condition found tbRes List
Glycolysis, Glycolysis: Click to Expand ⟱
Source:
Type:
Glycolysis is a metabolic pathway that converts glucose into pyruvate, producing a small amount of ATP (energy) in the process. It is a fundamental process for cellular energy production and occurs in the cytoplasm of cells. In normal cells, glycolysis is tightly regulated and is followed by aerobic respiration in the presence of oxygen, which allows for the efficient production of ATP.
In cancer cells, however, glycolysis is often upregulated, even in the presence of oxygen. This phenomenon is known as the Warburg Mutations in oncogenes (like MYC) and tumor suppressor genes (like TP53) can alter metabolic pathways, promoting glycolysis and other anabolic processes that support cell growth.effect.
Acidosis: The increased production of lactate from glycolysis can lead to an acidic microenvironment, which may promote tumor invasion and suppress immune responses.

Glycolysis is a hallmark of malignancy transformation in solid tumor, and LDH is the key enzyme involved in glycolysis.

Pathways:
-GLUTs, HK2, PFK, PK, PKM2, LDH, LDHA, PI3K/AKT/mTOR, AMPK, HIF-1a, c-MYC, p53, SIRT6, HSP90α, GAPDH, HBT, PPP, Lactate Metabolism, ALDO

Natural products targeting glycolytic signaling pathways https://pmc.ncbi.nlm.nih.gov/articles/PMC9631946/
Alkaloids:
-Berberine, Worenine, Sinomenine, NK007, Tetrandrine, N-methylhermeanthidine chloride, Dauricine, Oxymatrine, Matrine, Cryptolepine

Flavonoids: -Oroxyline A, Apigenin, Kaempferol, Quercetin, Wogonin, Baicalein, Chrysin, Genistein, Cardamonin, Phloretin, Morusin, Bavachinin, 4-O-methylalpinumisofavone, Glabridin, Icaritin, LicA, Naringin, IVT, Proanthocyanidin B2, Scutellarin, Hesperidin, Silibinin, Catechin, EGCG, EGC, Xanthohumol.

Non-flavonoid phenolic compounds:
Curcumin, Resveratrol, Gossypol, Tannic acid.

Terpenoids:
-Cantharidin, Dihydroartemisinin, Oleanolic acid, Jolkinolide B, Cynaropicrin, Ursolic Acid, Triptolie, Oridonin, Micheliolide, Betulinic Acid, Beta-escin, Limonin, Bruceine D, Prosapogenin A (PSA), Oleuropein, Dioscin.

Quinones:
-Thymoquinone, Lapachoi, Tan IIA, Emodine, Rhein, Shikonin, Hypericin

Others:
-Perillyl alcohol, HCA, Melatonin, Sulforaphane, Vitamin D3, Mycoepoxydiene, Methyl jasmonate, CK, Phsyciosporin, Gliotoxin, Graviola, Ginsenoside, Beta-Carotene.


