tbResList Print — HNK Honokiol

Filters: qv=94, qv2=%, rfv=%

Product

HNK Honokiol
Description: <b>Honokiol</b> is a Lignan isolated from bark, seed cones and leaves of trees of Magnolia species. Honokiol was traditionally used for anxiety and stroke treatment, as well as the alleviation of flu symptoms.<br>
-considered to have antioxidant properties<br>
-low oral bioavailability and difficulty in intravenous administration<br>
-the development of various formulations of honokiol, including microemulsion, liposomes, nanoparticles and micelle copolymers have successfully solved the problem of low water solubility.<br>
<br>
Pathways:<br>
-Inhibit NF-κB activation<br>
-Downregulate STAT3 signalin<br>
-Inhibiting the PI3K/Akt pathway,<br>
-Inhibition of mTOR<br>
-Influences various MAPK cascades—including ERK, JNK, and p38<br>
-Inhibition of EGFR<br>
-Inhibiting Notch pathway (CSCs)<br>
-GPx4 inhibit<br>
-Can induce ER stress in cancer cells, which contributes to the activation of unfolded protein response (UPR) pathways<br>
-Disrupt the mitochondrial membrane potential in cancer cells.<br>
-Reported to increase ROS production in cancer cells<br>
-Can exhibit antioxidant properties in normal cells.
- has some inhibitor activity but Not classified as HDAC inhibitor as weaker and may work more indirectly.<br>
- is well-known in the research community for its role in activating SIRT3<br>


<br>
-Note <a href="tbResList.php?qv=94&tsv=1109&wNotes=on&exSp=open">half-life</a> 40–60 minutes<br>
<a href="tbResList.php?qv=94&tsv=792&wNotes=on&exSp=open">BioAv</a>
<br>
Pathways:<br>

<!-- ROS : MMP↓, ER Stress↑, Ca+2↑, Cyt‑c↑, Casp3↑, Casp9↑, DNAdam↑, UPR↑, cl-PARP↑-->
- induce
<a href="tbResList.php?qv=94&tsv=275&wNotes=on">ROS</a> production in cancer cells,
and typically lowers ROS in normal cells<br>
- ROS↑ related:
<a href="tbResList.php?qv=94&tsv=197&wNotes=on&word=MMP↓">MMP↓</a>(ΔΨm),
<a href="tbResList.php?qv=94&tsv=103&wNotes=on">ER Stress↑</a>,
<a href="tbResList.php?qv=94&tsv=356&wNotes=on">GRP78↑</a>,
<a href="tbResList.php?qv=94&tsv=38&wNotes=on&word=Ca+2↑">Ca+2↑</a>,
<a href="tbResList.php?qv=94&tsv=77&wNotes=on">Cyt‑c↑</a>,
<a href="tbResList.php?qv=94&wNotes=on&word=Casp">Caspases↑</a>,
<a href="tbResList.php?qv=94&tsv=82&wNotes=on&word=DNAdam↑">DNA damage↑</a>,
<a href="tbResList.php?qv=94&tsv=239&wNotes=on">cl-PARP↑</a>,
<a href="tbResList.php?qv=94&wNotes=on&word=HSP">HSP↓</a>
<a href="tbResList.php?qv=94&wNotes=on&word=Prx">Prx</a><!-- mitochondrial antioxidant enzyme-->
<br>


- Raises
<a href="tbResList.php?qv=94&tsv=1103&wNotes=on&word=antiOx↑">AntiOxidant</a>
defense in Normal Cells:
<a href="tbResList.php?qv=94&tsv=275&wNotes=on&word=ROS↓">ROS↓</a>,
<a href="tbResList.php?qv=94&tsv=226&wNotes=on&word=NRF2↑">NRF2↑</a>,
<a href="tbResList.php?qv=94&tsv=298&wNotes=on&word=SOD↑">SOD↑</a>,
<a href="tbResList.php?qv=94&tsv=137&wNotes=on&word=GSH↑">GSH↑</a>,
<a href="tbResList.php?qv=94&tsv=46&wNotes=on&word=Catalase↑">Catalase↑</a>,
<br>

<!-- INFLAMMATION : NF-kB↓, COX2↓, COX2↓ PRO-INFL CYTOKINES: IL-1β↓, TNF-α↓, IL-6↓, IL-8↓, -->
- lowers
<a href="tbResList.php?qv=94&tsv=953&wNotes=on&word=Inflam">Inflammation</a> :
<a href="tbResList.php?qv=94&tsv=214&wNotes=on&word=NF-kB↓">NF-kB↓</a>,
<a href="tbResList.php?qv=94&tsv=66&wNotes=on&word=COX2↓">COX2↓</a>,
Pro-Inflammatory Cytokines :
<a href="tbResList.php?qv=94&tsv=978&wNotes=on&word=IL1β↓">IL-1β↓</a>,
<a href="tbResList.php?qv=94&tsv=309&wNotes=on&word=TNF-α↓">TNF-α↓</a>,
<a href="tbResList.php?qv=94&tsv=158&wNotes=on&word=IL6↓">IL-6↓</a>,
<br>



