tbResList Print — Gra Graviola

Filters: qv=92, qv2=%, rfv=%

Product

Gra Graviola
Description: <b>Soursop or Brazilian paw paw or guanabana.</b> People use fruit, roots, seeds and leaves.
Graviola, also known as Annona muricata, is a tropical fruit-bearing tree native to the Americas.<br>
Graviola (Annona muricata; soursop) contains annonaceous acetogenins (e.g., annonacin, bullatacin-class compounds) that are widely described as mitochondrial complex I inhibitors, producing ATP depletion and downstream stress signaling that can lead to cell-cycle arrest and apoptosis in many in-vitro cancer models. A key real-world constraint is safety: epidemiology in the French Caribbean reports an association between high Annonaceae consumption and atypical parkinsonism, and animal data indicate annonacin can enter brain tissue and drive ATP depletion with neurodegenerative patterns under chronic exposure; therefore Graviola products should be treated as higher-risk than many polyphenols and should not be framed as a casual long-term supplement.<br>
<br>
GLUT1 inhibitor?<br>
The major pathways involved in Graviola's anti-cancer effects include:<br>
-Reported reduction of glucose uptake (e.g., GLUT1 expression) in selected tumor models.: Graviola extracts have been shown to inhibit the activity of lactate dehydrogenase (LDH), a key enzyme involved in glycolysis, the process by which cancer cells produce energy. By inhibiting LDH, Graviola reduces the production of lactate, a key metabolite that fuels cancer cell growth.(likely secondary to mitochondrial ATP depletion)<br>
-Inhibition of glucose uptake: Graviola extracts have also been shown to inhibit the uptake of glucose by cancer cells, further reducing their energy production.<br>
-Inhibition of the PI3K/AKT pathway: The PI3K/AKT pathway is a key signaling pathway involved in cell survival and proliferation. Graviola extracts have been shown to inhibit this pathway, leading to reduced cancer cell growth and survival.<br>
-Induction of apoptosis: Graviola extracts have been shown to induce apoptosis in cancer cells by activating pro-apoptotic proteins and inhibiting anti-apoptotic proteins.<br>
<br>
The major compounds responsible for Graviola's anti-cancer effects are:<br>
Annonaceous acetogenins: These are a group of compounds found in Graviola that have been shown to inhibit cancer cell growth and induce apoptosis.<br>

<br>



<!-- Graviola / Soursop (Annona muricata; acetogenins e.g., annonacin, bullatacin) — TSF Pathway Table (web-page ready) -->
<table border="1" cellpadding="4" cellspacing="0">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer / Tumor Context</th>
<th>Normal Tissue Context</th>
<th>TSF</th>
<th>Primary Effect</th>
<th>Notes / Interpretation</th>
</tr>

<tr>
<td>1</td>
<td>Mitochondrial ETC Complex I inhibition → ATP depletion (acetogenins)</td>
<td>Complex I ↓; ATP ↓; energetic crisis ↑</td>
<td>Risk of toxicity with sufficient exposure</td>
<td>P, R, G</td>
<td>Metabolic choke-point</td>
<td>Core mechanistic theme: annonaceous acetogenins inhibit mitochondrial complex I, suppressing ATP generation (often framed as a basis for cytotoxicity in vitro).</td>
</tr>

<tr>
<td>2</td>
<td>ROS / mitochondrial stress (secondary to Complex I inhibition)</td>
<td>ROS ↑ or redox destabilization (context); oxidative damage ↑</td>
<td>Oxidative injury risk depends on exposure</td>
<td>P, R, G</td>
<td>Stress amplification</td>
<td>ROS direction varies by model/extract; best treated as secondary to energy failure rather than a universal primary ROS driver.</td>
</tr>

