tbResList Print — dietFMD diet FMD Fasting Mimicking Diet

Filters: qv=79, qv2=%, rfv=%

Product

dietFMD diet FMD Fasting Mimicking Diet
Description: <b>5-day diet to mimic fasting without fasting.</b><br>
FMDs are caloric-restricted plant–based diets containing low proteins, low sugar and high fats which represent a more feasible and safer option to water-only fasting.<br>
<pre>
Fasting modality Approx CRIS
-------------------------------------- ----------
Time-restricted eating (12–16 h) –3 to –4
Early time-restricted eating (eTRE) –4
Intermittent fasting (24 h 1–2x/week) –4
Periodic fasting / FMD –4 to –5*
Calorie restriction (chronic) –3 (risk tradeoffs)

Compare STF(short term Fasting) to FMD
IGF-1 / insulin suppression (core driver)
| Aspect | STF | FMD |
| ----------------- | ------------------- | -------- |
| Depth | **Very deep** | Moderate |
| Speed | **Rapid (24–48 h)** | Gradual |
| Tumor stress | **High** | Medium |
| Normal protection | High | High |

</pre>


Fasting-Mimicking Diet (FMD; ~5-day low-protein, low-calorie cycle) Cancer vs Normal Cell Effects
<table border="1" cellspacing="0" cellpadding="4">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells</th>
<th>Normal Cells</th>
<th>Label</th>
<th>Primary Interpretation</th>
<th>Notes</th>
</tr>

<tr>
<td>1</td>
<td>Insulin / IGF-1 signaling</td>
<td>↓ IGF-1 signaling (chronic stress)</td>
<td>↓ IGF-1 with regenerative priming</td>
<td>Driver</td>
<td>Sustained growth factor suppression</td>
<td>Repeated IGF-1 lowering impairs tumor growth programs</td>
</tr>

<tr>
<td>2</td>
<td>AMPK → mTOR nutrient sensing</td>
<td>↓ mTOR; ↑ AMPK (growth inhibition)</td>
<td>↓ mTOR; ↑ AMPK (maintenance mode)</td>
<td>Driver</td>
<td>Prolonged anabolic suppression</td>
<td>More sustained but less acute than STF</td>
</tr>

<tr>
<td>3</td>
<td>Autophagy / mitophagy</td>
<td>↑ autophagy → loss of tumor robustness</td>
<td>↑ autophagy → rejuvenation</td>
<td>Driver</td>
<td>Cellular renewal vs destabilization</td>
<td>Repeated cycles promote organelle quality control</td>
</tr>

<tr>
<td>4</td>
<td>Mitochondrial metabolism</td>
<td>↓ metabolic resilience</td>
<td>↑ mitochondrial fitness</td>
<td>Secondary</td>
<td>Energy efficiency divergence</td>
<td>Normal cells adapt better across cycles</td>
</tr>

<tr>
<td>5</td>
<td>Inflammatory signaling (NF-κB / cytokines)</td>
<td>↓ pro-tumor inflammation</td>
<td>↓ systemic inflammation</td>
<td>Secondary</td>
<td>Anti-inflammatory milieu</td>
<td>Inflammation reduction contributes to chemopreventive effects</td>
</tr>

<tr>
<td>6</td>
<td>Reactive oxygen species (ROS)</td>
<td>↑ ROS (secondary, context-dependent)</td>
<td>↓ ROS</td>
<td>Secondary</td>
<td>Metabolism-linked redox shift</td>
<td>ROS effects are indirect and less pronounced than STF</td>
</tr>

<tr>
<td>7</td>
<td>NRF2 antioxidant response</td>
<td>↔ modest activation</td>
<td>↑ NRF2 (protective)</td>
<td>Adaptive</td>
<td>Stress adaptation</td>
<td>NRF2 supports normal-cell recovery between cycles</td>
</tr>

<tr>
<td>8</td>
<td>Cell cycle / regeneration</td>
<td>↓ proliferation</td>
<td>↑ regeneration post-cycle</td>
<td>Phenotypic</td>
<td>Degrowth vs regeneration</td>
<td>FMD uniquely promotes regeneration upon refeeding</td>
</tr>

</table>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

Fenton↑, 1,   H2O2↑, 1,   HO-1↓, 5,   hyperG↓, 1,   Iron↑, 1,   NRF2↓, 1,   OXPHOS↝, 1,   OXPHOS↑, 1,   ROS↑, 13,   SOD↑, 1,  

Metal & Cofactor Biology

Ferritin↓, 1,   KLF5↓, 1,  

Mitochondria & Bioenergetics

ATP↓, 2,   ATP↑, 1,   Insulin↓, 3,   OCR↑, 1,  

Core Metabolism/Glycolysis

adiP↑, 1,   AminoA↓, 1,   AMPK↑, 3,   ATP:AMP↓, 1,   CRM↑, 1,   glucose↓, 1,   GlucoseCon↓, 1,   GLUT2↓, 1,   glyC↓, 1,   Glycolysis↓, 3,   HK2↓, 1,   lactateProd↓, 1,   NADPH↓, 1,   PFK1↓, 1,   PKM2↓, 1,   SIRT1↑, 2,   Warburg↓, 3,  