<!-- GROWTH/METASTASES : EMT↓, MMPs↓, MMP2↓, MMP9↓, IGF-1, uPA↓, VEGF↓, ERK↓
inhibiting metastasis-associated proteins such as ROCK1, FAK, (RhoA), NF-κB and u-PA, MMP-1 and MMP-13.-->
- inhibit Growth/Metastases :
<a href="tbResList.php?qv=94&tsv=604&wNotes=on">TumMeta↓</a>,
<a href="tbResList.php?qv=94&tsv=323&wNotes=on">TumCG↓</a>,
<a href="tbResList.php?qv=94&tsv=96&wNotes=on">EMT↓</a>,
<a href="tbResList.php?qv=94&tsv=204&wNotes=on">MMPs↓</a>,
<a href="tbResList.php?qv=94&tsv=201&wNotes=on">MMP2↓</a>,
<a href="tbResList.php?qv=94&tsv=203&wNotes=on">MMP9↓</a>,
<a href="tbResList.php?qv=94&tsv=334&wNotes=on">VEGF↓</a>,
<a href="tbResList.php?qv=94&tsv=1284&wNotes=on">ROCK1↓</a>,
<a href="tbResList.php?qv=94&tsv=273&wNotes=on">RhoA↓</a>,
<a href="tbResList.php?qv=94&tsv=214&wNotes=on">NF-κB↓</a>,
<a href="tbResList.php?qv=94&tsv=79&wNotes=on">CXCR4↓</a>,
<a href="tbResList.php?qv=94&tsv=105&wNotes=on">ERK↓</a>
<br>

<!-- REACTIVATE GENES : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, -->
- reactivate genes thereby inhibiting cancer cell growth :
<a href="tbResList.php?qv=94&tsv=140&wNotes=on">HDAC↓</a>,
<a href="tbResList.php?qv=94&tsv=108&wNotes=on">EZH2↓</a>,
<a href="tbResList.php?qv=94&tsv=236&wNotes=on">P53↑</a>,
<a href="tbResList.php?qv=94&wNotes=on&word=HSP">HSP↓</a>,
<br>

<!-- CELL CYCLE ARREST : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓ -->
- cause Cell cycle arrest :
<a href="tbResList.php?qv=94&tsv=322&wNotes=on">TumCCA↑</a>,
<a href="tbResList.php?qv=94&tsv=73&wNotes=on">cyclin D1↓</a>,
<a href="tbResList.php?qv=94&tsv=378&wNotes=on">cyclin E↓</a>,
<a href="tbResList.php?qv=94&tsv=467&wNotes=on">CDK2↓</a>,
<a href="tbResList.php?qv=94&tsv=894&wNotes=on">CDK4↓</a>,
<a href="tbResList.php?qv=94&tsv=895&wNotes=on">CDK6↓</a>,
<br>

<!-- MIGRATION/INVASION : TumCMig↓, TumCI↓, FAK↓, ERK↓, -->
- inhibits Migration/Invasion :
<a href="tbResList.php?qv=94&tsv=326&wNotes=on">TumCMig↓</a>,
<a href="tbResList.php?qv=94&tsv=324&wNotes=on">TumCI↓</a>,
<a href="tbResList.php?qv=94&tsv=105&wNotes=on">ERK↓</a>,
<a href="tbResList.php?qv=94&tsv=96&wNotes=on">EMT↓</a>,
<br>

<!-- GLYCOLYSIS : ATP↓, HIF-1α↓, PKM2↓, cMyc↓, PDK1↓, GLUT1↓, LDHA↓, HK2↓, Glucose↓, GlucoseCon↓, lactateProd, OXPHOS -->
- inhibits
<a href="tbResList.php?qv=94&tsv=129&wNotes=on">glycolysis</a>
and
<a href="tbResList.php?qv=94&tsv=21&wNotes=on&word=ATP↓">ATP depletion</a> :
<a href="tbResList.php?qv=94&tsv=143&wNotes=on">HIF-1α↓</a>,
<a href="tbResList.php?qv=94&tsv=35&wNotes=on">cMyc↓</a>,
<a href="tbResList.php?qv=94&tsv=566&wNotes=on&word=GLUT">GLUT1↓</a>,
<a href="tbResList.php?qv=94&tsv=906&wNotes=on">LDH↓</a>,
<a href="tbResList.php?qv=94&tsv=175&wNotes=on&word=LDH">LDHA↓</a>,
<a href="tbResList.php?qv=94&tsv=773&wNotes=on">HK2↓</a>,
<a href="tbResList.php?qv=94&wNotes=on&word=PDK">PDKs↓</a>,
<a href="tbResList.php?qv=94&tsv=847&wNotes=on">ECAR↓</a>,
<a href="tbResList.php?qv=94&tsv=230&wNotes=on">OXPHOS↓</a>,
<a href="tbResList.php?qv=94&tsv=356&wNotes=on">GRP78↑</a>,
<a href="tbResList.php?qv=94&tsv=623&wNotes=on">GlucoseCon↓</a>
<br>


<!-- ANGIOGENESIS : VEGF↓, VEGFR2↓, HIF-1α↓, NOTCH↓, FGF↓, PDGF↓, EGFR↓ ITG(Integrins↓)-->
- inhibits
<a href="tbResList.php?qv=94&tsv=447&wNotes=on">angiogenesis↓</a> :
<a href="tbResList.php?qv=94&tsv=334&wNotes=on">VEGF↓</a>,
<a href="tbResList.php?qv=94&tsv=143&wNotes=on">HIF-1α↓</a>,
<a href="tbResList.php?qv=94&wNotes=on&word=NOTCH">Notch↓</a>,
<a href="tbResList.php?qv=94&tsv=94&wNotes=on&word=EGFR↓">EGFR↓</a>,