<tr>
<td>3</td>
<td>Intrinsic apoptosis (mitochondrial; caspases; PARP)</td>
<td>Apoptosis ↑; caspase activation ↑; cl-PARP ↑ (reported)</td>
<td>↔ / toxicity risk at higher exposures</td>
<td>G</td>
<td>Cell death execution</td>
<td>Common endpoint in cancer cell studies; often downstream of energetic collapse and stress signaling.</td>
</tr>

<tr>
<td>4</td>
<td>Cell-cycle control / proliferation</td>
<td>Proliferation ↓; cell-cycle arrest ↑ (reported; phase varies)</td>
<td>↔</td>
<td>G</td>
<td>Cytostasis</td>
<td>Frequently reported phenotype-level effect across models; checkpoint phase depends on tumor type and extract composition.</td>
</tr>

<tr>
<td>5</td>
<td>NF-κB inflammatory transcription</td>
<td>NF-κB ↓; pro-inflammatory/survival outputs ↓ (reported)</td>
<td>Anti-inflammatory effects reported</td>
<td>R, G</td>
<td>Anti-inflammatory / anti-survival transcription</td>
<td>Many extracts/constituents are reported to reduce NF-κB signaling, contributing to reduced cytokines and survival programs.</td>
</tr>

<tr>
<td>6</td>
<td>PI3K → AKT (± mTOR) and other survival kinases</td>
<td>Survival kinase tone ↓ (reported; model-dependent)</td>
<td>↔</td>
<td>R, G</td>
<td>Growth/survival suppression</td>
<td>Often listed in reviews; keep “reported/model-dependent” because extracts vary substantially.</td>
</tr>

<tr>
<td>7</td>
<td>MAPK re-wiring (ERK / JNK / p38)</td>
<td>Stress-MAPK modulation (context-dependent)</td>
<td>↔</td>
<td>P, R, G</td>
<td>Signal reprogramming</td>
<td>MAPK directions are heterogeneous across studies; avoid fixed arrows unless tied to a specific paper/extract.</td>
</tr>

<tr>
<td>8</td>
<td>Invasion / metastasis programs (MMPs / EMT)</td>
<td>Migration/invasion ↓; MMPs/EMT markers ↓ (reported)</td>
<td>↔</td>
<td>G</td>
<td>Anti-invasive phenotype</td>
<td>Downstream phenotype-level outcomes reported in some tumor systems; not universal.</td>
</tr>

<tr>
<td>9</td>
<td>Angiogenesis signaling (VEGF & related outputs)</td>
<td>VEGF/angiogenic outputs ↓ (reported)</td>
<td>↔</td>
<td>G</td>
<td>Anti-angiogenic support</td>
<td>Usually observed as later gene-expression/assay outcomes, often linked to NF-κB and survival-pathway suppression.</td>
</tr>

<tr>
<td>10</td>
<td>Safety constraint: neurotoxicity signal (annonacin; atypical parkinsonism association)</td>
<td>—</td>
<td>Long-term/high exposure concern: neurotoxicity & atypical parkinsonism association reported</td>
<td>—</td>
<td>Translation constraint</td>
<td>Evidence links Annonaceae consumption (including soursop) with atypical parkinsonism in the French Caribbean; annonacin crosses BBB in animal studies and causes ATP depletion and neurodegenerative patterns with chronic exposure.</td>
</tr>
</table>

<p><b>Time-Scale Flag (TSF):</b> P / R / G</p>
<ul>
<li><b>P</b>: 0–30 min (primary/rapid effects; early mitochondrial/kinase shifts)</li>
<li><b>R</b>: 30 min–3 hr (acute stress-response + inflammatory transcription signaling shifts)</li>
<li><b>G</b>: &gt;3 hr (gene-regulatory adaptation and phenotype-level outcomes)</li>
</ul>

Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

Catalase↑, 1,   HO-1↑, 1,   lipid-P↓, 2,   NADHdeh↓, 1,   ROS↑, 4,   ROS∅, 1,   ROS↓, 1,   SOD↑, 1,  

