tbResList Print — GAR Garcinol

Filters: qv=83, qv2=%, rfv=%

Product

GAR Garcinol
Description: <b>Found</b> in dried fruit rind of Garcinia Indica with anti-inflammatory, antioxidant, anticancer, and antibacterial properties<br>
Garcinia Cambogia Extract.<br>
"We conclude that patients who are T-cadherin-positive could especially benefit from a therapy with garcinol."<br>
<br>
🔬1) NF-κB & AP-1 Suppression<br>
Garcinol inhibits NF-κB and AP-1 transcriptional activity in multiple cancer cell systems, reducing pro-inflammatory and pro-survival gene expression.<br>
📚 2) Epigenetic Regulation<br>
Garcinol is one of the few natural products shown to inhibit p300/CBP histone acetyltransferases, shifting chromatin acetylation and influencing gene expression (differentiation, apoptosis, EMT).
This is more specific than general “HDAC modulation.”<br>
💀 3) Apoptosis<br>
Studies report modulation of the Bcl-2 family and increased caspase activity, but this is often downstream of transcription/epigenetic changes, not a direct redox trigger.<br>
🧬 4) Cell Cycle & Proliferation<br>
Lower Cyclin D1, higher p21/p27, and G1/S arrest are common phenotypes.<br>
🧭 5) Invasion & Angiogenesis<br>
Garcinol reduces MMP-2/9 and angiogenic markers in multiple tumor cell assays.<br>
<br>





<!-- Garcinol (Garc) — Time-Scale Flagged Pathway Table (web-page ready) -->
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells</th>
<th>Normal Cells</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>NF-κB / AP-1 signaling</td>
<td>NF-κB ↓; AP-1 ↓; downstream pro-survival/inflammatory outputs ↓</td>
<td>↔ or anti-inflammatory modulation in immune cells</td>
<td>R, G</td>
<td>Pro-survival & inflammatory transcription suppression</td>
<td>Garcinol is reported to inhibit NF-κB and AP-1 transcriptional activity, reducing inflammation and pro-growth signaling in multiple models.</td>
</tr>

<tr>
<td>2</td>
<td>Epigenetic regulation (HAT/HDAC modulation)</td>
<td>Inhibition of p300/CBP histone acetyltransferase; altered acetylation patterns</td>
<td>↔ baseline epigenetic state</td>
<td>R, G</td>
<td>Gene regulatory reprogramming</td>
<td>Garcinol directly inhibits histone acetyltransferases (especially p300/CBP), influencing chromatin state and gene expression linked to differentiation and proliferation.</td>
</tr>

<tr>
<td>3</td>
<td>Intrinsic apoptosis (mitochondrial / caspase-linked)</td>
<td>↑ Bax/Bak; ↓ Bcl-2/Bcl-xL; ↑ caspase-9/3</td>
<td>↔ minimal activation in normal cells</td>
<td>G</td>
<td>Execution of apoptosis</td>
<td>Often downstream of stress and survival pathway modulation; not as dominant as classic pro-oxidant molecules but consistent in many cell lines.</td>
</tr>

<tr>
<td>4</td>
<td>Cell-cycle checkpoints (p21/p27; Cyclin D1)</td>
<td>Cell-cycle arrest (often G1/S); Cyclin D1 ↓</td>
<td>↔</td>
<td>G</td>
<td>Cytostasis</td>
<td>Frequently reported as later phenotypic outcome tied to reduced proliferation.</td>
</tr>

<tr>
<td>5</td>
<td>Invasion / metastasis programs (MMPs / EMT)</td>
<td>MMP-2/9 ↓; invasion/migration ↓; EMT markers ↓</td>
<td>↔</td>
<td>G</td>
<td>Anti-invasive phenotype</td>
<td>Linked mechanistically to NF-κB/AP-1 and epigenetic changes influencing MMP expression and EMT regulators.</td>
</tr>

<tr>
<td>6</td>
<td>Angiogenesis signaling (VEGF & pro-angiogenic factors)</td>
<td>VEGF ↓; pro-angiogenic markers ↓</td>
<td>↔</td>
<td>G</td>
<td>Anti-angiogenic support</td>
<td>Sometimes measured in later in vivo or emulated assay systems; reflects downstream gene expression changes.</td>
</tr>

