tbResList Print — PTL Parthenolide

Filters: qv=8, qv2=%, rfv=%

Product

PTL Parthenolide
Description: <b>Parthenolide</b> is a naturally occurring sesquiterpene lactone derived from the medicinal plant feverfew (Tanacetum parthenium). <br>
-Micheliolide (MCL) is converted readily from parthenolide (PTL), and has better stability and solubility than PTL<br>
-Parthenolide is a natural compound used to treat migraines and arthritis and found to act as a potent NF-κB signaling inhibitor.<br>
<br>
Main activities include:<br>
-Inhibition of NF-κB Signaling:<br>
-Induction of Oxidative Stress (ROS): oxidative stress can overwhelm the antioxidant defenses of the cancer cells, leading to cellular damage and death<br>
-Parthenolide can interfere with STAT3 signaling, inhibiting the transcription of genes that favor tumor growth and resistance to apoptosis.<br>
-Modulation of the MAPK/ERK Pathway:<br>
-Impact on the JNK Pathway:<br>
-Parthenolide has been shown to target cancer stem cells<br>
<br>


<table border="1" cellspacing="0" cellpadding="4">
<tr>
<th>Rank</th>
<th>Pathway / Target Axis</th>
<th>Direction</th>
<th>Primary Effect</th>
<th>Notes / Cancer Relevance</th>
<th>Ref</th>
</tr>

<tr>
<td>1</td>
<td>NF-κB DNA-binding (p65/RelA Cys38 alkylation)</td>
<td>↓ NF-κB DNA binding</td>
<td>Suppresses pro-survival transcription</td>
<td>Direct mechanism: parthenolide inhibits NF-κB most likely by alkylating p65 at Cys38, reducing DNA binding</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/11500489/">(ref)</a></td>
</tr>

<tr>
<td>2</td>
<td>Thioredoxin reductase (TrxR1 / TrxR2)</td>
<td>↓ TrxR activity</td>
<td>Redox buffering collapse</td>
<td>Parthenolide directly targets TrxR1/TrxR2 (selenocysteine-containing enzymes) and inhibits function</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/27002142/">(ref)</a></td>
</tr>

<tr>
<td>3</td>
<td>ROS accumulation (superoxide / oxidative stress)</td>
<td>↑ ROS</td>
<td>Upstream cytotoxic trigger</td>
<td>Same TrxR-targeting study shows TrxR inhibition shifts redox state and drives ROS accumulation leading to apoptosis</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/27002142/">(ref)</a></td>
</tr>

<tr>
<td>4</td>
<td>Mitochondrial integrity (ΔΨm)</td>
<td>↓ ΔΨm</td>
<td>Mitochondrial dysfunction</td>
<td>Parthenolide increases ROS and is reported with a combined ΔΨm reduction accompanying apoptosis across cancer cell lines</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/37298119/">(ref)</a></td>
</tr>

<tr>
<td>5</td>
<td>Intrinsic apoptosis (caspase-3 activation)</td>
<td>↑ caspase-3</td>
<td>Programmed cell death</td>
<td>Parthenolide treatment associated with mitochondrial membrane depolarization and caspase-3 activation in cancer cells</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/19949351/">(ref)</a></td>
</tr>

<tr>
<td>6</td>
<td>STAT3 signaling (via JAK2 covalent inhibition)</td>
<td>↓ STAT3 phosphorylation/signaling</td>
<td>Reduced survival / migration programs</td>
<td>Parthenolide covalently modifies JAK2 cysteines, suppressing kinase activity and inhibiting STAT3 signaling</td>
<td><a href="https://pubmed.ncbi.nlm.nih.gov/29921758/">(ref)</a></td>
</tr>

<tr>
<td>7</td>
<td>AML stem cell targeting (LSC vulnerability; regimen context)</td>
<td>↓ AML stem cell survival</td>
<td>Stem/progenitor depletion</td>
<td>Parthenolide-based regimen (parthenolide + 2DG + temsirolimus) demonstrates potent targeting of AML stem cells</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC5063982/">(ref)</a></td>
</tr>