<br>

<!-- CSCs : CSC↓, CK2↓, Hh↓, GLi↓, GLi1↓, -->
- inhibits Cancer Stem Cells :
<a href="tbResList.php?qv=94&tsv=795&wNotes=on">CSC↓</a>,
<a href="tbResList.php?qv=94&tsv=677&wNotes=on">CD133↓</a>,
<a href="tbResList.php?qv=94&tsv=342&wNotes=on">β-catenin↓</a>,
<a href="tbResList.php?qv=94&tsv=656&wNotes=on">sox2↓</a>,
<a href="tbResList.php?qv=94&tsv=1024&wNotes=on">nestin↓</a>,
<a href="tbResList.php?qv=94&tsv=508&wNotes=on">OCT4↓</a>,
<br>

<!-- OTHERS : -->
- Others: <a href="tbResList.php?qv=94&tsv=252&wNotes=on">PI3K↓</a>,
<a href="tbResList.php?qv=94&tsv=4&wNotes=on">AKT↓</a>,
<a href="tbResList.php?qv=94&wNotes=on&word=JAK">JAK↓</a>,
<a href="tbResList.php?qv=94&wNotes=on&word=STAT">STAT↓</a>,
<a href="tbResList.php?qv=94&tsv=377&wNotes=on">Wnt↓</a>,
<a href="tbResList.php?qv=94&tsv=342&wNotes=on">β-catenin↓</a>,
<a href="tbResList.php?qv=94&tsv=9&wNotes=on">AMPK</a>,
<a href="tbResList.php?qv=94&tsv=105&wNotes=on">ERK↓</a>,
<a href="tbResList.php?qv=94&tsv=168&wNotes=on">JNK</a>,
<a href="tbResList.php?qv=94&wNotes=on&word=Trx">TrxR**</a>,

- Shown to modulate the nuclear translocation of
<a href="tbResList.php?qv=94&tsv=1132&wNotes=on&exSp=open&word=SREBP2">SREBP-2</a> (related to cholesterol).<br>


<!-- SYNERGIES : -->
- Synergies:
<a href="tbResList.php?qv=94&tsv=1106&wNotes=on">chemo-sensitization</a>,
<a href="tbResList.php?qv=94&tsv=1171&wNotes=on">chemoProtective</a>,
<a href="tbResList.php?qv=94&tsv=1107&wNotes=on">RadioSensitizer</a>,
<a href="tbResList.php?qv=94&tsv=1185&wNotes=on">RadioProtective</a>,
<a href="tbResList.php?qv=94&tsv=961&esv=2&wNotes=on&exSp=open">Others(review target notes)</a>,
<a href="tbResList.php?qv=94&tsv=1105&wNotes=on">Neuroprotective</a>,
<a href="tbResList.php?qv=94&tsv=557&wNotes=on">Cognitive</a>,
<a href="tbResList.php?qv=94&tsv=1175&wNotes=on">Renoprotection</a>,
<a href="tbResList.php?qv=94&tsv=1179&wNotes=on">Hepatoprotective</a>,
<a href="tbResList.php?&qv=94&tsv=1188&wNotes=on">CardioProtective</a>,

<br>
<br>
<!-- SELECTIVE: -->
- Selectivity:
<a href="tbResList.php?qv=94&tsv=1110&wNotes=on">Cancer Cells vs Normal Cells</a><br>
<br>



<table border="1" cellspacing="0" cellpadding="4">
<tr>
<th>Rank</th>
<th>Pathway / Axis</th>
<th>Cancer Cells</th>
<th>Normal Cells</th>
<th>Label</th>
<th>Primary Interpretation</th>
<th>Notes</th>
</tr>

<tr>
<td>1</td>
<td>Mitochondrial integrity / intrinsic apoptosis</td>
<td>↓ ΔΨm; ↑ cytochrome-c release; ↑ caspases</td>
<td>↔ largely preserved</td>
<td>Driver</td>
<td>Mitochondria-directed cytotoxicity</td>
<td>Honokiol directly accumulates in mitochondria and initiates intrinsic apoptosis in cancer cells</td>
</tr>

<tr>
<td>2</td>
<td>Reactive oxygen species (ROS)</td>
<td>↑ ROS (secondary, stress-amplifying)</td>
<td>↔ buffered</td>
<td>Secondary</td>
<td>Mitochondrial stress amplification</td>
<td>ROS elevation follows mitochondrial perturbation rather than acting as the initiating trigger</td>
</tr>

<tr>
<td>3</td>
<td>STAT3 signaling</td>
<td>↓ STAT3 activation</td>
<td>↔ minimal</td>
<td>Driver</td>
<td>Loss of survival and stemness signaling</td>
<td>STAT3 suppression contributes to apoptosis, CSC targeting, and reduced proliferation</td>
</tr>

<tr>
<td>4</td>
<td>PI3K → AKT → mTOR axis</td>
<td>↓ AKT / ↓ mTOR</td>
<td>↔ adaptive suppression</td>
<td>Secondary</td>
<td>Growth and anabolic inhibition</td>
<td>AKT/mTOR inhibition reinforces mitochondrial and apoptotic stress</td>
</tr>

<tr>
<td>5</td>
<td>NF-κB signaling</td>
<td>↓ NF-κB activation</td>
<td>↓ inflammatory NF-κB tone</td>
<td>Secondary</td>
<td>Suppression of survival transcription</td>
<td>NF-κB inhibition contributes to chemosensitization and anti-inflammatory effects</td>
</tr>

<tr>
<td>6</td>
<td>Cell cycle regulation</td>
<td>↑ G0/G1 or G2/M arrest</td>
<td>↔ spared</td>
<td>Phenotypic</td>
<td>Cytostatic growth control</td>
<td>Cell-cycle arrest reflects upstream signaling disruption</td>
</tr>

