tbResList Print — GEM Gemcitabine (Gemzar)

Filters: qv=84, qv2=%, rfv=%

Product

GEM Gemcitabine (Gemzar)
Features: Chemo
Description: <b>GEM</b> An IV antimetabolic antineoplastic used with cisplatin for inoperable non-small cell lung CA<br>
Treats cancer of pancreas, lung, ovary and breast.<br>
<br>
<!-- Gemcitabine (dFdC) — Time-Scale Flagged Pathway Table -->
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells</th>
<th>Normal Cells</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>Inhibition of DNA synthesis (antimetabolite effect)</td>
<td>Incorporated into DNA → chain termination</td>
<td>Normal dividing cells affected (bone marrow, GI epithelium)</td>
<td>P, R, G</td>
<td>Direct cytotoxicity</td>
<td>Gemcitabine (2′,2′-difluorodeoxycytidine, dFdC) is phosphorylated to the triphosphate form (dFdCTP) which competes with dCTP, gets incorporated into DNA, and blocks DNA chain elongation.</td>
</tr>

<tr>
<td>2</td>
<td>Ribonucleotide reductase (RNR) inhibition</td>
<td>dFdCDP inhibits RNR → deoxynucleotide pool depletion</td>
<td>↔ (normal proliferating cells also impacted)</td>
<td>R, G</td>
<td>Nucleotide pool imbalance</td>
<td>Gemcitabine diphosphate (dFdCDP) inhibits RNR, reducing available dNTPs and enhancing the chain-termination effect.</td>
</tr>

<tr>
<td>3</td>
<td>Apoptosis induction (DNA damage response)</td>
<td>DNA damage signaling → caspase activation</td>
<td>Toxicity in dividing normal tissues</td>
<td>G</td>
<td>Execution of cell death</td>
<td>Prolonged DNA synthesis arrest and replication stress triggers apoptosis pathways via ATR/Chk1, p53, and caspase cascades.</td>
</tr>

<tr>
<td>4</td>
<td>Cell-cycle arrest (S-phase accumulation)</td>
<td>S-phase arrest steers cells into apoptosis</td>
<td>↔</td>
<td>G</td>
<td>Cytostasis → death</td>
<td>Accumulation of stalled replication forks enforces S-phase arrest and amplifies cytotoxicity.</td>
</tr>

<tr>
<td>5</td>
<td>DNA damage response signaling (ATR/Chk1/Chk2)</td>
<td>Checkpoint activation</td>
<td>↔</td>
<td>R, G</td>
<td>Damage signaling</td>
<td>Replication stress activates ATR/Chk1/Chk2 and modulates cell-cycle checkpoints and repair responses.</td>
</tr>

<tr>
<td>6</td>
<td>NF-κB pro-survival signaling (resistance axis)</td>
<td>NF-κB activation can reduce sensitivity</td>
<td>↔</td>
<td>R, G</td>
<td>Resistance/modulation</td>
<td>In some tumor models, NF-κB and other pro-survival axes mediate resistance to gemcitabine cytotoxicity; inhibition sensitizes cells.</td>
</tr>

<tr>
<td>7</td>
<td>Autophagy modulation (response to stress)</td>
<td>Autophagy ↑ in some contexts (cytoprotective)</td>
<td>↔</td>
<td>G</td>
<td>Adaptive stress response</td>
<td>Gemcitabine can induce autophagy as a survival mechanism in some models; autophagy inhibition can sensitize cells in combination studies.</td>
</tr>

<tr>
<td>8</td>
<td>Reactive oxygen species (ROS) elevation (indirect)</td>
<td>ROS ↑ (reported in some models)</td>
<td>↔</td>
<td>G</td>
<td>Stress amplification</td>
<td>Some preclinical studies report ROS increases secondary to replication stress; not a primary mechanism but modulates cell-death pathways.</td>
</tr>

<tr>
<td>9</td>
<td>Clinical resistance mechanisms (CDA, nucleoside transporters)</td>
<td>CDA ↑; hENT1 ↓ correlates with resistance</td>
<td>—</td>
<td>G</td>
<td>Resistance / exposure constraint</td>
<td>Cytidine deaminase (CDA) inactivates gemcitabine; lower hENT1 transport reduces uptake — major clinical resistance factors.</td>
</tr>

<tr>
<td>10</td>
<td>Bioavailability / pharmacokinetics (IV dosing; systemic exposure)</td>
<td>IV infusion achieves systemic levels</td>
<td>↔</td>
<td>—</td>
<td>PK constraint</td>
<td>Gemcitabine is given systemically (often IV) and achieves cytotoxic blood levels; rapid deamination by CDA and short half-life shape dosing.</td>
</tr>
</table>

<p><b>Time-Scale Flag (TSF):</b> P / R / G</p>
<ul>
<li><b>P</b>: 0–30 min (rapid biochemical activation / early metabolic engagement)</li>
<li><b>R</b>: 30 min–3 hr (acute nucleotide pool effects / checkpoint signaling)</li>
<li><b>G</b>: &gt;3 hr (DNA damage response, cell death, phenotype outcomes)</li>
</ul>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

GSH↓, 1,   NQO1?, 1,   ROS↑, 3,   Trx↓, 1,  

Mitochondria & Bioenergetics

AIF↑, 1,   CDC25↓, 1,   MMP↓, 1,   XIAP↓, 1,  

Core Metabolism/Glycolysis

PDHB↓, 1,   PKM2↓, 1,  

Cell Death

Akt↓, 3,   Apoptosis↑, 6,   Bak↑, 1,   BAX↑, 2,   Bcl-2↓, 1,   Casp↝, 1,   Casp3↑, 1,   cl‑Casp3↑, 1,   Casp9↑, 1,   p‑Chk2↑, 1,   Cyt‑c↑, 1,   JNK↑, 1,   survivin↓, 1,   TUNEL↑, 1,  

