutritional interventions on BDNF concentrations in humans: a systematic reviewElske Gravesteijinhttps://www.tandfonline.com/doi/full/10.1080/1028415X.2020.18657580
2021Ellagic Acid Resensitizes Gemcitabine-Resistant Bladder Cancer Cells by Inhibiting Epithelial-Mesenchymal Transition and Gemcitabine TransportersYing-Si WuPMC8122772https://pmc.ncbi.nlm.nih.gov/articles/PMC8122772/0
2021Acetylcholinesterase and monoamine oxidase-B inhibitory activities by ellagic acid derivatives isolated from Castanopsis cuspidata var. sieboldiiJong Min Ohhttps://www.nature.com/articles/s41598-021-93458-40
2020Unripe Black Raspberry (Rubus coreanus Miquel) Extract and Its Constitute, Ellagic Acid Induces T Cell Activation and Antitumor Immunity by Blocking PD-1/PD-L1 InteractionJi Hye KimPMC7693366https://pmc.ncbi.nlm.nih.gov/articles/PMC7693366/0
2018Experimental Evidence of the Antitumor, Antimetastatic and Antiangiogenic Activity of Ellagic AcidClaudia CeciPMC6266224https://pmc.ncbi.nlm.nih.gov/articles/PMC6266224/0
2018Chronic administration of ellagic acid improved the cognition in middle-aged overweight menYing Liu29053933https://pubmed.ncbi.nlm.nih.gov/29053933/0
2017Radiosensitizing effect of ellagic acid on growth of Hepatocellular carcinoma cells: an in vitro studyUjjal Dashttps://www.nature.com/articles/s41598-017-14211-40
2017Negative Effect of Ellagic Acid on Cytosolic pH Regulation and Glycolytic Flux in Human Endometrial Cancer CellKhalid N M Abdelazeem28467979https://pubmed.ncbi.nlm.nih.gov/28467979/0
2016Ellagitannins in Cancer Chemoprevention and TherapyTariq IsmailPMC4885066https://pmc.ncbi.nlm.nih.gov/articles/PMC4885066/0
2015Antimutagenic Effect of the Ellagic Acid and Curcumin CombinationsZoubková Hhttps://www.hilarispublisher.com/open-access/antimutagenic-effect-of-the-ellagic-acid-and-curcumin-combinations-2161-0525-1000296.pdf0
2015Ellagic acid inhibits proliferation and induced apoptosis via the Akt signaling pathway in HCT-15 colon adenocarcinoma cellsSyed Umesalma25355159https://pubmed.ncbi.nlm.nih.gov/25355159/0
2013Ellagic acid inhibits human pancreatic cancer growth in Balb c nude miceMin Zhao23684930https://pubmed.ncbi.nlm.nih.gov/23684930/0
2013Novel Bioactivity of Ellagic Acid in Inhibiting Human Platelet ActivationYi Changhttps://www.researchgate.net/publication/236085034_Novel_Bioactivity_of_Ellagic_Acid_in_Inhibiting_Human_Platelet_Activation0
2007The inhibition of human glutathione S-transferases activity by plant polyphenolic compounds ellagic acid and curcuminRose Hayeshihttps://www.sciencedirect.com/science/article/abs/pii/S02786915060024070
2006Absorption, metabolism, and antioxidant effects of pomegranate (Punica granatum l.) polyphenols after ingestion of a standardized extract in healthy human volunteersSusanne U Mertens-Talcott17090147https://pubmed.ncbi.nlm.nih.gov/17090147/0
2004Bioavailability of ellagic acid in human plasma after consumption of ellagitannins from pomegranate (Punica granatum L.) juiceNavindra P Seeram15369737https://pubmed.ncbi.nlm.nih.gov/15369737/0
2022Identification of Natural Compounds as Inhibitors of Pyruvate Kinase M2 for Cancer TreatmentIqra SarfrazPMC9609560https://pmc.ncbi.nlm.nih.gov/articles/PMC9609560/0