Mitochondria & Bioenergetics

ATP↓, 1,   MMP↓, 1,   MMP∅, 1,   mtDam↑, 1,  

Core Metabolism/Glycolysis

GlucoseCon↓, 2,   HK2↓, 2,   LDH↓, 2,   LDHA↓, 2,   PI3K/Akt↓, 1,  

Cell Death

Akt↓, 1,   Apoptosis↑, 7,   BAX↑, 7,   Bax:Bcl2↑, 1,   Bcl-2↓, 7,   Casp∅, 1,   Casp↑, 1,   Casp3↑, 4,   cl‑Casp3↑, 1,   Casp7↑, 1,   cl‑Casp8↑, 1,   Casp8↑, 1,   Casp9↑, 2,   Cyt‑c↑, 4,   p‑JNK↓, 1,   necrosis↑, 1,   PUMA↝, 1,  

Transcription & Epigenetics

other↓, 1,   other↑, 1,   tumCV↓, 4,  

Protein Folding & ER Stress

CHOP↑, 1,   p‑eIF2α↑, 1,   ER Stress↑, 1,   GRP78/BiP↑, 1,   GRP94↑, 1,   HSP70/HSPA5↑, 1,   p‑PERK↑, 1,  

Autophagy & Lysosomes

TumAuto↑, 1,  

DNA Damage & Repair

P53↑, 2,   cl‑PARP↑, 1,   PCNA↓, 1,  

Cell Cycle & Senescence

Cyc↓, 1,   cycD1/CCND1↓, 2,   TumCCA↑, 4,  

Proliferation, Differentiation & Cell State

ERK↓, 1,   Gli1↓, 1,   HH↓, 1,   Shh↓, 1,   Smo↓, 1,   STAT↓, 1,   Sufu↑, 1,   TumCG↓, 1,  

Migration

ER-α36↓, 1,   p‑FAK↓, 1,   GLI2↓, 1,   MMP9↓, 1,   MUC4↓, 1,   TumCI↓, 1,   TumCMig↓, 1,   TumCP↓, 1,   TumMeta↓, 1,  