Transcription & Epigenetics

ac‑H3↑, 1,   miR-21↝, 1,   tumCV↓, 4,   YMcells↓, 1,  

DNA Damage & Repair

CHK1↓, 1,   DNAdam↑, 1,   P53↑, 1,   PARP↝, 1,   PCNA↓, 1,  

Cell Cycle & Senescence

cycD1/CCND1↓, 1,   cycE/CCNE↓, 1,   P21↑, 2,   TumCCA↑, 3,  

Proliferation, Differentiation & Cell State

EMT?, 1,   HDAC↓, 1,   p‑IGFR↓, 1,   STAT3↓, 1,   TumCG↓, 5,  

Migration

F-actin↓, 1,   Ki-67↓, 2,   MMPs↝, 1,   SMAD2↓, 1,   SMAD3↓, 1,   SMAD4↓, 1,   TGF-β↓, 1,   TumCI↓, 3,   TumCMig↓, 3,   TumCP↓, 3,   Vim↓, 1,   Zeb1↓, 1,   β-catenin/ZEB1↓, 1,  

Angiogenesis & Vasculature

p‑EGFR↓, 1,   eNOS↓, 1,   Hif1a↓, 1,   VEGF↝, 1,   VEGF↓, 1,   VEGFR2↓, 1,  

Immune & Inflammatory Signaling

NF-kB↝, 1,   NF-kB↓, 2,  

Drug Metabolism & Resistance

ChemoSen↑, 5,   eff↑, 2,  

Clinical Biomarkers

p‑EGFR↓, 1,   Ki-67↓, 2,  

Functional Outcomes

AntiTum↑, 1,   OS↑, 2,  
Total Targets: 69

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

ROS↓, 1,  
Total Targets: 1

Research papers

Year Title Authors PMID Link Flag
2017Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: combination therapy for effective cancer treatmentYu-Guo YuanPMC5592960https://pmc.ncbi.nlm.nih.gov/articles/PMC5592960/0
2013Andrographolide causes apoptosis via inactivation of STAT3 and Akt and potentiates antitumor activity of gemcitabine in pancreatic cancerGuo-Qing Bao23845849https://pubmed.ncbi.nlm.nih.gov/23845849/0
2024Synergistic Inhibition of Pancreatic Cancer Cell Growth and Migration by Gemcitabine and Withaferin ARenata SzydlakPMC11430445https://pmc.ncbi.nlm.nih.gov/articles/PMC11430445/0
2023Betulinic acid, a major therapeutic triterpene of Celastrus orbiculatus Thunb., acts as a chemosensitizer of gemcitabine by promoting Chk1 degradationLi Taohttps://www.sciencedirect.com/science/article/abs/pii/S03788741230016300
2021Ellagic Acid Resensitizes Gemcitabine-Resistant Bladder Cancer Cells by Inhibiting Epithelial-Mesenchymal Transition and Gemcitabine TransportersYing-Si WuPMC8122772https://pmc.ncbi.nlm.nih.gov/articles/PMC8122772/0
2019Epigallocatechin-3-Gallate (EGCG) Suppresses Pancreatic Cancer Cell Growth, Invasion, and Migration partly through the Inhibition of Akt Pathway and Epithelial–Mesenchymal Transition: Enhanced Efficacy When Combined with GemcitabineRan Weihttps://www.researchgate.net/publication/335091666_Epigallocatechin-3-Gallate_EGCG_Suppresses_Pancreatic_Cancer_Cell_Growth_Invasion_and_Migration_partly_through_the_Inhibition_of_Akt_Pathway_and_Epithelial-Mesenchymal_Transition_Enhanced_Efficacy_whe0
2018Dietary Garcinol Arrests Pancreatic Cancer in p53 and K-ras Conditional Mutant Mouse ModelNadia Saadat30273070https://pubmed.ncbi.nlm.nih.gov/30273070/0
2013Garcinol sensitizes human pancreatic adenocarcinoma cells to gemcitabine in association with microRNA signaturesMansi A Parasramka23293055https://pubmed.ncbi.nlm.nih.gov/23293055/0
2024Metformin Increases the Response of Cholangiocarcinoma Cells to Gemcitabine by Suppressing Pyruvate Kinase M2 to Activate Mitochondrial ApoptosisHaishan Deng38170336https://pubmed.ncbi.nlm.nih.gov/38170336/0
2023Sulforaphane Potentiates Gemcitabine-Mediated Anti-Cancer Effects against Intrahepatic Cholangiocarcinoma by Inhibiting HDAC ActivityFumimasa TomookaPMC10000472https://pmc.ncbi.nlm.nih.gov/articles/PMC10000472/0
2014Shikonin suppresses tumor growth and synergizes with gemcitabine in a pancreatic cancer xenograft model: Involvement of NF-κB signaling pathwayYongwei Wanghttps://www.sciencedirect.com/science/article/abs/pii/S000629521400080X0
2021The Antitumor Activity of Sodium Selenite Alone and in Combination with Gemcitabine in Pancreatic Cancer: An In Vitro and In Vivo StudyKevin DoelloPMC8268835https://pmc.ncbi.nlm.nih.gov/articles/PMC8268835/0