tbResList Print — FA Ferulic acid

Filters: qv=77, qv2=%, rfv=%

Product

FA Ferulic acid
Description: <b>Ferulic acid</b> is an antioxidant found in some skin creams and serums.<br>
Foods: popcorn, bamboo, whole-grain rye bread, whole-grain oat flakes, sweet corn (cooked)<br>
Ferulic acid (FA) is a
<a href="https://nestronics.ca/dbx/tbProdEdit.php?pid=95">hydroxycinnamic acid </a> abundant in plant cell walls (notably cereals/whole grains) with strong antioxidant and cytoprotective activity. Mechanistically, FA is frequently described as inducing Nrf2/HO-1 antioxidant programs and suppressing NF-κB-linked inflammation, with additional model-dependent anticancer effects (cell-cycle arrest, apoptosis, reduced invasion). Oral exposure is variable because FA is rapidly metabolized (often as conjugates) and bioaccessibility depends on the food matrix.<br>
<br>
-Ferulic acid found in dietary strand fractions, especially its free form, has important functions for protecting the human health.<br>
-AChE inhibitor (AD)<br>
-Cooking results in an increase in free ferulic acid quantity and in a reduction in bound ferulic acid quantity.<br>
<pre>
Bamboo shoots    243.6 mg/100g
Sugar-beet pulp    800 mg/100g
Popcorn            313 mg/100g
Wheat bran 500–1500mg/100g
Whole wheat flour 100–300mg/100g
</pre>

<table Border="1" rules="rows">
<tr><th>Type of corn</th> <th>p-coumaric acid</th>     <th>ferulic acid</th></tr>
<tr><td>   </td>        <td> mg/kg, DW </td> <td>mg/kg, DW</td></tr>
<tr><td>Yellow dent</td> <td>18.9 </td> <td>265</td></tr>
<tr><td>American blue</td> <td>N.D. </td> <td>927</td></tr>
<tr><td>Mexican blue</td> <td>1.3 </td> <td>202</td></tr>
<tr><td>white</td> <td>6.6 </td> <td>2484</td></tr>
</table>

<pre>
Pathway / Target Modulation by FA / Direction
Aβ aggregation ↓ Inhibits fibril formation and destabilizes existing Aβ fibrils
BACE‑1 & APP ↓ Reduces BACE-1 and APP expression; ↑ MMP‑2/‑9 expression promoting Aβ clearance
Tau hyperphosphorylation Implicitly ↓ through modulation of Ca²⁺/CDK5/GSK3β pathways
Ca²⁺ ↓ FA lowers STEP levels via chelation of Ca²⁺, suppressing PP2B → restores synaptic plasticity
(AChE / BChE) ↓ Inhibition of AChE (FA IC₅₀~15 µM, derivatives IC₅₀ down to 0.006 µM); also BChE
(MAO‑A/B) ↓ Inhibits MAO‑B (derivatives IC₅₀ ~0.3–0.7 µM), reducing ROS
ROS ↓ Scavenges ROS, enhances antioxidant enzymes (e.g., catalase), ↓ MDA
(COX‑2, 5‑LOX, NLRP3) ↓ Derivatives inhibit COX‑2/5‑LOX; derivative 13a ↓ NLRP3 inflammasome
Iron/Cu²⁺ chelation ↓ Metal-induced Aβ aggregation via chelation by FA and derivatives
Autophagy & Aβ clearance ↗ Suggested promotion of autophagy mechanisms targeting Aβ
</pre>



<!-- Ferulic Acid (FA) — Time-Scale Flagged Pathway Table (web-page ready) -->
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells</th>
<th>Normal Cells</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>Nrf2 → HO-1 / ARE antioxidant response</td>
<td>Stress adaptation modulation (context-dependent)</td>
<td>Nrf2 ↑; HO-1 ↑; antioxidant defenses ↑</td>
<td>R, G</td>
<td>Endogenous antioxidant upshift</td>
<td>FA is repeatedly reported to promote Nrf2 nuclear translocation and HO-1 induction; this is one of the most defensible “core” mechanisms.</td>
</tr>