Cell Death

Akt↓, 1,   Akt↑, 3,   p‑Akt↓, 1,   Apoptosis↑, 3,   ASK1↑, 1,   BIM↑, 1,   Casp3↑, 3,   MAPK↓, 1,   necrosis↑, 1,   TumCD↑, 2,  

Transcription & Epigenetics

other↑, 1,  

Autophagy & Lysosomes

ATG3↑, 1,   Beclin-1↑, 1,   LAMP2↑, 1,   p62↑, 1,  

DNA Damage & Repair

DNAdam↑, 5,   P53↑, 1,  

Cell Cycle & Senescence

CDK1↓, 1,   CDK4↑, 2,   TumCCA↑, 1,  

Proliferation, Differentiation & Cell State

GH↓, 1,   p‑GSK‐3β↑, 1,   HDAC↓, 1,   IGF-1↓, 13,   IGF-1↑, 1,   IGFBP1↑, 4,   IGFBP3↑, 1,   IGFR↓, 1,   mTOR↓, 5,   mTOR↑, 2,   mTORC1↓, 1,   Nanog↓, 1,   OCT4↓, 1,   PI3K↑, 3,   PI3K↓, 1,   PTEN↑, 1,   RAS↓, 1,   STAT5↓, 1,   TumCG↓, 8,  

Migration

E-cadherin↑, 1,   KLF2↓, 1,   MMPs↓, 1,   PKA↓, 2,   Treg lymp↓, 1,   TumCP↑, 1,   TumCP↓, 1,  

Angiogenesis & Vasculature

angioG↓, 1,   Hif1a↓, 1,  

Barriers & Transport

GLUT1↓, 1,  

Immune & Inflammatory Signaling

CD14↓, 1,   CLP↑, 1,   IFN-γ↑, 1,   Imm↑, 1,   M2 MC↓, 2,   NK cell↑, 1,   TILs↑, 1,  

Hormonal & Nuclear Receptors

CDK6↑, 2,  

Drug Metabolism & Resistance

ChemoSen↑, 11,   Dose↝, 3,   Dose↑, 1,   Dose↓, 1,   eff↑, 25,   eff↝, 2,   eff↓, 2,   eff∅, 1,   RadioS↑, 4,   selectivity↑, 5,  

Clinical Biomarkers

BG↓, 8,   BMD↑, 1,   Ferritin↓, 1,   GutMicro↑, 5,  

Functional Outcomes

AntiCan↑, 1,   AntiTum↓, 1,   ChemoSideEff↓, 7,   neuroP↑, 1,   OS↑, 5,   QoL↑, 2,   QoL∅, 1,   Risk↓, 3,   Strength∅, 1,   toxicity∅, 1,   toxicity↝, 1,   TumVol↓, 1,   Weight∅, 1,  