<tr>
<td>7</td>
<td>Autophagy</td>
<td>↑ autophagy (context-dependent)</td>
<td>↑ adaptive autophagy</td>
<td>Adaptive</td>
<td>Stress response vs death cooperation</td>
<td>Autophagy may precede apoptosis or act as a transient survival response</td>
</tr>

</table>


Pathway results for Effect on Cancer / Diseased Cells

Redox & Oxidative Stress

antiOx↑, 2,   Ferroptosis↑, 3,   GPx4∅, 1,   GPx4↓, 1,   GPx4↑, 1,   HO-1↑, 1,   HO-1↓, 1,   Iron↑, 1,   lipid-P↑, 1,   NRF2↑, 1,   PARK2↑, 1,   Prx3↑, 1,   ROS↑, 8,   mt-ROS↑, 4,   SIRT3↑, 5,   ac‑SOD2↓, 1,  

Metal & Cofactor Biology

Tf↑, 1,  

Mitochondria & Bioenergetics

ATP↓, 2,   mitResp↓, 2,   MMP↓, 2,   mtDam↑, 4,   OCR↑, 2,   OCR↓, 2,   c-Raf↓, 1,  

Core Metabolism/Glycolysis

AMP↑, 1,   AMPK↑, 2,   ATG7↑, 2,   cMyc↓, 1,   ECAR↓, 2,   GlucoseCon↓, 1,   Glycolysis↓, 1,   HK2↓, 1,   lactateProd↓, 1,   LDHA↓, 1,   NADPH↓, 1,   PDK1↓, 1,   SIRT1↑, 1,  

Cell Death

Akt↓, 9,   p‑Akt↓, 1,   Apoptosis↑, 1,   BAX↑, 4,   Bcl-2↓, 8,   Bcl-xL↓, 1,   Casp3↑, 9,   Casp3∅, 1,   cl‑Casp3↑, 1,   Casp7↑, 1,   Casp8↑, 2,   Casp9↑, 5,   Casp9∅, 1,   cl‑Casp9↑, 1,   cFLIP↓, 3,   Cyt‑c?, 1,   Cyt‑c↑, 4,   DR5↑, 1,   DR5↝, 1,   Ferroptosis↑, 3,   cl‑GSDME↑, 1,   JNK↑, 1,   MAPK↑, 1,   MAPK↓, 1,   Mcl-1↑, 1,   Mcl-1↓, 1,   p27↑, 1,   Pyro↑, 1,   survivin↓, 4,   TumCD↑, 1,  

Kinase & Signal Transduction

cSrc↓, 1,   EF-1α↓, 1,   HER2/EBBR2↓, 1,   p70S6↓, 1,  

Transcription & Epigenetics

cJun↑, 1,   EZH2↓, 1,   H3↑, 1,   ac‑H3↑, 1,   H4↑, 1,   ac‑H4↑, 1,   HATs↑, 1,   tumCV↓, 9,  

Protein Folding & ER Stress

cl‑CHOP↑, 1,   CHOP↑, 1,   eIF2α↑, 1,   p‑eIF2α↑, 1,   ER Stress↑, 6,   GRP78/BiP↑, 3,   HSP90↓, 3,   p‑PERK↑, 1,  

Autophagy & Lysosomes

ATG5↑, 2,   Beclin-1↑, 1,   LC3B-II↑, 1,   LC3II↑, 2,   p62↑, 1,   TumAuto↑, 2,  

DNA Damage & Repair

DNAdam↑, 1,   P53↑, 2,   cl‑PARP↑, 5,   cl‑PARP∅, 1,   PCNA↓, 1,  

Cell Cycle & Senescence

CDK2↓, 4,   CDK4↓, 5,   cycD1/CCND1↓, 6,   cycE/CCNE↓, 1,   P21?, 1,   P21↑, 3,   p‑RB1↓, 1,   TumCCA↑, 8,   TumCCA↓, 1,  

Proliferation, Differentiation & Cell State

CD133↓, 3,   CD44↓, 1,   CEBPB↓, 1,   p‑cMET↑, 1,   CSCs↓, 4,   EMT↓, 12,   ERK↓, 3,   p‑ERK↑, 1,   FOXM1↓, 1,   HDAC↓, 3,   HDAC3↓, 1,   HDAC6↓, 2,   MSCmark↓, 1,   mTOR↓, 6,   p‑mTOR↓, 2,   mTORC1↓, 1,   Nanog↓, 1,   Nestin↓, 3,   NOTCH1↓, 1,   NOTCH3↓, 1,   OCT4↓, 1,   PI3K↓, 8,   PTEN↑, 3,   RAS↑, 1,   RAS↓, 3,   Shh↓, 1,   SOX2↓, 1,   STAT3↓, 4,   p‑STAT3↓, 3,   mt-STAT3↓, 1,   TumCG↓, 4,   Wnt↓, 4,  

Migration

Alix/AIP‑1↓, 1,   Ca+2↑, 4,   E-cadherin↑, 5,   EM↑, 1,   miR-141↑, 1,   MMP2↓, 3,   MMP9↓, 6,   MMPs↓, 2,   N-cadherin↓, 4,   Rho↓, 1,   Rho↑, 1,   ROCK1↓, 1,   ROCK1↑, 1,   Slug↓, 3,   p‑SMAD2↓, 2,   p‑SMAD3↓, 2,   Snail↓, 6,   SOX4↓, 1,   TumCI↓, 10,   TumCMig↓, 10,   TumCP↑, 1,   TumCP↓, 7,   TumMeta↓, 5,   Twist↓, 2,   Vim↓, 3,   Zeb1↓, 2,   α-tubulin↑, 2,   β-catenin/ZEB1↓, 4,   β-catenin/ZEB1↑, 2,  