<tr>
<td>2</td>
<td>NF-κB inflammatory transcription (COX-2 / iNOS / cytokines)</td>
<td>NF-κB ↓; COX-2/iNOS and pro-inflammatory cytokine programs ↓ (reported)</td>
<td>Inflammation tone ↓ (tissue protective)</td>
<td>R, G</td>
<td>Anti-inflammatory signaling</td>
<td>Often described as downstream of redox changes and upstream of reduced inflammatory mediators; direction is consistent across many inflammation models.</td>
</tr>

<tr>
<td>3</td>
<td>ROS / oxidative stress tone</td>
<td>Oxidative stress ↓ (often); ROS direction can vary by tumor model</td>
<td>Oxidative injury ↓</td>
<td>P, R, G</td>
<td>Redox buffering (context-dependent)</td>
<td>FA is classically antioxidant; in tumor systems, effects may be secondary to signaling changes and vary with baseline redox instability.</td>
</tr>

<tr>
<td>4</td>
<td>Cell-cycle control (Cyclin D1 / CDK4/6; checkpoints)</td>
<td>Cell-cycle arrest ↑ (reported); Cyclin D1 ↓; proliferation ↓</td>
<td>↔</td>
<td>G</td>
<td>Cytostasis</td>
<td>Frequently reported as later phenotype-level outcomes; direction and checkpoint phase (G1 vs G2/M) vary by model.</td>
</tr>

<tr>
<td>5</td>
<td>Apoptosis (intrinsic caspase-linked; p53 axis in some models)</td>
<td>Apoptosis ↑; caspase activation ↑ (reported); p53/p21 ↑ (model-dependent)</td>
<td>↔ (generally less activation)</td>
<td>G</td>
<td>Cell death execution</td>
<td>Apoptosis is commonly observed in cancer models but is not as “signature-direct” as for mitochondrial toxins; best treated as downstream/conditional.</td>
</tr>

<tr>
<td>6</td>
<td>MAPK re-wiring (ERK / JNK / p38)</td>
<td>MAPK modulation (context-dependent)</td>
<td>↔</td>
<td>P, R, G</td>
<td>Signal reprogramming</td>
<td>MAPK direction depends on whether FA is acting primarily as anti-inflammatory/anti-stress vs antiproliferative; avoid hard arrows for p38/JNK/ERK unless model-specific.</td>
</tr>

<tr>
<td>7</td>
<td>PI3K → AKT (± mTOR) survival axis</td>
<td>PI3K/AKT modulation (reported; model-dependent)</td>
<td>↔</td>
<td>R, G</td>
<td>Survival/growth modulation</td>
<td>Often listed in anticancer summaries; treat as “reported” rather than universal primary mechanism.</td>
</tr>

<tr>
<td>8</td>
<td>Invasion / metastasis programs (MMPs / migration)</td>
<td>MMPs ↓; migration/invasion ↓ (reported)</td>
<td>↔</td>
<td>G</td>
<td>Anti-invasive phenotype</td>
<td>Observed as later outcomes (gene expression + phenotype assays) and commonly linked to NF-κB/MAPK context.</td>
</tr>

<tr>
<td>9</td>
<td>Radiation/chemo injury mitigation (supportive care framing)</td>
<td>Adjunct potential: may reduce treatment-associated oxidative/inflammatory injury (context)</td>
<td>Tissue protection ↑ (reported)</td>
<td>G</td>
<td>Cytoprotection</td>
<td>Animal models report radioprotective/anti-inflammatory effects; present as supportive/adjunct rather than standalone anticancer therapy.</td>
</tr>