Angiogenesis & Vasculature

EGFR↓, 2,   HIF-1↓, 1,   Hif1a↓, 1,   VEGF↓, 1,  

Barriers & Transport

GLUT1↓, 2,   GLUT4↓, 2,  

Immune & Inflammatory Signaling

CXCL1↓, 1,   IL1↓, 1,   JAK↓, 1,   NF-kB↓, 2,  

Cellular Microenvironment

NOX↓, 1,  

Protein Aggregation

NLRP3↓, 1,  

Hormonal & Nuclear Receptors

ER(estro)↓, 1,  

Drug Metabolism & Resistance

selectivity↑, 2,  

Clinical Biomarkers

EGFR↓, 2,   LDH↓, 2,  

Functional Outcomes

chemoPv↑, 1,   hepatoP↑, 1,   TumVol↓, 1,  
Total Targets: 87

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

MDA↓, 1,   ROS↓, 1,  

Functional Outcomes

toxicity↓, 6,  
Total Targets: 3

Research papers

Year Title Authors PMID Link Flag
2023Cytotoxic Effect of Annona muricata leaf extracts on tumor cell lines in vitroShahlaa M. Salihhttps://iasj.rdd.edu.iq/journals/uploads/2024/12/06/be1d3c8c586e9fab32670f11f66864dc.pdf0
2023THERAPEUTIC ELIGIBILITY OF GRAVIOLA VERSUS 5-FLUOROURACIL: APOPTOTIC EFFICACY ON HEAD AND NECK SQUAMOUS CELL CARCINOMA AND NORMAL EPITHELIUM CELLSMarwa Mokhtar Elshabrawyhttps://www.researchgate.net/publication/369171766_THERAPEUTIC_ELIGIBILITY_OF_GRAVIOLA_VERSUS_5-FLUOROURACIL_APOPTOTIC_EFFICACY_ON_HEAD_AND_NECK_SQUAMOUS_CELL_CARCINOMA_AND_NORMAL_EPITHELIUM_CELLS0
2022A Review on Annona muricata and Its Anticancer ActivitySuganya IlangoPMC9497149https://pmc.ncbi.nlm.nih.gov/articles/PMC9497149/0
2021Green Synthesis of Silver Nanoparticles Using Annona muricata Extract as an Inducer of Apoptosis in Cancer Cells and Inhibitor for NLRP3 Inflammasome via Enhanced AutophagyMajid S JabirPMC7913157https://pmc.ncbi.nlm.nih.gov/articles/PMC7913157/0
2021Silver Nanoparticles from Annona muricata Peel and Leaf Extracts as a Potential Potent, Biocompatible and Low Cost Antitumor ToolMaría G González-PedrozaPMC8151560https://pmc.ncbi.nlm.nih.gov/articles/PMC8151560/0
2021Antiproliferation Activity and Apoptotic Mechanism of Soursop (Annona muricata L.) Leaves Extract and Fractions on MCF7 Breast Cancer CellsYuni Elsa HadisaputriPMC8291383https://pmc.ncbi.nlm.nih.gov/articles/PMC8291383/0
2021Annona muricata silver nanoparticles exhibit strong anticancer activities against cervical and prostate adenocarcinomas through regulation of CASP9 and the CXCL1/CXCR2 genes axisYahaya Gavamukulya33935122https://pubmed.ncbi.nlm.nih.gov/33935122/0
2021Synthesis, Characterization and Evaluation of Antioxidant and Cytotoxic Potential of Annona muricata Root Extract-derived Biogenic Silver NanoparticlesV. S. Shanibahttps://link.springer.com/article/10.1007/s10876-021-01981-10
2020https://pubmed.ncbi.nlm.nih.gov/33048613/Aditi Venkatesh Naik33048613https://pubmed.ncbi.nlm.nih.gov/33048613/0
2020Selective cytotoxic and anti-metastatic activity in DU-145 prostate cancer cells induced by Annona muricata L. bark extract and phytochemical, annonacinKimberley FosterPMC7727144https://pmc.ncbi.nlm.nih.gov/articles/PMC7727144/0
2019Graviola attenuates DMBA-induced breast cancer possibly through augmenting apoptosis and antioxidant pathway and downregulating estrogen receptorsMohamed M Zeweil30924043https://pubmed.ncbi.nlm.nih.gov/30924043/0
2019Antiproliferative activity of ionic liquid-graviola fruit extract against human breast cancer (MCF-7) cell lines using flow cytometry techniquesDjabir Daddiouaissa30853648https://pubmed.ncbi.nlm.nih.gov/30853648/0
2019Solid lipid nanoparticles of Annona muricata fruit extract: formulation, optimization and in vitro cytotoxicity studiesMohanalakshmi Sabapati30663427https://pubmed.ncbi.nlm.nih.gov/30663427/0
2018Emerging therapeutic potential of graviola and its constituents in cancersAsif Khurshid QaziPMC5888937https://pmc.ncbi.nlm.nih.gov/articles/PMC5888937/0
2018Anticancer Properties of Graviola (Annona muricata): A Comprehensive Mechanistic ReviewIslam RadyPMC6091294https://pmc.ncbi.nlm.nih.gov/articles/PMC6091294/0
