tbResList Print — GA Gallic acid

Filters: qv=82, qv2=%, rfv=%

Product

GA Gallic acid
Description: <b>Phenolic acid</b> found in gallnuts, sumac, witch hazel, tea leaves, oak bark. Has anitoxidant, antimicrobial and anti-obesity properties.<br>
The GA derivatives include two types: ester and catechin derivatives. The most common ester derivatives of GA are alkyl esters, which are composed mainly of methyl gallate (MG), propyl gallate (PG), octyl gallate (OG), dodecyl gallate (DG), tetradecyl gallate (TG), and hexadecyl gallate (HG), and some of the main catechin derivatives are epicatechin (EC), epicatechin gallate (ECG), epigallocatechin (EGC), gallocatechin gallate (GCG), and epigallocatechin gallate (EGCG)<br>
<br>
Gallic acid is a naturally occurring polyphenol found in a variety of plant-based foods. Some of the best dietary sources include:<br>
<br>
Fruits:<br>
Berries (strawberries, blackberries, blueberries)<br>
Grapes, including red wine (grapes are rich in polyphenols)<br>
Pomegranates and apples<br>
Nuts and Seeds: Walnuts and almonds have been noted to contain GA in their skins<br>
Herbs and Spices: Tea (especially green tea), Sumac and other spices<br>
Other Plants: Gallnuts (from oak trees)<br>
<br>
Pathways:<br>
-ROS generation in tumor cells is frequently reported, Antioxidant behavior dominates in normal tissue models
-Apoptosis Induction: Activating caspase cascades, Shifting Bax versus Bcl-2, MMP, cyt-c release
-Cell Cycle Arrest: typ @ G1 or G2/M checkpoints. <br>
-Anti-inflammatory Effects: inhibiting NF-κB <br>
-reported Angiogenesis Inhibition:<br>
-Modulation of Signaling Pathways: MAPK Pathway, PI3K/Akt Pathway Inhibition, p53 Pathway<br>
<br>
Gallic acid exhibits a complex behavior with ROS in cancer cells, acting as both an antioxidant and a pro-oxidant depending on the context and its concentration:<br>
<br>
Antioxidant Effects at Low Doses:<br>
-At lower concentrations, gallic acid is typically characterized by its ability to scavenge free radicals, thus reducing oxidative stress.<br>
This antioxidant property may help protect normal cells from DNA damage, reducing the risk of mutations that could lead to cancer.<br>
<br>
Pro-oxidant Effects at High Doses: >50-100uM?<br>
-Capable of biphasic redox behavior (antioxidant in normal cells, pro-oxidant in some tumor contexts)
-At higher concentrations, GA can exert pro-oxidant effects, generating ROS within cancer cells.
Elevated ROS levels can overwhelm the cellular antioxidant defenses of cancer cells, leading to oxidative stress, mitochondrial dysfunction, and ultimately cell death.<br>
<br>
Oral bioavailability is moderate but subject to rapid conjugation (glucuronide/sulfate/methylated metabolites). Many cytotoxic in-vitro concentrations are in the 10–100 µM range, often higher than typical plasma levels after dietary intake.<br>
<br>



<!-- Gallic Acid (GA) — Refined Time-Scale Flagged Pathway Table -->
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer / Tumor Context</th>
<th>Normal Tissue Context</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>ROS / Redox modulation (biphasic)</td>
<td>ROS ↑ at higher concentrations (reported); mitochondrial stress ↑</td>
<td>ROS ↓; antioxidant protection</td>
<td>P, R</td>
<td>Redox destabilization (tumor) / buffering (normal)</td>
<td>GA demonstrates dose-dependent redox behavior; pro-oxidant effects are most evident ≥50–100 µM in vitro.</td>
</tr>

<tr>
<td>2</td>
<td>Nrf2 / ARE antioxidant response</td>
<td>Context-dependent; may support stress adaptation</td>
<td>Nrf2 ↑; HO-1 ↑; GSH ↑</td>
<td>R, G</td>
<td>Redox regulation</td>
<td>Activation common in non-malignant oxidative stress models; tumor implications vary and may affect therapy sensitivity.</td>
</tr>