Angiogenesis & Vasculature

angioG↓, 2,   EGFR↓, 8,   Hif1a↓, 7,   NO↝, 1,   VEGF↓, 4,   VEGFR2↓, 1,  

Barriers & Transport

BBB↑, 2,   BBB↓, 1,   GLUT1↓, 1,   P-gp↓, 2,  

Immune & Inflammatory Signaling

CD4+↑, 1,   COX2↓, 6,   CXCR4↓, 1,   IFN-γ↓, 1,   IKKα↓, 1,   IKKα↑, 1,   IL1β↓, 1,   IL6↓, 1,   Inflam↓, 3,   JAK1↓, 1,   JAK2↓, 1,   NF-kB↓, 9,   p65↓, 2,   PD-L1↓, 2,   PGE2↓, 4,   T-Cell↑, 1,   TNF-α↓, 2,   TNF-α↑, 1,  

Hormonal & Nuclear Receptors

CDK6↓, 1,   ERα/ESR1↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 4,   BioAv↑, 2,   BioAv↝, 1,   ChemoSen↑, 6,   Dose↝, 1,   Dose↓, 1,   eff↓, 3,   eff↑, 7,   Half-Life↓, 1,   Half-Life↝, 3,   RadioS↑, 4,   selectivity↑, 8,  

Clinical Biomarkers

BMPs↑, 2,   EGFR↓, 8,   ERα/ESR1↓, 1,   EZH2↓, 1,   FOXM1↓, 1,   HER2/EBBR2↓, 1,   IL6↓, 1,   PD-L1↓, 2,  

Functional Outcomes

AntiCan↑, 4,   AntiTum↑, 1,   chemoP↑, 4,   chemoPv↑, 1,   neuroP↑, 1,   OS↑, 1,   toxicity↓, 2,   TumVol↓, 2,   TumW↓, 2,  

Infection & Microbiome

CD8+↑, 1,  
Total Targets: 228

Pathway results for Effect on Normal Cells

Redox & Oxidative Stress

antiOx↑, 10,   Catalase↑, 2,   GPx↑, 1,   GSH↑, 4,   HO-1↑, 4,   Keap1↑, 1,   NRF2↑, 5,   OXPHOS↓, 1,   OXPHOS↑, 1,   ROS↓, 19,   ROS↑, 1,   ROS⇅, 1,   mt-ROS↓, 2,   SIRT3↑, 6,   SOD↓, 1,   SOD↑, 1,   SOD2↑, 3,   Trx↑, 1,   Trx1↑, 1,   TrxR1↑, 2,  

Mitochondria & Bioenergetics

ATP↑, 1,   mitResp↑, 2,   MMP↑, 5,   PGC-1α↑, 5,  

Core Metabolism/Glycolysis

ALAT↓, 2,   BMAL1↑, 1,   CREB↑, 1,   ECAR↓, 1,   Glycolysis↓, 1,   Glycolysis↑, 1,   LDH↓, 1,   NADPH↓, 1,   NADPH↑, 1,   PPARα↑, 1,   PPARγ↑, 5,  

Cell Death

p‑Akt↑, 1,   Apoptosis↓, 2,   BAX↓, 1,   Bcl-2↑, 1,   Casp3↓, 3,   Cyt‑c↑, 1,  

Transcription & Epigenetics

Ach↑, 1,  

Protein Folding & ER Stress

CHOP↓, 1,   GRP78/BiP↓, 1,  

Proliferation, Differentiation & Cell State

ERK↑, 1,   ERK↓, 1,   GSK‐3β↓, 1,  

Migration

AntiAg↑, 1,   Ca+2↓, 2,   CXCL12↑, 1,   p‑Rac1↓, 1,   Rho↓, 1,   β-catenin/ZEB1↑, 1,  

Angiogenesis & Vasculature

NO↓, 1,   VEGF↓, 1,  

Barriers & Transport

BBB↑, 4,   P-gp↓, 1,  

Immune & Inflammatory Signaling

COX2↓, 1,   IKKα↑, 1,   IL10↓, 1,   IL1β↓, 3,   IL6↓, 2,   Inflam↓, 8,   NF-kB↑, 1,   NF-kB↓, 3,   PAR-2↓, 1,   PGE2↓, 1,   TNF-α↓, 5,  

Synaptic & Neurotransmission

AChE↓, 1,   BDNF↑, 4,   p‑tau↓, 1,   TrkB↑, 1,  

Protein Aggregation

Aβ↓, 3,  

Drug Metabolism & Resistance

BioAv↑, 2,   BioAv↓, 2,   BioAv↝, 1,   Dose⇅, 1,   eff↑, 3,  

Clinical Biomarkers

ALAT↓, 2,   ALP↓, 1,   AST↓, 2,   IL6↓, 2,   LDH↓, 1,  

Functional Outcomes

AntiAge↑, 1,   cardioP↑, 5,   cognitive↑, 3,   hepatoP↑, 2,   memory↑, 3,   Mood↑, 1,   motorD↑, 3,   neuroP↑, 8,   OS↑, 1,   Pain↓, 1,   radioP↑, 1,   RenoP↑, 1,   toxicity↝, 1,   toxicity↑, 1,   toxicity↓, 4,   toxicity∅, 1,  

