tbResList Print — GEN Genistein (soy isoflavone)

Filters: qv=85, qv2=%, rfv=%

Product

GEN Genistein (soy isoflavone)
Features: Estrogen-like activity
Description: <b>Genistein</b> is a naturally occurring isoflavone predominantly found in soy products.<br>
It binds estrogen receptors (with relative preference for ERβ over ERα), inhibits certain tyrosine kinases, and modulates PI3K/AKT, NF-κB, MAPK, and cell-cycle pathways in preclinical cancer models. It is also reported to influence angiogenesis and epigenetic regulation. Oral exposure produces conjugated metabolites (glucuronides/sulfates), and free genistein plasma levels are typically much lower than many in-vitro µM concentrations.<br>
-soy isoflavone
<br>
Anticancer effects through several mechanisms:<br>
-Modulation of Hormone Activity: can bind to estrogen receptors(hormone-dependent cancers like breast and prostate cancer).<br>
-Inhibition of Cell Proliferation:- -inducing cell cycle arrest.<br>
-Induction of Apoptosis:- by influencing pro- and anti-apoptotic regulators.<br>
-Anti-inflammatory and Antioxidant Effects:-antioxidant properties help to neutralize ROS<br>
-Anti-angiogenic Activity:may also inhibit tumor angiogenesis<br>
<br>
Key Cellular Signaling Pathways Involved<br>
-Estrogen Receptor Signaling: interacting with estrogen receptors (ERα and ERβ)<br>
-PI3K/Akt/mTOR Pathway:inhibits this pro-survival pathway, leading to reduced cell growth<br>
-MAPK/ERK Pathway: can contribute to cell cycle arrest.<br>
-NF-κB Pathway:may downregulate NF-κB, supporting a reduction in tumor-promoting inflammation.<br>
-Wnt/β-catenin Pathway: involved in cell proliferation, differentiation, and oncogenic transformation.<br>
<br>
Dosages often ranging from approximately 40 mg to 100 mg per day for potential therapeutic effects.
Genistein has limited bioavailability when ingested as part of the diet. Efforts to enhance its absorption include the use of specific formulations, such as those that combine genistein with other compounds or utilize novel delivery systems.<br>
<br>



<!-- Genistein (GEN) — Time-Scale Flagged Pathway Table -->
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells</th>
<th>Normal Cells</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>Estrogen receptor modulation (ERβ & ERα)</td>
<td>ER signaling modulation (context-dependent; tissue specific)</td>
<td>Selective ER modulation (phytoestrogenic activity)</td>
<td>P, R, G</td>
<td>Hormone pathway modulation</td>
<td>Genistein binds ERs (often higher affinity for ERβ). Effects depend on tumor ER status, dose, and hormonal environment.</td>
</tr>

<tr>
<td>2</td>
<td>Tyrosine kinase inhibition (e.g., EGFR-related signaling)</td>
<td>Growth signaling ↓ (reported)</td>
<td>↔</td>
<td>P, R</td>
<td>Mitogenic signaling suppression</td>
<td>Historically described as a protein tyrosine kinase inhibitor; relevance varies by cell type and exposure level.</td>
</tr>

<tr>
<td>3</td>
<td>PI3K → AKT → mTOR axis</td>
<td>PI3K/AKT signaling ↓ (reported; model-dependent)</td>
<td>↔</td>
<td>R, G</td>
<td>Survival/growth modulation</td>
<td>Frequently reported in preclinical systems; strength of effect varies with concentration and ER context.</td>
</tr>

<tr>
<td>4</td>
<td>NF-κB inflammatory transcription</td>
<td>NF-κB activity ↓ (reported)</td>
<td>Inflammatory tone ↓</td>
<td>R, G</td>
<td>Anti-inflammatory transcription</td>
<td>Observed across inflammatory and cancer models; contributes to reduced cytokine and pro-survival gene expression.</td>
</tr>