<tr>
<td>7</td>
<td>PI3K/AKT / survival kinases</td>
<td>↓ PI3K/AKT signaling (model-dependent)</td>
<td>↔</td>
<td>R, G</td>
<td>Survival/growth suppression</td>
<td>Modulation of survival kinases is reported in some systems but not a universal primary mechanism.</td>
</tr>

<tr>
<td>8</td>
<td>ROS / oxidative stress (context–dependent)</td>
<td>ROS modulation (inconsistent across models)</td>
<td>↔</td>
<td>P, R, G</td>
<td>Conditional stress modulation</td>
<td>Some studies report mild ROS changes, but garcinol is not a strong pro-oxidant driver like BetA or curcumin in cancer cells.</td>
</tr>

<tr>
<td>9</td>
<td>Chemo-sensitization / combination relevance</td>
<td>Enhanced sensitivity to chemotherapeutics (context)</td>
<td>—</td>
<td>G</td>
<td>Combination leverage</td>
<td>Combination effects are reported in selected cell lines/model systems; not universal.</td>
</tr>

<tr>
<td>10</td>
<td>Bioavailability constraint (oral exposure / formulation dependence)</td>
<td>Systemic exposure often limited without enhanced delivery</td>
<td>—</td>
<td>—</td>
<td>Translation constraint</td>
<td>Poor native bioavailability is common across polyphenols/bzp molecules; formulations improve systemic exposure.</td>
</tr>
</table>

<p><b>Time-Scale Flag (TSF):</b> P / R / G</p>
<ul>
<li><b>P</b>: 0–30 min (primary/physical-chemical effects; rapid signaling / kinase shifts)</li>
<li><b>R</b>: 30 min–3 hr (acute stress-response and transcription signaling)</li>
<li><b>G</b>: &gt;3 hr (gene-regulatory adaptation and phenotype-level outcomes)</li>
</ul>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

GSH↓, 1,   ROS↑, 2,  

Mitochondria & Bioenergetics

MMP↓, 1,   XIAP↓, 1,  

Core Metabolism/Glycolysis

PI3K/Akt↓, 2,  

Cell Death

p‑Akt↓, 2,   Akt↓, 1,   Apoptosis↑, 8,   BAX↑, 4,   Bax:Bcl2↑, 1,   Bcl-2↓, 7,   Bcl-xL↓, 2,   Casp↝, 1,   Casp3↑, 4,   cl‑Casp3↑, 1,   Casp8↑, 1,   Casp9↑, 3,   proCasp9↑, 1,   CBP↓, 1,   cFLIP↓, 1,   Cyt‑c↑, 3,   DR5↑, 1,   Fas↑, 1,   MAPK↓, 2,   Mcl-1↓, 1,   p27↑, 1,   survivin↓, 3,   TRAIL↑, 1,  

Kinase & Signal Transduction

cSrc↓, 1,   H3K18↓, 1,  

Transcription & Epigenetics

p‑cJun↑, 1,   EZH2↓, 1,   ac‑H3↑, 1,   ac‑H4∅, 1,   HATs↓, 3,   miR-205↑, 1,   miR-21↝, 1,   miR-218↑, 1,   other↑, 2,   PCAF↓, 1,   tumCV↓, 1,  

Protein Folding & ER Stress

CHOP↑, 2,   HRI↓, 1,   HSP90↓, 1,  

DNA Damage & Repair

DFF45↑, 1,   DFF45↓, 1,   DNAdam↑, 1,   P53↑, 1,   PARP↑, 1,   PARP↝, 1,   PARP↓, 1,   cl‑PARP↑, 2,  

Cell Cycle & Senescence

CDK2↓, 1,   CDK4↓, 1,   CycB/CCNB1↓, 1,   cycD1/CCND1↓, 2,   CycD3↓, 1,   cycE/CCNE↑, 1,   P21↑, 1,   TumCCA↑, 4,  