Infection & Microbiome

Bacteria↓, 2,  
Total Targets: 100

Research papers

Year Title Authors PMID Link Flag
2025Nature's neuroprotector: Honokiol and its promise for Alzheimer's and Parkinson'sAhsas Goyalhttps://www.sciencedirect.com/science/article/pii/S26664593250002890
2025Honokiol induces paraptosis-like cell death through mitochondrial ROS-dependent endoplasmic reticulum stress in hepatocellular carcinoma Hep3B cellsSo Young Kimhttps://link.springer.com/article/10.1007/s43188-025-00291-20
2025Honokiol-Magnolol-Baicalin Possesses Synergistic Anticancer Potential and Enhances the Efficacy of Anti-PD-1 Immunotherapy in Colorectal Cancer by Triggering GSDME-Dependent PyroptosisQuan GaoPMC11967828https://pmc.ncbi.nlm.nih.gov/articles/PMC11967828/0
2025Honokiol attenuates oxidative stress and vascular calcification via the upregulation of heme oxygenase-1 in chronic kidney diseaseXuemin Xianhttps://www.sciencedirect.com/science/article/abs/pii/S0041008X250009480
2025Honokiol Mitigates Ionizing Radiation-Induced Injury by Maintaining the Redox Balance of the TrxR/Trx SystemYaxiong Chenhttps://www.preprints.org/manuscript/202502.1803/v10
2025Identification of senescence rejuvenation mechanism of Magnolia officinalis extract including honokiol as a core ingredientYun Haeng LeePMC11892931https://pmc.ncbi.nlm.nih.gov/articles/PMC11892931/0
2024Honokiol: a novel natural agent for cancer prevention and therapySumit AroraPMC3663139https://pmc.ncbi.nlm.nih.gov/articles/PMC3663139/0
2024Revealing the role of honokiol in human glioma cells by RNA-seq analysisYUNBAO GUOhttps://www.sciencedirect.com/org/science/article/pii/S03279545240000450
2024Liposomal honokiol inhibits non-small cell lung cancer progression and enhances PD-1 blockade via suppressing M2 macrophages polarizationYuan Cheng39531934https://pubmed.ncbi.nlm.nih.gov/39531934/0
2024Honokiol Suppresses Cell Proliferation and Tumor Migration through ROS in Human Anaplastic Thyroid Cancer CellsKai-Sheng Liao38659261https://pubmed.ncbi.nlm.nih.gov/38659261/0
2024Effects of Honokiol on Neurological Injury and Cognitive Function in Mice with Intracerebral Hemorrhage by Regulating BDNF-TrkB-CREB Signaling PathwayLI Yangyanghttps://www.chinastroke.org.cn/EN/10.3969/j.issn.1673-5765.2024.09.0100
2024Honokiol Is More Potent than Magnolol in Reducing Head and Neck Cancer Cell GrowthRobert Kleszczhttps://www.mdpi.com/1467-3045/46/10/6370
2024Honokiol suppress the PD-L1 expression to improve anti-tumor immunity in lung cancerLianxiang Luo38626551https://pubmed.ncbi.nlm.nih.gov/38626551/0
2023Honokiol inhibits the growth of hormone-resistant breast cancer cells: its promising effect in combination with metforminEkaterina I MikhaevichPMC10568957https://pmc.ncbi.nlm.nih.gov/articles/PMC10568957/0
2023Neuropharmacological potential of honokiol and its derivatives from Chinese herb Magnolia species: understandings from therapeutic viewpointMd. Faysal,https://cmjournal.biomedcentral.com/articles/10.1186/s13020-023-00846-10
2023Honokiol and its analogues as anticancer compounds: Current mechanistic insights and structure-activity relationshipParteek Prasherhttps://www.sciencedirect.com/science/article/abs/pii/S00092797230041430
2022Honokiol alleviated neurodegeneration by reducing oxidative stress and improving mitochondrial function in mutant SOD1 cellular and mouse models of amyotrophic lateral sclerosisYujun ZhouPMC9979194https://pmc.ncbi.nlm.nih.gov/articles/PMC9979194/0
2022SIRT3 activation promotes enteric neurons survival and differentiationArun Balasubramaniamhttps://www.nature.com/articles/s41598-022-26634-90
2022Targeting histone deacetylase-3 blocked epithelial-mesenchymal plasticity and metastatic dissemination in gastric cancerSheng-Mao WuPMC10547655https://pmc.ncbi.nlm.nih.gov/articles/PMC10547655/0
2022Pharmacological features, health benefits and clinical implications of honokiolFatima Khatoon36093963https://pubmed.ncbi.nlm.nih.gov/36093963/0
2022Liposomal Honokiol induces ROS-mediated apoptosis via regulation of ERK/p38-MAPK signaling and autophagic inhibition in human medulloblastomaShenglan LiPMC8858958https://pmc.ncbi.nlm.nih.gov/articles/PMC8858958/0
2022Honokiol Induces Ferroptosis by Upregulating HMOX1 in Acute Myeloid Leukemia CellsXingrong LaiPMC9132251https://pmc.ncbi.nlm.nih.gov/articles/PMC9132251/0
2022Honokiol Microemulsion Causes Stage-Dependent Toxicity Via Dual Roles in Oxidation-Reduction and Apoptosis through FoxO Signaling PathwayHui LiPMC9688712https://pmc.ncbi.nlm.nih.gov/articles/PMC9688712/0