<tr>
<td>10</td>
<td>Bioavailability / metabolism constraint (conjugation; food-matrix dependence)</td>
<td>Systemic exposure variable; much appears as glucuronide/sulfate conjugates</td>
<td>—</td>
<td>—</td>
<td>Translation constraint</td>
<td>FA is absorbed and rapidly metabolized; “bioavailability” varies widely with food matrix and binding to polysaccharides in grains.</td>
</tr>
</table>

<p><b>Time-Scale Flag (TSF):</b> P / R / G</p>
<ul>
<li><b>P</b>: 0–30 min (primary/rapid effects; early redox interactions / rapid signaling shifts)</li>
<li><b>R</b>: 30 min–3 hr (acute stress-response + transcription signaling shifts)</li>
<li><b>G</b>: &gt;3 hr (gene-regulatory adaptation and phenotype-level outcomes)</li>
</ul>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

Catalase↓, 1,   GPx↓, 1,   GSH↓, 1,   lipid-P↑, 1,   PYCR1↓, 1,   ROS↑, 2,   SOD↓, 2,  

Mitochondria & Bioenergetics

CDC25↓, 1,   FGFR1↓, 3,   mtDam↑, 1,  

Core Metabolism/Glycolysis

ALAT↓, 1,   CAIX↓, 1,   cMyc↓, 2,   Glycolysis↓, 1,   LDH↓, 1,   PKM2↓, 1,  

Cell Death

Akt↓, 2,   Apoptosis↑, 4,   BAX↑, 2,   BAX↓, 1,   Bax:Bcl2↑, 1,   Bcl-2↓, 3,   Casp3↑, 2,   Casp9↑, 1,   Chk2↑, 1,   CK2↓, 2,   Fas↑, 1,   NOXA↑, 1,   PUMA↑, 1,  

Transcription & Epigenetics

tumCV↓, 1,  

Autophagy & Lysosomes

Beclin-1↓, 1,   Beclin-1↑, 1,   LC3‑Ⅱ/LC3‑Ⅰ↓, 1,   LC3II↑, 1,   LC3II↓, 1,   p62↑, 1,  

DNA Damage & Repair

ATM↑, 1,   ATR↑, 1,   CHK1↑, 1,   DNAdam↑, 1,   P53↑, 3,   PARP↑, 1,   γH2AX↑, 1,  

Cell Cycle & Senescence

CDK2↓, 1,   CDK4↓, 3,   cycA1/CCNA1↑, 1,   cycD1/CCND1↓, 2,   cycE/CCNE↓, 1,   P21↑, 1,   TumCCA↑, 3,  

Proliferation, Differentiation & Cell State

EMT↓, 3,   ERK↑, 1,   FGF↓, 1,   FGFR2↓, 1,   miR-34a↑, 1,   mTOR↓, 1,   PI3K↓, 2,   PTEN↑, 1,   p‑STAT3↓, 1,   STAT6↓, 1,   tyrosinase↓, 1,  

Migration

E-cadherin↓, 1,   Ki-67↓, 1,   MMP2↓, 1,   MMP9↓, 1,   PDGF↓, 1,   TIMP1↑, 1,   TumCI↓, 1,   TumCMig↑, 1,   TumCMig↓, 2,   TumCP↓, 2,   TumMeta↓, 1,   Vim↓, 1,   β-catenin/ZEB1↓, 1,  

Angiogenesis & Vasculature

angioG↓, 1,   VEGF↓, 2,  

Immune & Inflammatory Signaling

COX2↓, 1,   Inflam↓, 1,   JAK2↓, 1,   NF-kB↓, 1,  

Hormonal & Nuclear Receptors

CDK6↓, 3,  

Drug Metabolism & Resistance

ChemoSen↑, 1,   eff↑, 1,   RadioS↑, 2,  

Clinical Biomarkers

ALAT↓, 1,   AST↓, 1,   Ki-67↓, 1,   LDH↓, 1,  

Functional Outcomes

AntiCan↑, 1,   AntiTum↑, 1,   ChemoSideEff↓, 1,   TumVol↓, 1,   TumW↓, 2,  
Total Targets: 93