Scientific Papers found: Click to Expand⟱
2327- 2DG,    2-Deoxy-d-Glucose and Its Analogs: From Diagnostic to Therapeutic Agents
- Review, Var, NA
Glycolysis↓, HK2↓, mt-ROS↑, AMPK↑, PPP↓, NADPH↓, GSH↓, Bax:Bcl2↑, Apoptosis↑, RadioS↑, eff↓, Half-Life↓, other↝, eff↓,
2325- 2DG,    Research Progress of Warburg Effect in Hepatocellular Carcinoma
- Review, Var, NA
HK2↓, Glycolysis↓, PKM2↓, LDHA↓, TumCD↑, ChemoSen↑, eff↑,
2424- 2DG,  SRF,    The combination of the glycolysis inhibitor 2-DG and sorafenib can be effective against sorafenib-tolerant persister cancer cells
- in-vitro, HCC, Hep3B - in-vitro, HCC, HUH7
ChemoSen↓, Glycolysis↓, HK1↓, HK2↓, ATP↓,
1341- 3BP,    The HK2 Dependent “Warburg Effect” and Mitochondrial Oxidative Phosphorylation in Cancer: Targets for Effective Therapy with 3-Bromopyruvate
- Review, NA, NA
Glycolysis↓, OXPHOS↓, *toxicity↓, ROS↑, GSH↓, eff↑,
1340- 3BP,    Safety and outcome of treatment of metastatic melanoma using 3-bromopyruvate: a concise literature review and case study
- Review, NA, NA
Glycolysis↓, HK2↓, LDH↓, OXPHOS↓, angioG↓, H2O2↑, eff↑,
3452- 5-ALA,    5-ALA Is a Potent Lactate Dehydrogenase Inhibitor but Not a Substrate: Implications for Cell Glycolysis and New Avenues in 5-ALA-Mediated Anticancer Action
- in-vitro, GBM, T98G - in-vitro, GBM, LN-18 - in-vitro, GBM, U87MG
Glycolysis↓, LDH↓, eff↝, ECAR↓,
3443- ALA,    Molecular and Therapeutic Insights of Alpha-Lipoic Acid as a Potential Molecule for Disease Prevention
- Review, Var, NA - Review, AD, NA
*antiOx↑, *ROS↓, *IronCh↑, *cognitive↑, *cardioP↓, AntiCan↑, *neuroP↑, *Inflam↓, *BioAv↓, *AntiAge↑, *Half-Life↓, *BioAv↝, other↝, EGFR↓, Akt↓, ROS↓, TumCCA↑, p27↑, PDH↑, Glycolysis↓, ROS↑, *eff↑, *memory↑, *motorD↑, *GutMicro↑,
3436- ALA,    Alpha lipoic acid modulates metabolic reprogramming in breast cancer stem cells enriched 3D spheroids by targeting phosphoinositide 3-kinase: In silico and in vitro insights Author links open overlay panel
- in-vitro, BC, MCF-7
ChemoSen↑, PI3K↓, Akt↓, ATP↓, GlucoseCon↓, ROS↑, PKM2↓, Glycolysis↓, CSCs↓, IGF-1R↓, Furin↓, RadioS↑,
3434- ALA,    Alpha lipoic acid modulates metabolic reprogramming in breast cancer stem cells enriched 3D spheroids by targeting phosphoinositide 3-kinase: In silico and in vitro insights
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
tumCV↓, PI3K↓, p‑Akt↓, p‑P70S6K↓, mTOR↓, ATP↓, GlucoseCon↓, ROS↑, PKM2↓, LDHA↓, Glycolysis↓, ChemoSen↑,
3454- ALA,    Lipoic acid blocks autophagic flux and impairs cellular bioenergetics in breast cancer and reduces stemness
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
TumCG↑, Glycolysis↓, ROS↑, CSCs↓, selectivity↑, LC3B-II↑, MMP↓, mitResp↓, ATP↓, OCR↓, NAD↓, p‑AMPK↑, GlucoseCon↓, lactateProd↓, HK2↓, PFK↓, LDHA↓, eff↓, mTOR↓, ECAR↓, ALDH↓, CD44↓, CD24↓,