Proliferation, Differentiation & Cell State

ALDH1A1↓, 1,   EMT↓, 1,   ERK↓, 3,   Gli1↓, 1,   HDAC11↓, 1,   Let-7↑, 1,   p‑mTOR↓, 1,   NOTCH1↓, 1,   OCT4↓, 1,   p300↓, 1,   p‑PI3K↓, 1,   SOX2↓, 1,   Src↓, 1,   STAT3↓, 3,   TumCG↓, 2,   Wnt/(β-catenin)↓, 1,  

Migration

AntiAg↓, 1,   CD31↓, 1,   E-cadherin↑, 2,   p‑FAK↓, 1,   HLA↑, 1,   Ki-67↓, 1,   MET↑, 1,   miR-200b↑, 1,   miR-200c↑, 1,   MMP2↓, 1,   MMP7↓, 1,   MMP9↓, 2,   MMPs↝, 1,   SMAD2↓, 1,   SMAD3↓, 1,   T-cadherin↑, 1,   TGF-β↓, 2,   TumCI↓, 1,   TumCMig↓, 1,   TumCP↓, 4,   Vim↓, 2,   Zeb1↓, 2,   ZEB2↑, 1,   ZEB2↓, 1,   p‑β-catenin/ZEB1↓, 1,  

Angiogenesis & Vasculature

Hif1a↓, 1,   VEGF↓, 3,   VEGF↝, 1,  

Immune & Inflammatory Signaling

COX2↓, 1,   CXCR4↓, 1,   IL6↓, 1,   JAK1↓, 1,   JAK2↓, 1,   mPGES-1↓, 1,   NF-kB↓, 3,   NF-kB↝, 1,   ac‑p65↑, 1,   PGE2↓, 1,  

