P65, also known as RelA, is a subunit of the NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) transcription factor complex. NF-κB plays a crucial role in regulating immune response, inflammation, and cell survival.
Due to its role in cancer progression, p65 and the NF-κB pathway are considered potential therapeutic targets. Inhibitors of NF-κB signaling are being explored in preclinical and clinical studies as potential cancer treatments.
Many studies have reported that p65 is overexpressed in various types of cancers, including breast, prostate, lung, and colorectal cancers.
In some cancers, elevated p65 levels correlate with higher grades of tumors and advanced stages of disease.
"RELA proto-oncogene, NF-κB subunit." It encodes the p65 protein, which is a central component of the NF‑κB transcription factor complex.
-Chronic activation of RELA and the NF‑κB pathway is frequently associated with cancer progression, promoting inflammation-driven tumorigenesis, chemoresistance, and metastasis.
-RELA interacts with other oncogenic signaling networks (for example, STAT3 and MAPK pathways), further integrating environmental signals that favor cancer progression.
RELA (p65) is a critical subunit of the NF‑κB transcription factor complex, involved in the regulation of genes that control inflammation, cell survival, and proliferation. In the context of cancer, aberrant activation and overexpression of RELA are frequently associated with aggressive tumor behavior, therapy resistance, and poorer patient outcomes in cancers such as breast, lung, colorectal, and pancreatic cancers, among others.
RELA emerges as a potential key contributor to the suppression of glycolysis, mitochondrial respiration, and ATP production in cancer cells. (RELA knockdown signifcantly reduced the tumorigenic.
potential of various pancreatic cancer cell lines).
(Will delete Record if Target field = "Delete") Home