206- Api,    Inhibition of glutamine utilization sensitizes lung cancer cells to apigenin-induced apoptosis resulting from metabolic and oxidative stress
- in-vitro, Lung, H1299 - in-vitro, Lung, H460 - in-vitro, Lung, A549 - in-vitro, CRC, HCT116 - in-vitro, Melanoma, A375 - in-vitro, Lung, H2030 - in-vitro, CRC, SW480
Glycolysis↓, NA?, PGK1↓, ALDOA↓, GLUT1↓, ENO1↓, ATP↓, Casp9↑, Casp3↑, cl‑PARP↑, PI3K/Akt↓, HK1↓, HK2↓,
2299- Api,    Flavonoids Targeting HIF-1: Implications on Cancer Metabolism
- Review, Var, NA
TumCP↓, angioG↓, Hif1a↓, VEGF↓, GLUT1↓, PKM2↓, Glycolysis↓,
2314- Api,    Apigenin Restrains Colon Cancer Cell Proliferation via Targeted Blocking of Pyruvate Kinase M2-Dependent Glycolysis
- in-vitro, Colon, HCT116 - in-vitro, Colon, HT29 - in-vitro, Colon, DLD1
Glycolysis↓, PKM2:PKM1↓, β-catenin/ZEB1↓, cMyc↓,
2316- Api,    The interaction between apigenin and PKM2 restrains progression of colorectal cancer
- in-vitro, CRC, LS174T - in-vitro, CRC, HCT8 - in-vivo, CRC, NA
TumCP↓, PKM2↓, Glycolysis↓, TumCG↑, selectivity↑,
2319- Api,    Apigenin sensitizes radiotherapy of mouse subcutaneous glioma through attenuations of cell stemness and DNA damage repair by inhibiting NF-κB/HIF-1α-mediated glycolysis
- in-vitro, GBM, NA
Glycolysis↓, NF-kB↓, p65↓, Hif1a↓, GLUT1↓, GLUT3↓, PKM2↓, RadioS↑, TumVol↓, TumW↓,
957- ART/DHA,    Artemisinin inhibits the development of esophageal cancer by targeting HIF-1α to reduce glycolysis levels
- in-vitro, ESCC, KYSE150 - in-vitro, ESCC, KYSE170
TumCP↓, TumMeta↓, Glycolysis↓, N-cadherin↓, PKM2↓, Hif1a↓,
985- ART/DHA,    Artemisinin suppresses aerobic glycolysis in thyroid cancer cells by downregulating HIF-1a, which is increased by the XIST/miR-93/HIF-1a pathway
- in-vitro, Thyroid, TPC-1 - Human, NA, NA
XIST↓, Hif1a↓, Glycolysis↓, TumCCA↑, TumMeta↓,
2320- ART/DHA,    Dihydroartemisinin Inhibits the Proliferation of Leukemia Cells K562 by Suppressing PKM2 and GLUT1 Mediated Aerobic Glycolysis
- in-vitro, AML, K562 - in-vitro, Liver, HepG2
Glycolysis↓, GlucoseCon↓, lactateProd↓, GLUT1↓, PKM2↓, ECAR↓, LDHA↓, cMyc↓, other↝,
2322- ART/DHA,    Dihydroartemisinin Regulates Self-Renewal of Human Melanoma-Initiating Cells by Targeting PKM2/LDHARelated Glycolysis
- in-vitro, Melanoma, NA
TumCP↓, PKM2↓, LDHA↓, Glycolysis↓,
2324- ART/DHA,    Research Progress of Warburg Effect in Hepatocellular Carcinoma
- Review, Var, NA
PKM2↓, GLUT1↓, Glycolysis↓, Akt↓, mTOR↓, Hif1a↓, HK2↓, LDH↓, NF-kB↓,
3383- ART/DHA,    Dihydroartemisinin: A Potential Natural Anticancer Drug
- Review, Var, NA