Hormonal & Nuclear Receptors

CDK6↑, 1,  

Drug Metabolism & Resistance

ABCG2↓, 1,   ChemoSen↑, 1,  

Clinical Biomarkers

EZH2↓, 1,   IL6↓, 1,   Ki-67↓, 1,  

Functional Outcomes

OS↑, 1,   TumVol↓, 1,  
Total Targets: 122

Pathway results for Effect on Normal Cells

Transcription & Epigenetics

other↑, 1,  

Drug Metabolism & Resistance

Dose∅, 1,   eff↓, 1,  

Functional Outcomes

toxicity↓, 1,  
Total Targets: 4

Research papers

Year Title Authors PMID Link Flag
2024The Role of T-Cadherin (CDH13) in Treatment Options with Garcinol in MelanomaSebastian StaeblerPMC11119778https://pmc.ncbi.nlm.nih.gov/articles/PMC11119778/0
2024Garcinol in gastrointestinal cancer prevention: recent advances and future prospectsNitika PatwaPMC11283395https://pmc.ncbi.nlm.nih.gov/articles/PMC11283395/0
2021Garcinol—A Natural Histone Acetyltransferase Inhibitor and New Anti-Cancer Epigenetic DrugPatrycja KopytkoPMC8001519https://pmc.ncbi.nlm.nih.gov/articles/PMC8001519/0
2021Garcinia Cambogia, Either Alone or in Combination with Green Tea Causes Moderate to Severe Liver InjuryRaj VuppalanchiPMC9004424https://pmc.ncbi.nlm.nih.gov/articles/PMC9004424/1
2020Garcinol Alone and in Combination With Cisplatin Affect Cellular Behavior and PI3K/AKT Protein Phosphorylation in Human Ovarian Cancer CellsJie ZhangPMC7238453https://pmc.ncbi.nlm.nih.gov/articles/PMC7238453/0
2020Garcinol Is an HDAC11 InhibitorSe In SonPMC7857146https://pmc.ncbi.nlm.nih.gov/articles/PMC7857146/0
2020Garcinol acts as an antineoplastic agent in human gastric cancer by inhibiting the PI3K/AKT signaling pathwayYuanyuan ZhengPMC7285879https://pmc.ncbi.nlm.nih.gov/articles/PMC7285879/0
2020Garcinol inhibits the proliferation of endometrial cancer cells by inducing cell cycle arrestMin ZhangPMC7757109https://pmc.ncbi.nlm.nih.gov/articles/PMC7757109/0
2020Garcinol Exhibits Anti-Neoplastic Effects by Targeting Diverse Oncogenic Factors in Tumor CellsVaishali AggarwalPMC7277375https://pmc.ncbi.nlm.nih.gov/articles/PMC7277375/0
2019Garcinol A Novel Inhibitor of Platelet Activation and ApoptosisHang CaoPMC6669759https://pmc.ncbi.nlm.nih.gov/articles/PMC6669759/0
2019Enhanced Hsa-miR-181d/p-STAT3 and Hsa-miR-181d/p-STAT5A Ratios Mediate the Anticancer Effect of Garcinol in STAT3/5A-Addicted GlioblastomaHeng-Wei LiuPMC6966688https://pmc.ncbi.nlm.nih.gov/articles/PMC6966688/0
2019Garcinol inhibits esophageal cancer metastasis by suppressing the p300 and TGF-β1 signaling pathwaysJing WangPMC7471459https://pmc.ncbi.nlm.nih.gov/articles/PMC7471459/0
2019Garcinol Sensitizes NSCLC Cells to Standard Therapies by Regulating EMT-Modulating miRNAsMohd FarhanPMC6413107https://pmc.ncbi.nlm.nih.gov/articles/PMC6413107/0
2018Anti-proliferative and anti-invasive effects of garcinol from Garcinia indica on gallbladder carcinoma cellsYi-Tao Duan30001777https://pubmed.ncbi.nlm.nih.gov/30001777/0
2018Dietary Garcinol Arrests Pancreatic Cancer in p53 and K-ras Conditional Mutant Mouse ModelNadia Saadat30273070https://pubmed.ncbi.nlm.nih.gov/30273070/0
2018Garcinol exerts anti-cancer effect in human cervical cancer cells through upregulation of T-cadherinJuan Zhao30257408https://pubmed.ncbi.nlm.nih.gov/30257408/0
2018Garcinol Enhances TRAIL-Induced Apoptotic Cell Death through Up-Regulation of DR5 and Down-Regulation of c-FLIP ExpressionSeok KimPMC6099973https://pmc.ncbi.nlm.nih.gov/articles/PMC6099973/0
2017Garcinol downregulates Notch1 signaling via modulating miR-200c and suppresses oncogenic properties of PANC-1 cancer stem-like cellsChi-Cheng Huang26400206https://pubmed.ncbi.nlm.nih.gov/26400206/0
2017Garcinol from Garcinia indica Downregulates Cancer Stem-like Cell Biomarker ALDH1A1 in Nonsmall Cell Lung Cancer A549 Cells through DDIT3 ActivationJinhan Wang28420235https://pubmed.ncbi.nlm.nih.gov/28420235/0
2017Garcinol sensitizes breast cancer cells to Taxol through the suppression of caspase-3/iPLA2 and NF-κB/Twist1 signaling pathways in a mouse 4T1 breast tumor modelShih-Hsin Tu28145547https://pubmed.ncbi.nlm.nih.gov/28145547/0
2017Garcinol exhibits anti-proliferative activities by targeting microsomal prostaglandin E synthase-1 in human colon cancer cellsT Ranjbarnejad27481098https://pubmed.ncbi.nlm.nih.gov/27481098/0