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 13,   ARE↑, 1,   Bil↑, 2,   Catalase↑, 4,   Fenton↓, 2,   GCLC↑, 2,   GCLM↑, 2,   GSH↑, 1,   GSSG↓, 1,   HO-1↑, 5,   lipid-P↑, 1,   lipid-P↓, 4,   MDA↓, 3,   NQO1↑, 2,   NRF2↑, 2,   ROS↓, 8,   SOD↑, 6,  

Metal & Cofactor Biology

IronCh↑, 4,  

Mitochondria & Bioenergetics

ATP↑, 1,   MMP↓, 1,   MMP↑, 2,  

Core Metabolism/Glycolysis

PPARγ↑, 2,   SIRT1↑, 1,  

Cell Death

Akt↑, 2,   p‑Akt↓, 1,   Casp↓, 1,   iNOS↓, 3,   JNK↓, 1,   p‑MAPK↓, 1,   p‑MAPK?, 1,   p38↓, 1,  

Transcription & Epigenetics

Ach↑, 1,   other↑, 1,  

Protein Folding & ER Stress

CHOP↓, 1,   ER Stress↓, 1,   HSP70/HSPA5↑, 1,   PERK↓, 1,  

Proliferation, Differentiation & Cell State

ERK↑, 1,   ERK↓, 1,  

Migration

APP↓, 2,   Ca+2↓, 2,   VCAM-1↓, 2,  

Angiogenesis & Vasculature

angioG↑, 1,   ATF4↓, 1,   Hif1a↑, 1,   NO↓, 1,   VEGF↑, 1,  

Barriers & Transport

BBB↑, 3,  

Immune & Inflammatory Signaling

COX2↓, 4,   ICAM-1↓, 2,   IL1β↓, 3,   IL2↓, 1,   IL6↓, 1,   IL8↓, 1,   Inflam↓, 10,   NF-kB↓, 2,   PGE2↓, 2,   TLR4↓, 1,   TNF-α↓, 2,  

Synaptic & Neurotransmission

AChE↓, 7,   AChE∅, 1,   BChE∅, 1,   BChE↓, 2,   BDNF↑, 3,   ChAT↑, 1,   p‑tau↓, 2,  

Protein Aggregation

Aβ↓, 11,   BACE↓, 1,   NLRP3↓, 3,   XO↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 2,   BioAv↑, 1,   Dose↝, 1,   Half-Life↝, 1,  

Clinical Biomarkers

Bil↑, 2,   GutMicro↑, 3,   IL6↓, 1,   NOS2↓, 1,  

Functional Outcomes

AntiCan↑, 1,   cardioP↑, 2,   cognitive↑, 4,   hepatoP↑, 3,   memory↑, 4,   Mood↑, 1,   neuroP↑, 9,   radioP↑, 1,   RenoP↑, 1,   toxicity↓, 2,  
Total Targets: 88

