The Fenton reaction is a chemical reaction that involves the catalytic decomposition of hydrogen peroxide (H2O2) by iron ions (Fe2+ or Fe3+). This reaction produces highly reactive oxygen species (ROS), including hydroxyl radicals (·OH) and superoxide anions (O2·-).
Cancer Progression:
Increased oxidative stress from the Fenton reaction can promote cancer cell proliferation, survival, and metastasis. ROS can activate various signaling pathways that support tumor growth and resistance to apoptosis.
Therapeutic Target:
The Fenton reaction has been explored as a potential therapeutic target. Strategies to manipulate iron levels or enhance the production of ROS in cancer cells are being investigated to selectively induce cell death in tumors.
– The dysregulation of iron metabolism in certain cancers might serve as a biomarker for targeted treatments that employ Fenton reaction-based strategies.
– Researchers are investigating strategies that harness or amplify the Fenton reaction to selectively kill cancer cells.
- With more available iron, the Fenton reaction can be enhanced, resulting in increased production of hydroxyl radicals. Which can lead to cancer cell death.
See the ROS target for more information
(Will delete Record if Target field = "Delete") Home