tbResList Print — GI Ginger/6-Shogaol/Gingerol

Filters: qv=88, qv2=%, rfv=%

Product

GI Ginger/6-Shogaol/Gingerol
Description: <b>Flowering plant</b> uses ginger root for help with nausea, weight loss, arthritis, diabetes. Anti-inflammatory and antioxidant. <br>
Gingerol is a phenolic phytochemical compound found in fresh ginger that activates heat receptors on the tongue. It is normally found as a pungent yellow oil in the ginger rhizome.<br>

Ginger contains multiple bioactive compounds including 6-gingerol, 8-gingerol, 10-gingerol, 6-shogaol, paradols, and zingerone.<br>
<pre>
In cancer-focused literature, the majority of mechanistic work centers on 6-gingerol and 6-shogaol.
Mechanistic themes (preclinical):
-Anti-inflammatory (NF-κB↓, COX-2↓)
-Survival pathway modulation (PI3K/AKT↓, STAT3↓ reported)
-MAPK modulation (ERK/JNK/p38 context-dependent)
-ROS modulation (antioxidant in normal cells; pro-oxidant at higher doses in tumor models)
-Cell-cycle arrest (G1 or G2/M reported)
-Apoptosis induction (mitochondrial pathway)
-Anti-angiogenic and anti-metastatic signaling (VEGF↓, MMPs↓ reported)

Bioavailability note:
-Gingerols are rapidly metabolized (glucuronidation/sulfation)
-Plasma levels after dietary intake are far below many in-vitro micromolar doses
-6-Shogaol is generally more potent than 6-gingerol in cell systems
</pre>


<br>
<!-- Ginger (Zingiber officinale) — Cancer-Oriented Time-Scale Flagged Pathway Table -->
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer / Tumor Context</th>
<th>Normal Tissue Context</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>NF-κB inflammatory transcription</td>
<td>NF-κB ↓; COX-2 ↓; pro-inflammatory cytokines ↓ (reported)</td>
<td>Inflammation tone ↓</td>
<td>R, G</td>
<td>Anti-inflammatory / anti-survival transcription</td>
<td>One of the most consistent ginger signatures; reduction of inflammatory tumor-support signaling.</td>
</tr>

<tr>
<td>2</td>
<td>PI3K → AKT (± mTOR) survival axis</td>
<td>PI3K/AKT ↓ (reported; model-dependent)</td>
<td>↔</td>
<td>R, G</td>
<td>Growth/survival modulation</td>
<td>Often described in conjunction with apoptosis and proliferation reduction.</td>
</tr>

<tr>
<td>3</td>
<td>ROS / redox modulation (biphasic)</td>
<td>ROS ↑ (at higher doses); apoptosis ↑</td>
<td>ROS ↓; antioxidant activity</td>
<td>P, R</td>
<td>Redox destabilization (tumor) / buffering (normal)</td>
<td>Gingerols and shogaols may act antioxidant in normal tissue but pro-oxidant in tumor systems under higher concentrations.</td>
</tr>

<tr>
<td>4</td>
<td>Intrinsic apoptosis (mitochondrial pathway)</td>
<td>ΔΨm ↓; Bax ↑; caspase-3 ↑ (reported)</td>
<td>↔ (less activation)</td>
<td>G</td>
<td>Apoptosis execution</td>
<td>Often downstream of ROS and survival-pathway suppression.</td>
</tr>

<tr>
<td>5</td>
<td>Cell-cycle arrest (G1 or G2/M)</td>
<td>Cell-cycle arrest ↑ (reported)</td>
<td>↔</td>
<td>G</td>
<td>Cytostasis</td>
<td>Associated with modulation of Cyclins/CDKs; phase varies by tumor type.</td>
</tr>

<tr>
<td>6</td>
<td>MAPK pathways (ERK / JNK / p38)</td>
<td>Stress-MAPK modulation (context-dependent)</td>
<td>↔</td>
<td>P, R, G</td>
<td>Signal reprogramming</td>
<td>JNK/p38 activation often linked to stress-induced apoptosis; ERK direction varies.</td>
</tr>

<tr>
<td>7</td>
<td>STAT3 signaling</td>
<td>STAT3 ↓ (reported)</td>
<td>↔</td>
<td>R, G</td>
<td>Transcriptional survival suppression</td>
<td>Observed in certain tumor models; contributes to reduced proliferation and invasion.</td>
</tr>

<tr>
<td>8</td>
<td>Angiogenesis signaling (VEGF)</td>
<td>VEGF ↓ (reported)</td>
<td>↔</td>
<td>G</td>
<td>Anti-angiogenic support</td>
<td>Typically a downstream effect of inflammatory and survival pathway suppression.</td>
</tr>