<tr>
<td>8</td>
<td>In vivo anti-tumor effect (xenograft; parthenolide analog evidence)</td>
<td>↓ tumor growth</td>
<td>Demonstrated efficacy (derivative)</td>
<td>Note: this is for an orally bioavailable parthenolide analog (DMAPT), not native parthenolide</td>
<td><a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC2234793/">(ref)</a></td>
</tr>

</table>



Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

Catalase↓, 1,   GPx1↓, 1,   GSH↓, 3,   ox-Keap1↓, 1,   rd-Keap1↑, 1,   NRF2∅, 1,   NRF2↑, 1,   OXPHOS↓, 1,   ROS↑, 14,   ROS?, 1,   SOD2↓, 1,   Thiols↓, 1,   Thiols↝, 1,   Trx↓, 3,   TrxR↓, 1,   TrxR1↓, 1,   TrxR2↓, 1,  

Mitochondria & Bioenergetics

MMP↓, 5,  

Core Metabolism/Glycolysis

IDH2↓, 1,   NADPH↑, 3,   PPP↑, 1,   SLC25A1↓, 1,  

Cell Death

Akt↑, 1,   Akt↓, 1,   Apoptosis↑, 4,   BAX↑, 2,   Bcl-2↓, 1,   Casp↑, 2,   Casp3↑, 2,   JNK↑, 1,   MLKL↑, 1,   Necroptosis↑, 1,   RIP1↓, 1,  

Transcription & Epigenetics

other↝, 1,   tumCV↓, 3,  

Protein Folding & ER Stress

ER Stress↑, 1,   GRP78/BiP↑, 1,  

Autophagy & Lysosomes

ATG3↑, 1,   ATG5↑, 1,   Beclin-1↑, 1,   TumAuto↑, 1,  

DNA Damage & Repair

P53↑, 1,  

Cell Cycle & Senescence

TumCCA↑, 2,   TumCCA?, 1,  

Proliferation, Differentiation & Cell State

CSCs↓, 4,   p‑FOXO3↓, 1,   mTOR↓, 1,   PI3K↑, 1,   PI3K↓, 1,   PTEN↑, 1,   STAT↓, 1,   STAT3↓, 1,   TCF-4↓, 1,   TumCG↓, 1,   Wnt↓, 1,  

Migration

Ca+2↑, 1,   LEF1↓, 1,   MMP2↓, 1,   MMP9↓, 1,   RIP3↑, 1,   TumCMig↓, 2,  

Immune & Inflammatory Signaling

Inflam↓, 1,   JAK↓, 1,   NF-kB↓, 6,  

Drug Metabolism & Resistance

BioAv↓, 1,   BioAv↑, 1,   eff↑, 5,   eff↓, 5,   RadioS↑, 3,   selectivity↑, 3,   selectivity?, 1,  