<tr>
<td>5</td>
<td>Cell-cycle checkpoints (G2/M commonly reported)</td>
<td>Cell-cycle arrest ↑ (often G2/M)</td>
<td>↔</td>
<td>G</td>
<td>Cytostasis</td>
<td>Genistein commonly induces cell-cycle arrest, particularly at higher in-vitro concentrations.</td>
</tr>

<tr>
<td>6</td>
<td>Intrinsic apoptosis (mitochondrial/caspase-linked)</td>
<td>Apoptosis ↑ (reported; dose-dependent)</td>
<td>↔ (generally less activation)</td>
<td>G</td>
<td>Cell death execution</td>
<td>Frequently downstream of survival signaling suppression; magnitude varies by exposure level.</td>
</tr>

<tr>
<td>7</td>
<td>Angiogenesis signaling (VEGF)</td>
<td>VEGF ↓ (reported)</td>
<td>↔</td>
<td>G</td>
<td>Anti-angiogenic support</td>
<td>Reduction in angiogenic signaling is described in some tumor models; typically a later phenotype effect.</td>
</tr>

<tr>
<td>8</td>
<td>Epigenetic modulation (DNMT / histone effects)</td>
<td>DNA methylation changes (reported)</td>
<td>↔</td>
<td>G</td>
<td>Epigenetic reprogramming</td>
<td>Genistein has been reported to influence DNMT activity and gene expression patterns in preclinical studies.</td>
</tr>

<tr>
<td>9</td>
<td>Redox modulation (ROS)</td>
<td>ROS direction variable (antioxidant at low dose; pro-oxidant reported at high dose)</td>
<td>Antioxidant tone ↑ (common in non-tumor models)</td>
<td>P, R, G</td>
<td>Redox modulation (context-dependent)</td>
<td>Redox effects are dose- and model-dependent; not a reliable primary cytotoxic mechanism.</td>
</tr>

<tr>
<td>10</td>
<td>Bioavailability / metabolism constraint</td>
<td>Systemic levels largely conjugated metabolites</td>
<td>—</td>
<td>—</td>
<td>Translation constraint</td>
<td>After oral intake, genistein circulates mainly as glucuronide/sulfate conjugates; free plasma levels are typically lower than many in-vitro IC50 values.</td>
</tr>

</table>

<p><b>Time-Scale Flag (TSF):</b> P / R / G</p>
<ul>
<li><b>P</b>: 0–30 min (rapid receptor/kinase interactions)</li>
<li><b>R</b>: 30 min–3 hr (acute transcription and signaling shifts)</li>
<li><b>G</b>: &gt;3 hr (gene-regulatory adaptation and phenotype outcomes)</li>
</ul>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

NQO1↑, 1,  

Mitochondria & Bioenergetics

XIAP↓, 1,  

Core Metabolism/Glycolysis

cMyc↓, 1,  

Cell Death

Akt↓, 1,   Apoptosis↑, 1,   Bcl-2↓, 2,   BTG3↑, 1,   Casp↑, 1,   hTERT/TERT↓, 2,   p38↓, 1,   survivin↓, 1,  

Kinase & Signal Transduction

Sp1/3/4↓, 1,  

Transcription & Epigenetics

ac‑H3↑, 1,   ac‑H4↑, 1,   other↝, 1,  

Protein Folding & ER Stress

NQO2↑, 1,  

DNA Damage & Repair

DNMTs↓, 2,   p16↑, 1,   P53↑, 1,  

Cell Cycle & Senescence

P21↑, 1,   TumCCA↑, 3,  

Proliferation, Differentiation & Cell State

CD44↓, 2,   CSCs↓, 4,   EMT↓, 1,   Gli1↓, 3,   HDAC↓, 1,   HDAC2↓, 1,   HDAC3↓, 1,   HH↓, 3,   HMTs↓, 1,   KLF4↓, 1,   Nanog↓, 1,   OCT4↓, 1,   PI3K↓, 1,   Smo↓, 1,   STAT3↓, 1,   p‑STAT3↓, 1,   TCF↓, 1,   TOP2↓, 1,   TumCG↓, 3,  