<tr>
<td>9</td>
<td>Invasion / metastasis (MMPs / EMT)</td>
<td>MMP-2/MMP-9 ↓; migration ↓ (reported)</td>
<td>↔</td>
<td>G</td>
<td>Anti-invasive phenotype</td>
<td>Frequently linked to NF-κB and STAT3 suppression.</td>
</tr>

<tr>
<td>10</td>
<td>Bioavailability constraint</td>
<td>Systemic free gingerol levels low; rapid conjugation</td>
<td>—</td>
<td>—</td>
<td>Translation constraint</td>
<td>In-vitro cytotoxic concentrations often exceed achievable plasma levels after dietary intake.</td>
</tr>

</table>

<p><b>Time-Scale Flag (TSF):</b> P / R / G</p>
<ul>
<li><b>P</b>: 0–30 min (early redox and kinase interactions)</li>
<li><b>R</b>: 30 min–3 hr (acute signaling shifts: NF-κB, PI3K/AKT, MAPK)</li>
<li><b>G</b>: &gt;3 hr (gene-regulatory adaptation, apoptosis, phenotype outcomes)</li>
</ul>

Pathway results for Effect on Cancer / Diseased Cells

Mitochondria & Bioenergetics

MKP5↑, 1,  

Cell Death

Apoptosis↑, 1,   p38↓, 1,  

Proliferation, Differentiation & Cell State

TumCG↓, 1,  

Migration

AntiAg↝, 1,   MMP2↓, 1,   N-cadherin↓, 1,   Snail↓, 1,   TumCMig↓, 1,  

Angiogenesis & Vasculature

VEGF↓, 1,  

Immune & Inflammatory Signaling

COX2↓, 1,   IKKα↓, 1,   NF-kB↓, 1,   p‑NF-kB↓, 1,   TNF-α↓, 1,  

Drug Metabolism & Resistance

Dose∅, 1,  
Total Targets: 16

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 2,   HO-1↑, 1,  

Core Metabolism/Glycolysis

LDL↓, 1,  

Cell Death

Akt↑, 1,   Apoptosis↓, 1,   p‑JNK↓, 1,  

Transcription & Epigenetics

other↓, 6,  

Proliferation, Differentiation & Cell State

PI3K↑, 1,  

Migration

AntiAg↑, 1,   AntiAg∅, 1,   E-sel↓, 1,   TumCP↓, 1,   VCAM-1↓, 1,  

Angiogenesis & Vasculature

angioG↓, 1,   VEGF↓, 1,  

Immune & Inflammatory Signaling

ICAM-1↓, 1,   Inflam↓, 4,   NF-kB↓, 1,   p65↓, 1,   TLR4∅, 1,  

Synaptic & Neurotransmission

AChE↓, 1,   BDNF↑, 2,   TrkB↑, 1,  
Total Targets: 23

Research papers

Year Title Authors PMID Link Flag
2022Extending the lore of curcumin as dipteran Butyrylcholine esterase (BChE) inhibitor: A holistic molecular interplay assessmentPriyashi Raohttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.02690360
2007Chemopreventive anti-inflammatory activities of curcumin and other phytochemicals mediated by MAP kinase phosphatase-5 in prostate cellsLarisa Nonn17151092https://pubmed.ncbi.nlm.nih.gov/17151092/0
2024Ginger oil-loaded transdermal adhesive patch treats post-traumatic stress disorderXingshuang Songhttps://www.sciencedirect.com/science/article/pii/S20957548240003100
20236-Shogaol Inhibits the Cell Migration of Colon Cancer by Suppressing the EMT Process Through the IKKβ/NF-κB/Snail PathwayMin ChenPMC10185977https://pmc.ncbi.nlm.nih.gov/articles/PMC10185977/0
20236-Shogaol from Dried Ginger Protects against Intestinal Ischemia/Reperfusion by Inhibiting Cell Apoptosis via the BDNF/TrkB/PI3K/AKT PathwayBin Lihttps://onlinelibrary.wiley.com/doi/10.1002/mnfr.202200773?af=R0
2022Ginger Constituent 6-Shogaol Inhibits Inflammation- and Angiogenesis-Related Cell Functions in Primary Human Endothelial CellsIris Bischoff-KontPMC8914105https://pmc.ncbi.nlm.nih.gov/articles/PMC8914105/0
2020Effect of daily ginger consumption on platelet aggregationAhmed AlAskarhttps://www.sciencedirect.com/science/article/abs/pii/S22108033193006360
2015The Effect of Ginger (Zingiber officinale) on Platelet Aggregation: A Systematic Literature ReviewWolfgang Marxhttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.01411190