2022The Role and Therapeutic Perspectives of Sirtuin 3 in Cancer Metabolism Reprogramming, Metastasis, and ChemoresistanceQingYi Zhaohttps://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2022.910963/full0
2022Honokiol Inhibits HIF-1α-Mediated Glycolysis to Halt Breast Cancer GrowthXianglan YiPMC8957822https://pmc.ncbi.nlm.nih.gov/articles/PMC8957822/0
2021Honokiol: A review of its pharmacological potential and therapeutic insightsAbdur Raufhttps://www.sciencedirect.com/science/article/abs/pii/S09447113210019020
2021Honokiol Suppresses Perineural Invasion of Pancreatic Cancer by Inhibiting SMAD2/3 SignalingTao QinPMC8521150https://pmc.ncbi.nlm.nih.gov/articles/PMC8521150/0
2021Honokiol induces ferroptosis in colon cancer cells by regulating GPX4 activityCao GuoPMC8263670https://pmc.ncbi.nlm.nih.gov/articles/PMC8263670/0
2021Honokiol Restores Microglial Phagocytosis by Reversing Metabolic ReprogrammingWenwen Li34151796https://pubmed.ncbi.nlm.nih.gov/34151796/0
2020Suppressing migration and invasion of H1299 lung cancer cells by honokiol through disrupting expression of an HDAC6-mediated matrix metalloproteinase 9Jih-Tung Paihttps://onlinelibrary.wiley.com/doi/10.1002/fsn3.14390
2020Honokiol Suppressed Pancreatic Cancer Progression via miR-101/Mcl-1 AxisYishuo WangPMC7335890https://pmc.ncbi.nlm.nih.gov/articles/PMC7335890/0
2020Suppressing migration and invasion of H1299 lung cancer cells by honokiol through disrupting expression of an HDAC6‐mediated matrix metalloproteinase 9Jih‐Tung PaiPMC7063368https://pmc.ncbi.nlm.nih.gov/articles/PMC7063368/0
2020Honokiol Suppression of Human Epidermal Growth Factor Receptor 2 (HER2)-Positive Gastric Cancer Cell Biological Activity and Its MechanismYidan Yanhttps://pmc.ncbi.nlm.nih.gov/articles/PMC7480089/0
2019Honokiol downregulates PD-L1 expression and enhances antitumor effects of mTOR inhibitors in renal cancer cellsAkash Sabarwalhttps://www.researchgate.net/publication/333433153_Honokiol_downregulates_PD-L1_expression_and_enhances_antitumor_effects_of_mTOR_inhibitors_in_renal_cancer_cells0
2019Honokiol inhibits breast cancer cell metastasis by blocking EMT through modulation of Snail/Slug protein translationWen-die WangPMC6786377https://pmc.ncbi.nlm.nih.gov/articles/PMC6786377/0
2019Honokiol: A Review of Its Anticancer Potential and MechanismsChon Phin OngPMC7016989https://pmc.ncbi.nlm.nih.gov/articles/PMC7016989/0
2019Honokiol ameliorates oxidative stress-induced DNA damage and apoptosis of c2c12 myoblasts by ROS generation and mitochondrial pathwayCheol ParkPMC7048179https://pmc.ncbi.nlm.nih.gov/articles/PMC7048179/0
2018Honokiol Inhibits Lung Tumorigenesis through Inhibition of Mitochondrial FunctionJing PanPMC6010030https://pmc.ncbi.nlm.nih.gov/articles/PMC6010030/0
2018Honokiol Exerts Antidepressant Effects in Rats Exposed to Chronic Unpredictable Mild Stress by Regulating Brain Derived Neurotrophic Factor Level and Hypothalamus–Pituitary–Adrenal Axis ActivityCanmao Wanghttps://www.researchgate.net/publication/325471783_Honokiol_Exerts_Antidepressant_Effects_in_Rats_Exposed_to_Chronic_Unpredictable_Mild_Stress_by_Regulating_Brain_Derived_Neurotrophic_Factor_Level_and_Hypothalamus-Pituitary-Adrenal_Axis_Activity0
2018Honokiol Eliminates Glioma/Glioblastoma Stem Cell-Like Cells via JAK-STAT3 Signaling and Inhibits Tumor Progression by Targeting Epidermal Growth Factor ReceptorYipu FanPMC6356849https://pmc.ncbi.nlm.nih.gov/articles/PMC6356849/0
2018Honokiol induces apoptosis and autophagy via the ROS/ERK1/2 signaling pathway in human osteosarcoma cells in vitro and in vivoKangmao Huanghttps://pmc.ncbi.nlm.nih.gov/articles/PMC5833587/0
2018SIRT3 activator honokiol ameliorates surgery/anesthesia-induced cognitive decline in mice through anti-oxidative stress and anti-inflammatory in hippocampusJi-Shi Yehttps://onlinelibrary.wiley.com/doi/10.1111/cns.130530
2018Honokiol Inhibits Proliferation, Invasion and Induces Apoptosis Through Targeting Lyn Kinase in Human Lung Adenocarcinoma CellsXi Daihttps://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2018.00558/full0
2018Mitochondria-Targeted Honokiol Confers a Striking Inhibitory Effect on Lung Cancer via Inhibiting Complex I ActivityJing Panhttps://www.cell.com/iscience/fulltext/S2589-0042(18)30045-20
2018Antihyperalgesic Properties of Honokiol in Inflammatory Pain Models by Targeting of NF-κB and Nrf2 SignalingSidra KhalidPMC5869907https://pmc.ncbi.nlm.nih.gov/articles/PMC5869907/0