Functional Outcomes

AntiCan↑, 1,   radioP↑, 2,  
Total Targets: 73

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

GSH↑, 1,   GSH/GSSG↑, 1,   ox-Keap1↑, 1,   NRF2↑, 2,   ROS∅, 1,   ROS↓, 2,  

Mitochondria & Bioenergetics

MMP↓, 1,  

Core Metabolism/Glycolysis

NADPH∅, 1,  

Cell Death

Apoptosis↓, 2,   BAX↓, 1,  

DNA Damage & Repair

P53↓, 1,  

Immune & Inflammatory Signaling

NF-kB↓, 1,   p‑NF-kB↓, 1,  

Drug Metabolism & Resistance

eff↑, 1,  

Functional Outcomes

memory↑, 1,  
Total Targets: 15

Research papers

Year Title Authors PMID Link Flag
2024The protective effect of parthenolide in an in vitro model of Parkinson's disease through its regulation of nuclear factor-kappa B and oxidative stressSeyed Ali Shariat Razav39017801https://pubmed.ncbi.nlm.nih.gov/39017801/0
2024Parthenolide induces ROS-dependent cell death in human gastric cancer cellDandan Han38197565https://pubmed.ncbi.nlm.nih.gov/38197565/0
2024Parthenolide Inhibits Tumor Cell Growth and Metastasis in Melanoma A2058 CellsZahra Dorostgou39415578https://pubmed.ncbi.nlm.nih.gov/39415578/0
2023Parthenolide Induces ROS-Mediated Apoptosis in Lymphoid MalignanciesJoana JorgePMC10252365https://pmc.ncbi.nlm.nih.gov/articles/PMC10252365/0
2023Parthenolide alleviates cognitive dysfunction and neurotoxicity via regulation of AMPK/GSK3β(Ser9)/Nrf2 signaling pathwayJinfeng Sun37992573https://pubmed.ncbi.nlm.nih.gov/37992573/0
2023A novel SLC25A1 inhibitor, parthenolide, suppresses the growth and stemness of liver cancer stem cells with metabolic vulnerabilityZhichun ZhangPMC10518014https://pmc.ncbi.nlm.nih.gov/articles/PMC10518014/0
2022Targeting thioredoxin reductase by micheliolide contributes to radiosensitizing and inducing apoptosis of HeLa cellsJunmin Zhang35561844https://pubmed.ncbi.nlm.nih.gov/35561844/0
2022Parthenolide and Its Soluble Analogues: Multitasking Compounds with Antitumor PropertiesDaniela CarlisiPMC8962426https://pmc.ncbi.nlm.nih.gov/articles/PMC8962426/0
2018Parthenolide Inhibits STAT3 Signaling by Covalently Targeting Janus KinasesMan LiuPMC6100543https://pmc.ncbi.nlm.nih.gov/articles/PMC6100543/0
2016Targeting Thioredoxin Reductase by Parthenolide Contributes to Inducing Apoptosis of HeLa CellsDongzhu DuanPMC4858956https://pmc.ncbi.nlm.nih.gov/articles/PMC4858956/0
2016Rational Design of a Parthenolide-based Drug Regimen That Selectively Eradicates Acute Myelogenous Leukemia Stem CellsShanshan PeiPMC5063982https://pmc.ncbi.nlm.nih.gov/articles/PMC5063982/0
2016Parthenolide induces apoptosis and autophagy through the suppression of PI3K/Akt signaling pathway in cervical cancerSridharan Jeyamohan27099069https://pubmed.ncbi.nlm.nih.gov/27099069/0
2014KEAP1 Is a Redox Sensitive Target That Arbitrates the Opposing Radiosensitive Effects of Parthenolide in Normal and Cancer CellsYong XuPMC3715565https://pmc.ncbi.nlm.nih.gov/articles/PMC3715565/0
2011A NADPH oxidase dependent redox signaling pathway mediates the selective radiosensitization effect of parthenolide in prostate cancer cellsYulan SunPMC2848907https://pmc.ncbi.nlm.nih.gov/articles/PMC2848907/0
2010Parthenolide, a sesquiterpene lactone from the medical herb feverfew, shows anticancer activity against human melanoma cells in vitroKarolina Lesiak19949351https://pubmed.ncbi.nlm.nih.gov/19949351/0
2009Modulation of Cell Surface Protein Free Thiols: A Potential Novel Mechanism of Action of the Sesquiterpene Lactone ParthenolideJolanta SkalskaPMC2780735https://pmc.ncbi.nlm.nih.gov/articles/PMC2780735/0
2007An orally bioavailable parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cellsMonica L GuzmanPMC2234793https://pmc.ncbi.nlm.nih.gov/articles/PMC2234793/0
2004Critical roles of intracellular thiols and calcium in parthenolide-induced apoptosis in human colorectal cancer cellsSiyuan Zhang15142672https://pubmed.ncbi.nlm.nih.gov/15142672/0
2001Cysteine 38 in p65/NF-kappaB plays a crucial role in DNA binding inhibition by sesquiterpene lactonesA J García-Piñeres11500489https://pubmed.ncbi.nlm.nih.gov/11500489/0