Infection & Microbiome

CD8+↑, 4,  
Total Targets: 118

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

OXPHOS↑, 1,  

Cell Death

Akt↓, 1,   MAPK↓, 1,  

DNA Damage & Repair

DNArepair↑, 1,  

Proliferation, Differentiation & Cell State

PI3K↓, 1,   RAS↓, 1,  

Functional Outcomes

toxicity↓, 1,   toxicity∅, 1,  
Total Targets: 8

Research papers

Year Title Authors PMID Link Flag
2025Fasting-mimicking diet potentiates anti-tumor effects of CDK4/6 inhibitors against breast cancer by suppressing NRAS- and IGF1-mediated mTORC1 signalingNing Lihttps://www.sciencedirect.com/science/article/abs/pii/S13687646240011950
2024Cyclic Fasting–Mimicking Diet Plus Bortezomib and Rituximab Is an Effective Treatment for Chronic Lymphocytic LeukemiaFranca RaucciPMC10982641https://pmc.ncbi.nlm.nih.gov/articles/PMC10982641/0
2024Unlocking the Potential: Caloric Restriction, Caloric Restriction Mimetics, and Their Impact on Cancer Prevention and TreatmentUlises Edgardo De-Leon-CovarrubiasPMC11356153https://pmc.ncbi.nlm.nih.gov/articles/PMC11356153/0
2024Effect of short-term fasting on the cisplatin activity in human oral squamous cell carcinoma cell line HN5 and chemotherapy side effectsNafiseh SheykhbahaeiPMC11316436https://pmc.ncbi.nlm.nih.gov/articles/PMC11316436/0
2024Targeting the Gut Microbiome to Improve Immunotherapy Outcomes: A ReviewAdi DavidPMC11369881https://pmc.ncbi.nlm.nih.gov/articles/PMC11369881/0
2024Fasting-mimicking diet remodels gut microbiota and suppresses colorectal cancer progressionMan Luohttps://www.nature.com/articles/s41522-024-00520-w0
2023Fasting and fasting mimicking diets in cancer prevention and therapyOlga Blaževitš36646607https://pubmed.ncbi.nlm.nih.gov/36646607/0
2023The emerging role of fasting-mimicking diets in cancer treatmentZhaihttps://journals.lww.com/jno/fulltext/2023/06000/the_emerging_role_of_fasting_mimicking_diets_in.2.aspx0
2023Impact of Fasting on Patients With Cancer: An Integrative ReviewSamantha ThompsonPMC10715290https://pmc.ncbi.nlm.nih.gov/articles/PMC10715290/0
2022Fasting-Mimicking Diet Is Safe and Reshapes Metabolism and Antitumor Immunity in Patients with CancerClaudio Vernierihttps://aacrjournals.org/cancerdiscovery/article/12/1/90/675618/Fasting-Mimicking-Diet-Is-Safe-and-Reshapes0
2022Effect of fasting on cancer: A narrative review of scientific evidenceSagun TiwariPMC9530862https://pmc.ncbi.nlm.nih.gov/articles/PMC9530862/0
2022Exceptional tumour responses to fasting-mimicking diet combined with standard anticancer therapies: A sub-analysis of the NCT03340935 trialFrancesca Ligorio35810555https://pubmed.ncbi.nlm.nih.gov/35810555/0
2021Fasting-mimicking diet blocks triple-negative breast cancer and cancer stem cell escapeGiulia SalvadoriPMC8769166https://pmc.ncbi.nlm.nih.gov/articles/PMC8769166/0
2021Safety and Feasibility of Fasting-Mimicking Diet and Effects on Nutritional Status and Circulating Metabolic and Inflammatory Factors in Cancer Patients Undergoing Active TreatmentFrancesca ValdemarinPMC8391327https://pmc.ncbi.nlm.nih.gov/articles/PMC8391327/0
2020How Far Are We from Prescribing Fasting as Anticancer Medicine?Maria V DeligiorgiPMC7730661https://pmc.ncbi.nlm.nih.gov/articles/PMC7730661/0
2020Impact of modified short-term fasting and its combination with a fasting supportive diet during chemotherapy on the incidence and severity of chemotherapy-induced toxicities in cancer patients - a controlled cross-over pilot studyStefanie ZornPMC7310229https://pmc.ncbi.nlm.nih.gov/articles/PMC7310229/0
2020Fasting mimicking diet as an adjunct to neoadjuvant chemotherapy for breast cancer in the multicentre randomized phase 2 DIRECT trialStefanie de Groothttps://www.nature.com/articles/s41467-020-16138-30
2020Synergistic effect of fasting-mimicking diet and vitamin C against KRAS mutated cancersMaira Di TanoPMC7214421https://pmc.ncbi.nlm.nih.gov/articles/PMC7214421/0
2020A fasting-mimicking diet and vitamin C: turning anti-aging strategies against cancerMaira Di TanoPMC7469657https://pmc.ncbi.nlm.nih.gov/articles/PMC7469657/0
2019Glucose restriction reverses the Warburg effect and modulates PKM2 and mTOR expression in breast cancer cell linesRoula Tahtouh31880514https://pubmed.ncbi.nlm.nih.gov/31880514/0
2016Fasting-Mimicking Diet Reduces HO-1 to Promote T Cell-Mediated Tumor CytotoxicityStefano Di BiasePMC5388544https://pmc.ncbi.nlm.nih.gov/articles/PMC5388544/0
2016Prolonged Nightly Fasting and Breast Cancer PrognosisCatherine R MarinacPMC4982776https://pmc.ncbi.nlm.nih.gov/articles/PMC4982776/#S170
2015Fasting induces anti-Warburg effect that increases respiration but reduces ATP-synthesis to promote apoptosis in colon cancer modelsGiovanna BianchiPMC4494906https://pmc.ncbi.nlm.nih.gov/articles/PMC4494906/0
2014Starvation Based Differential Chemotherapy: 
A Novel Approach for Cancer TreatmentSidra NaveedPMC4289501https://pmc.ncbi.nlm.nih.gov/articles/PMC4289501/0
2012Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapyChanghan LeePMC3608686https://pmc.ncbi.nlm.nih.gov/articles/PMC3608686/0
2008Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapyLizzia RaffaghelloPMC2448817https://pmc.ncbi.nlm.nih.gov/articles/PMC2448817/0
2025Nutrition, GH/IGF-I Signaling, and CancerMaura FantiPMC11771996https://pmc.ncbi.nlm.nih.gov/articles/PMC11771996/0
2017When less may be more: calorie restriction and response to cancer therapyCiara H. O’Flanaganhttps://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-017-0873-x0