2018Honokiol Alleviates Oxidative Stress-Induced Neurotoxicity via Activation of Nrf2Yanan Hou29989791https://pubmed.ncbi.nlm.nih.gov/29989791/0
2017Honokiol Induces Apoptosis, G1 Arrest, and Autophagy in KRAS Mutant Lung Cancer CellsLian-Xiang LuoPMC5387050https://pmc.ncbi.nlm.nih.gov/articles/PMC5387050/0
2017Honokiol protects against doxorubicin cardiotoxicity via improving mitochondrial function in mouse heartsLizhen Huanghttps://www.nature.com/articles/s41598-017-12095-y0
2017Honokiol, an activator of Sirtuin-3 (SIRT3) preserves mitochondria and protects the heart from doxorubicin-induced cardiomyopathy in miceVinodkumar B PillaiPMC5470953https://pmc.ncbi.nlm.nih.gov/articles/PMC5470953/0
2017Honokiol protects against doxorubicin cardiotoxicity via improving mitochondrial function in mouse heartsLizhen HuangPMC5607346https://pmc.ncbi.nlm.nih.gov/articles/PMC5607346/0
2016Honokiol, an Active Compound of Magnolia Plant, Inhibits Growth, and Progression of Cancers of Different OrgansRam Prasadhttps://link.springer.com/chapter/10.1007/978-3-319-41334-1_110
2016Honokiol targets mitochondria to halt cancer progression and metastasisJing Pan27276215https://pubmed.ncbi.nlm.nih.gov/27276215/0
2016Honokiol inhibits EMT-mediated motility and migration of human non-small cell lung cancer cells in vitro by targeting c-FLIPXiao-qin LvPMC5290996https://pmc.ncbi.nlm.nih.gov/articles/PMC5290996/0
2015Honokiol from Magnolia spp. induces G1 arrest via disruption of EGFR stability through repressing HDAC6 deacetylated Hsp90 function in lung cancer cellsShiuan-Fu Liouhttps://www.sciencedirect.com/science/article/abs/pii/S17564646150012670
2014Honokiol Suppresses Renal Cancer Cells’ Metastasis via Dual-Blocking Epithelial-Mesenchymal Transition and Cancer Stem Cell Properties through Modulating miR-141/ZEB2 SignalingWeidong LiPMC4044309https://pmc.ncbi.nlm.nih.gov/articles/PMC4044309/0
2014Honokiol inhibits epithelial—mesenchymal transition in breast cancer cells by targeting signal transducer and activator of transcription 3/Zeb1/E‐cadherin axisDimiter B AvtanskiPMC4009450https://pmc.ncbi.nlm.nih.gov/articles/PMC4009450/0
2014Honokiol suppresses renal cancer cells' metastasis via dual-blocking epithelial-mesenchymal transition and cancer stem cell properties through modulating miR-141/ZEB2 signalingWeidong LiPMC4044309https://pmc.ncbi.nlm.nih.gov/articles/PMC4044309/0
2013Honokiol reverses depressive-like behavior and decrease in brain BDNF levels induced by chronic corticosterone injections in miceSathish Pittahttps://www.sciencedirect.com/science/article/abs/pii/S09753575130006550
2013Inhibition of class I histone deacetylases in non-small cell lung cancer by honokiol leads to suppression of cancer cell growth and induction of cell death in vitro and in vivoTripti SinghPMC3549881https://pmc.ncbi.nlm.nih.gov/articles/PMC3549881/0
2013Honokiol mediated inhibition of PI3K/mTOR pathway: A potential strategy to overcome immunoresistance in glioma, breast and prostate carcinoma without impacting T cell functionCourtney CranePMC3795513https://pmc.ncbi.nlm.nih.gov/articles/PMC3795513/0
2013Honokiol Inhibits Non-Small Cell Lung Cancer Cell Migration by Targeting PGE2-Mediated Activation of β-Catenin SignalingTripti SinghPMC3620279https://pmc.ncbi.nlm.nih.gov/articles/PMC3620279/0
2013Honokiol Eliminates Human Oral Cancer Stem-Like Cells Accompanied with Suppression of Wnt/β-Catenin Signaling and Apoptosis InductionChih-Jung YaoPMC3638590https://pmc.ncbi.nlm.nih.gov/articles/PMC36385900
2011Honokiol inhibits hypoxia-inducible factor-1 pathwayK. Lanhttps://www.semanticscholar.org/paper/Honokiol-inhibits-hypoxia-inducible-factor-1-Lan-Lan/bd5d58799a59813a87fa97de4b2dcb7c52002b7c0
2005The natural product honokiol induces caspase-dependent apoptosis in B-cell chronic lymphocytic leukemia (B-CLL) cellsTraci E Battle15802533https://pubmed.ncbi.nlm.nih.gov/15802533/0
2021Magnolol and Honokiol: Two Natural Compounds with Similar Chemical Structure but Different Physicochemical and Stability PropertiesIris UsachPMC7915353https://pmc.ncbi.nlm.nih.gov/articles/PMC7915353/0
2018Safety and Toxicology of Magnolol and HonokiolAndrea Sarrica29925102https://pubmed.ncbi.nlm.nih.gov/29925102/0
2011Targeting apoptosis pathways in cancer with magnolol and honokiol, bioactive constituents of the bark of Magnolia officinalisH L Xu22466367https://pubmed.ncbi.nlm.nih.gov/22466367/0