FAO (also known as β-oxidation) is a metabolic process in which fatty acids are broken down in the mitochondria (and, to a lesser extent, in peroxisomes) to generate acetyl-CoA. This acetyl-CoA then enters the tricarboxylic acid (TCA) cycle, ultimately driving the production of ATP via oxidative phosphorylation. FAO is crucial for energy production, especially under conditions where carbohydrates are scarce.
While many cancer cells are known for their reliance on glycolysis (the Warburg effect), some tumors exploit FAO to meet their energy needs. FAO can provide a high yield of ATP, which is particularly valuable in nutrient-deprived or hypoxic microenvironments. Tumor cells with high FAO activity may use it to sustain survival, promote proliferation, and support metastatic processes.
High FAO activity has been correlated with aggressive tumor behavior and poorer prognosis in certain cancers. Enhanced FAO may support survival under metabolic stress and contribute to resistance against treatments that target glycolytic pathways. Thus, tumors with elevated FAO could potentially be more difficult to treat.
(Will delete Record if Target field = "Delete") Home