Migration

AP-1↓, 1,   FAK↓, 1,   MMP2↓, 1,   MMP9↓, 1,   PDGF↓, 1,   Slug↓, 1,   Snail↓, 1,   TumCI↓, 2,   TumCMig↓, 1,   TumCP↓, 2,   TumMeta↓, 1,   uPA↓, 1,   Zeb1↓, 1,  

Angiogenesis & Vasculature

Hif1a↓, 1,   VEGF↓, 1,  

Immune & Inflammatory Signaling

IKKα↓, 1,   NF-kB↓, 1,  

Hormonal & Nuclear Receptors

AR↓, 1,   ERβ/ESR2↑, 1,  

Drug Metabolism & Resistance

eff↑, 2,  

Clinical Biomarkers

AR↓, 1,   hTERT/TERT↓, 2,  

Functional Outcomes

chemoPv↑, 2,   Risk↓, 1,  
Total Targets: 64

Pathway results for Effect on Normal Cells

Drug Metabolism & Resistance

BioAv↑, 1,  
Total Targets: 1

Research papers

Year Title Authors PMID Link Flag
2007Evaluation of ecological and in vitro effects of boron on prostate cancer risk (United States)Wade T Barranco17186423https://pubmed.ncbi.nlm.nih.gov/17186423/0
2020The “Big Five” Phytochemicals Targeting Cancer Stem Cells: Curcumin, EGCG, Sulforaphane, Resveratrol and GenisteinCord Naujokathttps://www.researchgate.net/publication/339583519_The_Big_Five_Phytochemicals_Targeting_Cancer_Stem_Cells_Curcumin_EGCG_Sulforaphane_Resveratrol_and_Genistein0
2009Targeting CWR22Rv1 prostate cancer cell proliferation and gene expression by combinations of the phytochemicals EGCG, genistein and quercetinHsieh, T.-CPMC3641843https://pmc.ncbi.nlm.nih.gov/articles/PMC3641843/0
2025Cellular and Molecular Mechanisms Modulated by Genistein in CancerValeria NaponelliPMC11818640https://pmc.ncbi.nlm.nih.gov/articles/PMC11818640/0
2022Targeting cancer stem cells by nutraceuticals for cancer therapyMan Chuhttps://www.sciencedirect.com/science/article/abs/pii/S1044579X210020290
2018The Effects of Combinatorial Genistein and Sulforaphane in Breast Tumor Inhibition: Role in Epigenetic RegulationBidisha PaulPMC6032337 https://pmc.ncbi.nlm.nih.gov/articles/PMC6032337/0
2013Genistein decreases the breast cancer stem-like cell population through Hedgehog pathwayPanhong FanPMC4054948https://pmc.ncbi.nlm.nih.gov/articles/PMC4054948/0
2012Genistein inhibits the stemness properties of prostate cancer cells through targeting Hedgehog-Gli1 pathwayLinlin Zhang22484470https://pubmed.ncbi.nlm.nih.gov/22484470/0
2011Bioenhancers from mother nature and their applicability in modern medicineGurpreet Kaur RandhawaPMC3657948https://pmc.ncbi.nlm.nih.gov/articles/PMC3657948/0
2010Common botanical compounds inhibit the hedgehog signaling pathway in prostate cancerAnna Slusarz20395211https://pubmed.ncbi.nlm.nih.gov/20395211/0
2010Epigenetic targets of bioactive dietary components for cancer prevention and therapySyed M MeeranPMC3024548https://pmc.ncbi.nlm.nih.gov/articles/PMC3024548/#Sec60
2009Genistein Inhibition of Topoisomerase IIα Expression Participated by Sp1 and Sp3 in HeLa CellNajing ZhouPMC2738924https://pmc.ncbi.nlm.nih.gov/articles/PMC2738924/0
2004Modulation of the constitutive activated STAT3 transcription factor in pancreatic cancer prevention: effects of indole-3-carbinol (I3C) and genisteinJian P Lian15015587https://pubmed.ncbi.nlm.nih.gov/15015587/0
2014Modulators of estrogen receptor inhibit proliferation and migration of prostate cancer cellsMargherita Piccolella24184124https://pubmed.ncbi.nlm.nih.gov/24184124/0