tbResList Print — Gb Ginkgo biloba

Filters: qv=89, qv2=%, rfv=%

Product

Gb Ginkgo biloba
Description: <b>Ginkgo biloba</b> from an ancient tree.<br>
Ginkgo biloba leaf extracts (commonly standardized as EGb 761, ~24% flavonol glycosides and ~6% terpene lactones) are best known for antioxidant, anti-inflammatory, platelet-activating factor (PAF) antagonism, and neurovascular effects. In preclinical cancer models, Ginkgo constituents have been associated with modulation of NF-κB, Nrf2, MAPK, and PI3K/AKT pathways, along with effects on cell cycle, apoptosis, and angiogenesis. Clinical oncology evidence is limited and heterogeneous. Important safety considerations include antiplatelet effects (bleeding risk) and CYP/P-gp interactions (product- and dose-dependent).<br>
<br>
-Ginkgo can inhibit platelet aggregation <br>
<br>
-Scavenges free radicals; reduces oxidative stress in neuronal cells
-Suppresses pro-inflammatory cytokines (e.g., TNF-α, IL-1β).<br>
-Enhances microcirculation and oxygen delivery to brain tissues.<br>
-Reduces Aβ plaque formation and associated neurotoxicity.<br>
-May improve memory, attention, and processing speed in early-stage AD.<br>
<br>
<br>
<!-- Ginkgo biloba (EGb 761) — Time-Scale Flagged Pathway Table -->
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer / Tumor Context</th>
<th>Normal Tissue Context</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>Antioxidant systems (Nrf2/ARE; SOD, GSH)</td>
<td>Stress adaptation modulation (context-dependent)</td>
<td>Nrf2 ↑; antioxidant enzymes ↑; oxidative injury ↓</td>
<td>R, G</td>
<td>Redox buffering</td>
<td>Flavonol glycosides commonly activate antioxidant defenses; direction in tumors is model-dependent.</td>
</tr>

<tr>
<td>2</td>
<td>NF-κB inflammatory transcription</td>
<td>NF-κB ↓; cytokines/COX-2 ↓ (reported)</td>
<td>Inflammation tone ↓</td>
<td>R, G</td>
<td>Anti-inflammatory signaling</td>
<td>Preclinical studies report NF-κB modulation; strength varies by constituent and dose.</td>
</tr>

<tr>
<td>3</td>
<td>PAF receptor antagonism (ginkgolides)</td>
<td>Pro-tumor inflammatory signaling ↓ (context)</td>
<td>Platelet activation ↓; microcirculation effects</td>
<td>P, R</td>
<td>Lipid mediator antagonism</td>
<td>Ginkgolides are PAF antagonists; clinically relevant for antiplatelet/vascular effects.</td>
</tr>

<tr>
<td>4</td>
<td>PI3K → AKT (± mTOR) survival axis</td>
<td>PI3K/AKT modulation (reported; model-dependent)</td>
<td>↔</td>
<td>R, G</td>
<td>Growth/survival modulation</td>
<td>Observed in some tumor models; best described as reported/context-dependent.</td>
</tr>

<tr>
<td>5</td>
<td>MAPK re-wiring (ERK / JNK / p38)</td>
<td>MAPK modulation (context-dependent)</td>
<td>↔</td>
<td>P, R, G</td>
<td>Stress/mitogenic signaling adjustment</td>
<td>Directions vary by extract composition and cell type.</td>
</tr>

<tr>
<td>6</td>
<td>Cell-cycle control (Cyclins/CDKs)</td>
<td>Cell-cycle arrest ↑ (reported)</td>
<td>↔</td>
<td>G</td>
<td>Cytostasis</td>
<td>Reported in vitro; typically downstream of signaling changes.</td>
</tr>

<tr>
<td>7</td>
<td>Intrinsic apoptosis (mitochondrial/caspase linked)</td>
<td>Apoptosis ↑ (reported)</td>
<td>↔</td>
<td>G</td>
<td>Cell death execution</td>
<td>Seen in selected cancer cell lines; not a universal cytotoxin signature.</td>
</tr>

<tr>
<td>8</td>
<td>Angiogenesis signaling (VEGF & related)</td>
<td>Angiogenic outputs ↓ (reported)</td>
<td>↔</td>
<td>G</td>
<td>Anti-angiogenic phenotype</td>
<td>Phenotype-level outcomes in some models; strength varies.</td>
</tr>

<tr>
<td>9</td>
<td>Drug metabolism / transport (CYPs, P-gp)</td>
<td>Potential interaction with chemo agents (context)</td>
<td>CYP/P-gp modulation (product- and dose-dependent)</td>
<td>R, G</td>
<td>Interaction constraint</td>
<td>Reports of CYP (e.g., CYP2C19/3A4) and P-gp modulation are mixed; interaction risk depends on extract and dose.</td>
</tr>