<tr>
<td>3</td>
<td>NF-κB inflammatory signaling</td>
<td>NF-κB ↓; COX-2, IL-6, TNF-α ↓ (reported)</td>
<td>Inflammation tone ↓</td>
<td>R, G</td>
<td>Anti-inflammatory + anti-survival transcription</td>
<td>One of the more consistent signaling findings across inflammatory and tumor models.</td>
</tr>

<tr>
<td>4</td>
<td>Intrinsic apoptosis (mitochondrial; p53-related)</td>
<td>ΔΨm ↓; Bax ↑; Bcl-2 ↓; caspases ↑; cyt-c ↑ (reported)</td>
<td>↔ (limited activation)</td>
<td>G</td>
<td>Cell death execution</td>
<td>Often ROS-mediated; p53 activation reported in several systems.</td>
</tr>

<tr>
<td>5</td>
<td>Cell-cycle checkpoints (G1 / G2-M)</td>
<td>Cell-cycle arrest ↑ (Cyclin/CDK modulation)</td>
<td>↔</td>
<td>G</td>
<td>Cytostasis</td>
<td>Phase varies by tumor model; commonly G1 or G2/M.</td>
</tr>

<tr>
<td>6</td>
<td>PI3K → AKT (± mTOR)</td>
<td>PI3K/AKT signaling ↓ (reported; model-dependent)</td>
<td>↔</td>
<td>R, G</td>
<td>Growth/survival suppression</td>
<td>Likely secondary to redox and inflammatory signaling modulation.</td>
</tr>

<tr>
<td>7</td>
<td>MAPK pathways (ERK / JNK / p38)</td>
<td>JNK/p38 activation; ERK modulation (context-dependent)</td>
<td>↔</td>
<td>P, R, G</td>
<td>Stress signaling reprogramming</td>
<td>Often linked to ROS-mediated apoptosis pathways.</td>
</tr>

<tr>
<td>8</td>
<td>Angiogenesis signaling (VEGF)</td>
<td>VEGF ↓ (reported in some models)</td>
<td>↔</td>
<td>G</td>
<td>Anti-angiogenic modulation</td>
<td>Evidence present but less consistent than redox and NF-κB effects.</td>
</tr>

<tr>
<td>9</td>
<td>Invasion / metastasis (MMPs / EMT)</td>
<td>MMP2/MMP9 ↓; migration ↓ (reported)</td>
<td>↔</td>
<td>G</td>
<td>Anti-invasive phenotype</td>
<td>Likely downstream of NF-κB and MAPK modulation.</td>
</tr>

<tr>
<td>10</td>
<td>Bioavailability constraint (phase II metabolism)</td>
<td>Rapid glucuronidation/sulfation; free GA low</td>
<td>—</td>
<td>—</td>
<td>Translation constraint</td>
<td>Plasma levels after dietary intake are generally below many in-vitro cytotoxic concentrations.</td>
</tr>

</table>

<p><b>Time-Scale Flag (TSF):</b> P / R / G</p>
<ul>
<li><b>P</b>: 0–30 min (rapid redox interactions)</li>
<li><b>R</b>: 30 min–3 hr (acute signaling and stress-response shifts)</li>
<li><b>G</b>: &gt;3 hr (gene-regulatory adaptation and phenotype outcomes)</li>
</ul>





Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

antiOx↑, 1,   GSH↑, 1,   ROS↑, 1,  

Mitochondria & Bioenergetics

MMP↓, 1,  

Core Metabolism/Glycolysis

FASN↓, 1,   LDH↓, 1,  

Cell Death

p‑Akt↓, 3,   Apoptosis↑, 1,   BAX↑, 1,   Bax:Bcl2↑, 1,   Bcl-2↓, 1,   Casp3↑, 2,   Casp8↑, 1,   Cyt‑c↑, 1,   p27↑, 1,  

Transcription & Epigenetics

tumCV↓, 2,  

DNA Damage & Repair

DNAdam↑, 1,   P53↑, 2,   cl‑PARP↓, 1,   PCNA↓, 1,  

Cell Cycle & Senescence

cycD1/CCND1↓, 1,   cycE/CCNE↓, 1,   cycE1↓, 1,   P21↑, 1,   TumCCA↑, 3,  

Proliferation, Differentiation & Cell State

EMT↓, 1,   p‑ERK↓, 1,   HDAC1↓, 1,   HDAC2↓, 1,   miR-34a↑, 1,   p‑PI3K↓, 1,   PTEN↑, 1,   p‑STAT3↓, 1,   TumCG↓, 1,   Wnt/(β-catenin)↓, 1,  