Research papers

Year Title Authors PMID Link Flag
2024Ferulic acid inhibiting colon cancer cells at different Duke’s stagesZeng-Ping Liuhttps://www.sciopen.com/article/10.26599/FMH.2025.94200630
2024Design, Synthesis, and Biological Evaluation of Ferulic Acid-Piperazine Derivatives Targeting Pathological Hallmarks of Alzheimer’s DiseaseGourav Singhhttps://pubs.acs.org/doi/10.1021/acschemneuro.4c001300
2024Protective Effect of Ferulic Acid on Acetylcholinesterase and Amyloid Beta Peptide Plaque Formation in Alzheimer’s Disease: An In Vitro StudyVarsha MugundhanPMC10938272https://pmc.ncbi.nlm.nih.gov/articles/PMC10938272/0
2024Ferulic acid ameliorates bisphenol A (BPA)-induced Alzheimer’s disease-like pathology through Akt-ERK crosstalk pathway in male ratsMhasen Khalifahttps://link.springer.com/article/10.1007/s00213-024-06697-40
2023Molecular mechanism of ferulic acid and its derivatives in tumor progressionXingxun BaoPMC10374777https://pmc.ncbi.nlm.nih.gov/articles/PMC10374777/0
2023Neuroprotective Properties of Ferulic Acid in Preclinical Models of Alzheimer's Disease: A Systematic Literature ReviewSiyu Zhou36065925https://pubmed.ncbi.nlm.nih.gov/36065925/0
2022Ferulic Acid: A Natural Phenol That Inhibits Neoplastic Events through Modulation of Oncogenic SignalingHardeep Singh TuliPMC9654319https://pmc.ncbi.nlm.nih.gov/articles/PMC9654319/0
2022Therapeutic Potential of Ferulic Acid in Alzheimer's DiseaseHasan Turkez34963433https://pubmed.ncbi.nlm.nih.gov/34963433/0
2022Recent Advances in the Neuroprotective Properties of Ferulic Acid in Alzheimer’s Disease: A Narrative ReviewSilvia Di GiacomoPMC9503091https://pmc.ncbi.nlm.nih.gov/articles/PMC9503091/0
2022Recent Advances in the Neuroprotective Properties of Ferulic Acid in Alzheimer's Disease: A Narrative ReviewSilvia Di GiacomoPMC9503091https://pmc.ncbi.nlm.nih.gov/articles/PMC9503091/0
2022Ferulic Acid as a Protective Antioxidant of Human Intestinal Epithelial CellsHye-Jeong HwangPMC9331426https://pmc.ncbi.nlm.nih.gov/articles/PMC9331426/0
2021Therapeutic potential of ferulic acid and its derivatives in Alzheimer’s disease—A systematic reviewApoorva V. Phadkehttps://onlinelibrary.wiley.com/doi/10.1111/cbdd.139220
2021A review on ferulic acid and analogs based scaffolds for the management of Alzheimer’s diseaseYash Pal Singhhttps://www.sciencedirect.com/science/article/abs/pii/S02235234210012760
2021Therapeutic potential of ferulic acid and its derivatives in Alzheimer's disease-A systematic reviewApoorva V Phadke34240555https://pubmed.ncbi.nlm.nih.gov/34240555/0
2021A review on ferulic acid and analogs based scaffolds for the management of Alzheimer's diseaseYash Pal Singh33662757https://pubmed.ncbi.nlm.nih.gov/33662757/0
2020Cytotoxic and Apoptotic Effects of Ferulic Acid on Renal Carcinoma Cell Line (ACHN)Mahshid Naseri Karimvandhttps://www.researchgate.net/publication/347370160_Cytotoxic_and_Apoptotic_Effects_of_Ferulic_Acid_on_Renal_Carcinoma_Cell_Line_ACHN0
2019Antidepressant-Like Effect of Ferulic Acid via Promotion of Energy Metabolism ActivityKazunori Sasakihttps://onlinelibrary.wiley.com/doi/full/10.1002/mnfr.2019003270
2019The Additive Effects of Low Dose Intake of Ferulic Acid, Phosphatidylserine and Curcumin, Not Alone, Improve Cognitive Function in APPswe/PS1dE9 Transgenic MiceMichiaki Okuda31582657https://pubmed.ncbi.nlm.nih.gov/31582657/0
2018Ferulic Acid: A Natural Antioxidant with Application Towards Neuroprotection Against Alzheimer’s DiseaseSharanjot Kaurhttps://link.springer.com/chapter/10.1007/978-981-13-1123-9_250
2016Ferulic acid exerts antitumor activity and inhibits metastasis in breast cancer cells by regulating epithelial to mesenchymal transitionXiang Zhang27177074https://pubmed.ncbi.nlm.nih.gov/27177074/0
2015Ferulic Acid: A Hope for Alzheimer’s Disease Therapy from PlantsAntonella SgarbossaPMC4517023https://pmc.ncbi.nlm.nih.gov/articles/PMC4517023/0