<tr>
<td>10</td>
<td>Safety constraint (antiplatelet / bleeding risk)</td>
<td>—</td>
<td>Platelet aggregation ↓; bleeding risk ↑ (context)</td>
<td>—</td>
<td>Clinical risk management</td>
<td>PAF antagonism and antiplatelet effects warrant caution with anticoagulants/antiplatelets and perioperatively.</td>
</tr>
</table>

<p><b>Time-Scale Flag (TSF):</b> P / R / G</p>
<ul>
<li><b>P</b>: 0–30 min (rapid receptor/mediator interactions; early redox shifts)</li>
<li><b>R</b>: 30 min–3 hr (acute signaling and transcription changes)</li>
<li><b>G</b>: &gt;3 hr (gene-regulatory adaptation and phenotype outcomes)</li>
</ul>




Ginkgo biloba — Alzheimer’s Disease (AD) Mechanism Table<br>
<!-- Ginkgo biloba (EGb 761) — Alzheimer's Disease Focused Pathway Table -->
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>AD / Neural Context</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>Oxidative stress reduction (Nrf2/ARE; SOD, GSH)</td>
<td>Oxidative injury ↓; lipid peroxidation ↓</td>
<td>R, G</td>
<td>Neuroprotection via redox buffering</td>
<td>Flavonol glycosides enhance endogenous antioxidant defenses and reduce oxidative stress, a core driver in AD pathology.</td>
</tr>

<tr>
<td>2</td>
<td>Mitochondrial protection</td>
<td>ATP production stabilization; mitochondrial membrane integrity ↑</td>
<td>P, R</td>
<td>Energy support</td>
<td>EGb 761 has been reported to protect mitochondrial function and reduce ROS generation in neuronal models.</td>
</tr>

<tr>
<td>3</td>
<td>Neuroinflammation (NF-κB; microglial activation)</td>
<td>Microglial activation ↓; pro-inflammatory cytokines ↓</td>
<td>R, G</td>
<td>Anti-inflammatory neuroprotection</td>
<td>Reduction of neuroinflammatory signaling may contribute to slowed neurodegenerative processes.</td>
</tr>

<tr>
<td>4</td>
<td>Platelet-activating factor (PAF) antagonism</td>
<td>Improved cerebral microcirculation; reduced inflammatory mediator activity</td>
<td>P</td>
<td>Vascular support</td>
<td>Ginkgolides act as PAF antagonists; improved cerebral blood flow may support cognition in vascular/mixed dementia.</td>
</tr>

<tr>
<td>5</td>
<td>β-amyloid aggregation modulation</td>
<td>Aβ aggregation ↓ (reported in vitro)</td>
<td>G</td>
<td>Protein aggregation modulation</td>
<td>Preclinical studies suggest interference with Aβ toxicity and aggregation; clinical relevance remains uncertain.</td>
</tr>

<tr>
<td>6</td>
<td>Synaptic plasticity / neurotransmission</td>
<td>Cholinergic tone modulation (reported); synaptic resilience ↑</td>
<td>G</td>
<td>Cognitive support</td>
<td>Some evidence suggests improved synaptic function and neurotransmission in aging models.</td>
</tr>

<tr>
<td>7</td>
<td>Apoptosis suppression (neuronal survival)</td>
<td>Pro-apoptotic signaling ↓ (reported)</td>
<td>G</td>
<td>Neuronal preservation</td>
<td>Reduction of caspase activation and mitochondrial apoptotic signaling has been reported in neuronal injury models.</td>
</tr>

<tr>
<td>8</td>
<td>Clinical cognitive outcomes</td>
<td>Modest cognitive benefit in mild-to-moderate dementia (mixed results)</td>
<td>—</td>
<td>Symptom-level effect</td>
<td>Some randomized trials suggest small improvements in cognition or activities of daily living; others show limited effect. Benefit appears modest.</td>
</tr>

<tr>
<td>9</td>
<td>Safety constraint (antiplatelet effect)</td>
<td>Bleeding risk ↑ in susceptible patients</td>
<td>—</td>
<td>Clinical risk management</td>
<td>PAF antagonism and platelet aggregation inhibition require caution with anticoagulants and perioperative settings.</td>
</tr>

</table>

<p><b>Time-Scale Flag (TSF):</b> P / R / G</p>
<ul>
<li><b>P</b>: 0–30 min (rapid receptor and mitochondrial interactions)</li>
<li><b>R</b>: 30 min–3 hr (acute inflammatory and redox signaling shifts)</li>
<li><b>G</b>: &gt;3 hr (gene-regulatory adaptation and phenotype-level outcomes)</li>
</ul>


Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

antiOx↑, 1,  

Core Metabolism/Glycolysis

ACC↓, 1,   AMPK↑, 1,   FASN↓, 1,   lipoGen↓, 1,  

Cell Death

Apoptosis↑, 3,   p38↓, 1,   p‑p38↓, 1,  

Transcription & Epigenetics

tumCV↓, 1,  

Proliferation, Differentiation & Cell State

PTEN↑, 1,   PTPN6↑, 1,   STAT3↓, 1,  

Migration

COL1↓, 1,   CTGF↓, 1,   E-cadherin↑, 1,   Ki-67↑, 1,   MMP1:TIMP1↑, 1,   SMAD2↓, 1,   p‑SMAD2↓, 1,   SMAD3↓, 1,   p‑SMAD3↓, 1,   TGF-β↓, 1,   TIMP1↓, 1,   TumCI↓, 2,   TumCMig↓, 2,   TumCP↓, 1,   TumMeta↑, 1,   Vim↓, 1,   α-SMA↓, 1,  

Angiogenesis & Vasculature

angioG↓, 1,  

Immune & Inflammatory Signaling

Inflam↓, 1,  

Clinical Biomarkers

Ki-67↑, 1,  
Total Targets: 32

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 2,   Catalase↑, 1,   GSH↑, 1,   GSR↑, 1,   MDA↓, 1,   NRF2↑, 1,   ROS↓, 3,   SOD↑, 1,   SOD↓, 1,  

Mitochondria & Bioenergetics

MMP↑, 1,  

Cell Death

Apoptosis↓, 1,   BAX↑, 1,   Bcl-2↑, 1,   Casp3↓, 1,   iNOS↓, 1,  

Migration

AntiAg↑, 1,   APP↓, 1,  

Angiogenesis & Vasculature

NO↓, 1,  

Barriers & Transport

BBB↑, 1,  

Immune & Inflammatory Signaling

IL10↓, 1,   IL1β↑, 1,   Inflam↓, 1,   TNF-α↓, 1,  

Synaptic & Neurotransmission

5HT↑, 1,   AChE↓, 1,   BDNF∅, 1,   BDNF↑, 1,   p‑tau↓, 1,  

Protein Aggregation

Aβ↓, 2,   MAOB↓, 1,  

Drug Metabolism & Resistance

Dose↝, 1,  

Functional Outcomes

cognitive↑, 1,   memory↑, 4,   neuroP↑, 2,   toxicity∅, 1,  
Total Targets: 35

Research papers

Year Title Authors PMID Link Flag
2024New insight into the mechanisms of Ginkgo biloba leaves in the treatment of cancerJing Yuhttps://www.sciencedirect.com/science/article/abs/pii/S09447113230044880
2023Standardized extract of Ginkgo biloba enhances memory persistence over timeAndressa Gabriela Solianihttps://www.sciencedirect.com/science/article/pii/S26670313230003740
2022Ginkgobiloba leaf extract mitigates cisplatin-induced chronic renal interstitial fibrosis by inhibiting the epithelial-mesenchymal transition of renal tubular epithelial cells mediated by the Smad3/TGF-β1 and Smad3/p38 MAPK pathwaysCongying WeiPMC8862328https://pmc.ncbi.nlm.nih.gov/articles/PMC8862328/0
2022The potential of Ginkgo biloba in the treatment of human diseases and the relationship to Nrf2-mediated antioxidant protectionYue Li36173884https://pubmed.ncbi.nlm.nih.gov/36173884/0
2022Alzheimer's disease: Research summaries – Do Ginkgo products help?InformedHealth.orghttps://www.ncbi.nlm.nih.gov/books/NBK279357/0
2022Can We Use Ginkgo biloba Extract to Treat Alzheimer’s Disease? Lessons from Preclinical and Clinical StudiesLiming XiePMC8833923https://pmc.ncbi.nlm.nih.gov/articles/PMC8833923/0
2017Ginkgolic Acid C 17:1, Derived from Ginkgo biloba Leaves, Suppresses Constitutive and Inducible STAT3 Activation through Induction of PTEN and SHP-1 Tyrosine PhosphataseSeung Ho BaekPMC6155672https://pmc.ncbi.nlm.nih.gov/articles/PMC6155672/0
2017Extract of Ginkgo biloba exacerbates liver metastasis in a mouse colon cancer Xenograft modelHuan WangPMC5712166https://pmc.ncbi.nlm.nih.gov/articles/PMC5712166/1
2017Effects of Six-Week Ginkgo biloba Supplementation on Aerobic Performance, Blood Pro/Antioxidant Balance, and Serum Brain-Derived Neurotrophic Factor in Physically Active MenEwa Sadowska-KrępaPMC5579597https://pmc.ncbi.nlm.nih.gov/articles/PMC5579597/0
2015Ginkgolic acid suppresses the development of pancreatic cancer by inhibiting pathways driving lipogenesisJiguang MaPMC4673245https://pmc.ncbi.nlm.nih.gov/articles/PMC4673245/0
2010Ginkgo biloba Extract in Alzheimer’s Disease: From Action Mechanisms to Medical PracticeChun ShiPMC2820992https://pmc.ncbi.nlm.nih.gov/articles/PMC2820992/0