Migration

Treg lymp↓, 1,   TumCP↓, 2,   TumMeta↓, 1,  

Angiogenesis & Vasculature

angioG↓, 1,   p‑EGFR↓, 1,   EGFR↓, 1,   Hif1a↓, 1,   VEGF↓, 1,  

Immune & Inflammatory Signaling

FOXP3↓, 1,   IFN-γ↑, 1,   Inflam↑, 1,   PD-L1↓, 1,  

Cellular Microenvironment

ADAM17↓, 1,  

Drug Metabolism & Resistance

BioAv↑, 2,   BioAv↝, 1,   BioAv↓, 1,   Dose∅, 1,  

Clinical Biomarkers

p‑EGFR↓, 1,   EGFR↓, 1,   GutMicro↑, 1,   LDH↓, 1,   PD-L1↓, 1,  

Functional Outcomes

AntiCan↑, 1,   TumVol↓, 1,  

Infection & Microbiome

CD8+↑, 1,  
Total Targets: 60

Pathway results for Effect on Normal Cells

Functional Outcomes

toxicity↓, 2,  
Total Targets: 1

Research papers

Year Title Authors PMID Link Flag
2023Gallic acid alleviates gastric precancerous lesions through inhibition of epithelial mesenchymal transition via Wnt/β-catenin signaling pathwayWenhao Liao36328204https://pubmed.ncbi.nlm.nih.gov/36328204/0
2023Anticancer Effect of Pomegranate Peel Polyphenols against Cervical CancerSandra Lucía TenientePMC9854619https://pmc.ncbi.nlm.nih.gov/articles/PMC9854619/0
2022Gallic acid induces T-helper-1-like Treg cells and strengthens immune checkpoint blockade efficacyBiaolong DengPMC9274539https://pmc.ncbi.nlm.nih.gov/articles/PMC9274539/0
2021Targeting Aerobic Glycolysis: Gallic Acid as Promising Anticancer DrugAmer Hasan Abdullahhttps://www.researchgate.net/publication/354061520_Targeting_Aerobic_Glycolysis_Gallic_Acid_as_Promising_Anticancer_Drug0
2021Gallic acid potentiates the apoptotic effect of paclitaxel and carboplatin via overexpression of Bax and P53 on the MCF-7 human breast cancer cell lineNora M Aborehab33002289https://pubmed.ncbi.nlm.nih.gov/33002289/0
2020The Inhibitory Mechanisms of Tumor PD-L1 Expression by Natural Bioactive Gallic Acid in Non-Small-Cell Lung Cancer (NSCLC) CellsDong Young KangPMC7140102https://pmc.ncbi.nlm.nih.gov/articles/PMC7140102/0
2020Gallic acid, a phenolic acid, hinders the progression of prostate cancer by inhibition of histone deacetylase 1 and 2 expressionYin-Gi Jang32615369https://pubmed.ncbi.nlm.nih.gov/32615369/0
2020Impact of Gallic Acid on Gut Health: Focus on the Gut Microbiome, Immune Response, and Mechanisms of ActionKang YangPMC7525003https://pmc.ncbi.nlm.nih.gov/articles/PMC7525003/0
2015Gallic acid, a phenolic compound, exerts anti-angiogenic effects via the PTEN/AKT/HIF-1α/VEGF signaling pathway in ovarian cancer cellsZHIPING HEPMC4699619https://pmc.ncbi.nlm.nih.gov/articles/PMC4699619/0
2013Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cellsBing ZhaoPMC4023842https://pmc.ncbi.nlm.nih.gov/articles/PMC4023842/0
2012Anti-leukemic effects of gallic acid on human leukemia K562 cells: downregulation of COX-2, inhibition of BCR/ABL kinase and NF-κB inactivationT Chandramohan Reddy22245431https://pubmed.ncbi.nlm.nih.gov/22245431/0