2016Dangerous dietary supplements: Garcinia cambogia-associated hepatic failure requiring transplantationKeri E LunsfordPMC5143754https://pmc.ncbi.nlm.nih.gov/articles/PMC5143754/1
2015Garcinol inhibits tumour cell proliferation, angiogenesis, cell cycle progression and induces apoptosis via NF-κB inhibition in oral cancerSadhna Aggarwal26662963https://pubmed.ncbi.nlm.nih.gov/26662963/0
2015Garcinol sensitizes human head and neck carcinoma to cisplatin in a xenograft mouse model despite downregulation of proliferative biomarkersFeng LiPMC4467139https://pmc.ncbi.nlm.nih.gov/articles/PMC4467139/0
2014Induction of p21(Waf1/Cip1) by garcinol via downregulation of p38-MAPK signaling in p53-independent H1299 lung cancerSheng-Yung Yu24533688https://pubmed.ncbi.nlm.nih.gov/24533688/0
2014High-Throughput Screen of Natural Product Libraries for Hsp90 InhibitorsJason DavenportPMC4009755https://pmc.ncbi.nlm.nih.gov/articles/PMC4009755/0
2014Garcinol, an acetyltransferase inhibitor, suppresses proliferation of breast cancer cell line MCF-7 promoted by 17β-estradiolXia Ye24998578https://pubmed.ncbi.nlm.nih.gov/24998578/0
2014Inhibition of STAT3 dimerization and acetylation by garcinol suppresses the growth of human hepatocellular carcinoma in vitro and in vivoGautam SethiPMC3998115https://pmc.ncbi.nlm.nih.gov/articles/PMC3998115/0
2013Garcinol sensitizes human pancreatic adenocarcinoma cells to gemcitabine in association with microRNA signaturesMansi A Parasramka23293055https://pubmed.ncbi.nlm.nih.gov/23293055/0
2013Differential effects of garcinol and curcumin on histone and p53 modifications in tumour cellsHilary M CollinsPMC3583671https://pmc.ncbi.nlm.nih.gov/articles/PMC3583671/0
2013Garcinol, a Polyisoprenylated Benzophenone Modulates Multiple Proinflammatory Signaling Cascades Leading to the Suppression of Growth and Survival of Head and Neck CarcinomaFeng Lihttps://aacrjournals.org/cancerpreventionresearch/article/6/8/843/50130/Garcinol-a-Polyisoprenylated-Benzophenone0
2012Garcinol Regulates EMT and Wnt Signaling Pathways In Vitro and In Vivo, Leading to Anticancer Activity against Breast Cancer CellsAamir AhmadPMC3836047https://pmc.ncbi.nlm.nih.gov/articles/PMC3836047/0
2012Garcinol, a Histone Acetyltransferase Inhibitor, Radiosensitizes Cancer Cells by Inhibiting Non-Homologous End JoiningTakahiro Oike, M.Dhttps://www.redjournal.org/article/S0360-3016(12)00060-0/abstract0
2012Synergistic effect of garcinol and curcumin on antiproliferative and apoptotic activity in pancreatic cancer cellsMansi A ParasramkaPMC3366245https://pmc.ncbi.nlm.nih.gov/articles/PMC3366245/0
2011Garcinol Potentiates TRAIL-Induced Apoptosis through Modulation of Death Receptors and Antiapoptotic ProteinsSahdeo PrasadPMC2852472https://pmc.ncbi.nlm.nih.gov/articles/PMC2852472/0
2011Garcinol-induced apoptosis in prostate and pancreatic cancer cells is mediated by NF- kappaB signalingAamir Ahmad21622152https://pubmed.ncbi.nlm.nih.gov/21622152/0
2011Garcinol inhibits cell proliferation and promotes apoptosis in pancreatic adenocarcinoma cellsMansi A Parasramka21462088https://pubmed.ncbi.nlm.nih.gov/21462088/0
2010Apoptosis-inducing effect of garcinol is mediated by NF-kappaB signaling in breast cancer cellsAamir Ahmad20108249https://pubmed.ncbi.nlm.nih.gov/20108249/0
2010Garcinol inhibits cell growth in hepatocellular carcinoma Hep3B cells through induction of ROS-dependent apoptosisAn-Chin Cheng21776480https://pubmed.ncbi.nlm.nih.gov/21776480/0
2005Garcinol modulates tyrosine phosphorylation of FAK and subsequently induces apoptosis through down-regulation of Src, ERK, and Akt survival signaling in human colon cancer cellsChiung-Ho Liao16052481https://pubmed.ncbi.nlm.nih.gov/16052481/0
2004Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expressionKaranam Balasubramanyam15155757https://pubmed.ncbi.nlm.nih.gov/15155757/0
2001Induction of apoptosis by garcinol and curcumin through cytochrome c release and activation of caspases in human leukemia HL-60 cellsM H Pan11312881https://pubmed.ncbi.nlm.nih.gov/11312881/0