2018Annona muricata Leaf Extract Triggered Intrinsic Apoptotic Pathway to Attenuate Cancerous Features of Triple Negative Breast Cancer MDA-MB-231 CellsJee Young KimPMC6076972https://pmc.ncbi.nlm.nih.gov/articles/PMC6076972/0
2018Graviola (Annona muricata) Exerts Anti-Proliferative, Anti-Clonogenic and Pro-Apoptotic Effects in Human Non-Melanoma Skin Cancer UW-BCC1 and A431 Cells In Vitro: Involvement of Hedgehog SignalingJean Christopher ChamcheuPMC6032424https://pmc.ncbi.nlm.nih.gov/articles/PMC6032424/0
2017The Value of Caspase-3 after the Application of Annona muricata Leaf Extract in COLO-205 Colorectal Cancer Cell LineMurdani AbdullahPMC5401745https://pmc.ncbi.nlm.nih.gov/articles/PMC5401745/0
2016Graviola inhibits hypoxia-induced NADPH oxidase activity in prostate cancer cells reducing their proliferation and clonogenicityGagan Deephttps://www.nature.com/articles/srep231350
2016Graviola: A Systematic Review on Its Anticancer PropertiesIoannis Patrikioshttps://www.researchgate.net/publication/290448944_Graviola_A_Systematic_Review_on_Its_Anticancer_Properties0
2016Functional proteomic analysis revels that the ethanol extract of Annona muricata L. induces liver cancer cell apoptosis through endoplasmic reticulum stress pathwayNa Liu27224241https://pubmed.ncbi.nlm.nih.gov/27224241/0
2015Cytotoxic effect of Annona muricata Linn leaves extract on Capan-1 cellsMohamad Norisham Mohamad Rosdhttps://japsonline.com/abstract.php?article_id=15060
2015Evaluation of cytotoxicity of aqueous extract of Graviola leaves on squamous cell carcinoma cell-25 cell lines by 3-(4,5-dimethylthiazol-2-Yl) -2,5-diphenyltetrazolium bromide assay and determination of percentage of cell inhibition at G2M phase of cell cycle by flow cytometry: An in vitro studyVisveswaraiah Paranjyothi MagadiPMC4678553https://pmc.ncbi.nlm.nih.gov/articles/PMC4678553/0
2015The Chemopotential Effect of Annona muricata Leaves against Azoxymethane-Induced Colonic Aberrant Crypt Foci in Rats and the Apoptotic Effect of Acetogenin Annomuricin E in HT-29 Cells: A Bioassay-Guided ApproachSoheil Zorofchian MoghadamtousiPMC4393181https://pmc.ncbi.nlm.nih.gov/articles/PMC4393181/0
2014Antiproliferative activity of aqueous leaf extract of Annona muricata L. on the prostate, BPH-1 cells, and some target genesGeorge Awuku Asare25411208https://journals.sagepub.com/doi/10.1177/1534735414550198?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed0
2014Annona muricata leaves induce G₁ cell cycle arrest and apoptosis through mitochondria-mediated pathway in human HCT-116 and HT-29 colon cancer cellsSoheil Zorofchian Moghadamtousi25195082https://pubmed.ncbi.nlm.nih.gov/25195082/0
2014Annona muricata leaves induced apoptosis in A549 cells through mitochondrial-mediated pathway and involvement of NF-κBSoheil Zorofchian MoghadamtousiPMC4246449https://pmc.ncbi.nlm.nih.gov/articles/PMC4246449/0
2014Phytochemical screening, anti-oxidant activity and in vitro anticancer potential of ethanolic and water leaves extracts of Annona muricata (Graviola)Yahaya Gavamukulya25312150https://pubmed.ncbi.nlm.nih.gov/25312150/0
2013Graviola: A Novel Promising Natural-Derived Drug That Inhibits Tumorigenicity and Metastasis of Pancreatic Cancer Cells In Vitro and In Vivo Through Altering Cell MetabolismMaría P TorresPMC3371140https://pmc.ncbi.nlm.nih.gov/articles/PMC3371140/0
2012Quantitative assessment of the relative antineoplastic potential of the n-butanolic leaf extract of Annona muricata Linn. in normal and immortalized human cell linesV Cijo Georgehttps://pubmed.ncbi.nlm.nih.gov/22524847/0
1994Natural substances (acetogenins) from the family Annonaceae are powerful inhibitors of mitochondrial NADH dehydrogenase (Complex I).M Degli EspostiPMC1137156https://pmc.ncbi.nlm.nih.gov/articles/PMC1137156/0