View:     View:
tid Target Cancers General Effect on Target
Name
Source
Type

Gluconeogenesis is the metabolic pathway through which organisms synthesize glucose from non-carbohydrate precursors. This process is crucial for maintaining blood glucose levels, especially during fasting or intense exercise. In the context of cancer, gluconeogenesis can play a significant role in tumor metabolism and growth.
Cancer cells often exhibit altered metabolic pathways, a phenomenon known as the Warburg effect, where they preferentially use glycolysis for energy production even in the presence of oxygen. However, gluconeogenesis can also be upregulated in certain cancer types, providing a source of glucose to support rapid cell proliferation.
Cancer cells can utilize various substrates for gluconeogenesis, including lactate, amino acids (especially alanine and glutamine), and glycerol. This allows tumors to generate glucose even when dietary glucose is limited.
Hormones such as glucagon and cortisol can stimulate gluconeogenesis. In cancer, the dysregulation of these hormones can contribute to altered glucose metabolism.
Key Enzymes in Gluconeogenesis
Pyruvate Carboxylase (PC)
Phosphoenolpyruvate Carboxykinase (PEPCK)
Fructose-1,6-bisphosphatase (FBPase)
Glucose-6-phosphatase (G6Pase)

The expression of gluconeogenic enzymes is often altered in various cancers, and their upregulation is generally associated with poorer prognosis.




(Will delete Record if Target field = "Delete")
 Home