TumCP↓, Apoptosis↑, TumMeta↓, angioG↓, TumAuto↑, ER Stress↑, ROS↑, Ca+2↑, p38↑, HSP70/HSPA5↓, PPARγ↑, GLUT1↓, Glycolysis↓, PI3K↓, Akt↓, Hif1a↓, PKM2↓, lactateProd↓, GlucoseCon↓, EMT↓, Slug↓, Zeb1↓, ZEB2↓, Twist↓, Snail?, CAFs/TAFs↓, TGF-β↓, p‑STAT3↓, M2 MC↓, uPA↓, HH↓, AXL↓, VEGFR2↓, JNK↑, Beclin-1↑, GRP78/BiP↑, eff↑, eff↑, eff↑, eff↑, eff↑, eff↑, IL4↓, DR5↑, Cyt‑c↑, Fas↑, FADD↑, cl‑PARP↑, cycE↓, CDK2↓, CDK4↓, Mcl-1↓, Ki-67↓, Bcl-2↓, CDK6↓, VEGF↓, COX2↓, MMP9↓,
944- AS,    Astragalus saponins inhibit cell growth, aerobic glycolysis and attenuate the inflammatory response in a DSS-induced colitis model
- vitro+vivo, CRC, NA
Glycolysis↓, lactateProd↓, TumCG↓,
1180- Ash,    Withaferin A Inhibits Liver Cancer Tumorigenesis by Suppressing Aerobic Glycolysis through the p53/IDH1/HIF-1α Signaling Axis
- in-vitro, Liver, HepG2
IDH1↑, Glycolysis↓, P53↑, Hif1a↓,
1176- Ash,    Metabolic Alterations in Mammary Cancer Prevention by Withaferin A in a Clinically Relevant Mouse Model
- in-vivo, NA, NA
TumVol↓, Apoptosis↑, Glycolysis↓, PKM2↓, PGK1↓, ALDOAiso2↓,
2388- Ash,    Withaferin A decreases glycolytic reprogramming in breast cancer
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MDA-MB-468 - in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-453
GlucoseCon↓, lactateProd↓, ATP↓, Glycolysis↓, GLUT1↓, HK2↓, PKM2↓, cMyc↓, Warburg↓, cMyc↓,
3156- Ash,    Withaferin A: From ayurvedic folk medicine to preclinical anti-cancer drug
- Review, Var, NA
MAPK↑, p38↑, BAX↑, BIM↑, CHOP↑, ROS↑, DR5↑, Apoptosis↑, Ferroptosis↑, GPx4↓, BioAv↝, HSP90↓, RET↓, E6↓, E7↓, Akt↓, cMET↓, Glycolysis↓, TCA↓, NOTCH1↓, STAT3↓, AP-1↓, PI3K↓, eIF2α↓, HO-1↑, TumCCA↑, CDK1↓, *hepatoP↑, *GSH↑, *NRF2↑, Wnt↓, EMT↓, uPA↓, CSCs↓, Nanog↓, SOX2↓, CD44↓, lactateProd↓, Iron↑, NF-kB↓,
3162- Ash,    Molecular insights into cancer therapeutic effects of the dietary medicinal phytochemical withaferin A
- Review, Var, NA
lipid-P↓, SOD↑, GPx↑, P53↑, Bcl-2↑, E6↓, E7↓, pRB↑, CycB↑, CDC2↑, P21↑, PCNA↓, ALDH1A1↓, Vim↓, Glycolysis↓, cMyc↓, BAX↑, NF-kB↓, Casp3↑, CHOP↑, DR5↑, ERK↓, Wnt↓, β-catenin/ZEB1↓, Akt↓, HSP90↓,
996- Ba,  Tam,    Baicalein resensitizes tamoxifen‐resistant breast cancer cells by reducing aerobic glycolysis and reversing mitochondrial dysfunction via inhibition of hypoxia‐inducible factor‐1α
Hif1a↓, Glycolysis↓, GlucoseCon↓, lactateProd↓, lact/pyru↓, ROS↑, Apoptosis↑,
2295- Ba,  5-FU,    Baicalein reverses hypoxia-induced 5-FU resistance in gastric cancer AGS cells through suppression of glycolysis and the PTEN/Akt/HIF-1α signaling pathway
- in-vitro, GC, AGS
ChemoSen↑, HK2↓, LDHA↓, PDK1↓, Akt↓, PTEN↑, Hif1a↓, Glycolysis↓, ROS↑, CHOP↑,
2289- Ba,  Rad,    Baicalein Inhibits the Progression and Promotes Radiosensitivity of Esophageal Squamous Cell Carcinoma by Targeting HIF-1A
- in-vitro, ESCC, KYSE150
TumCP↓, TumCMig↓, Glycolysis↓, cycD1↓, CDK4↓, ECAR↓, TumCCA↑, HK1↓, ALDH↓, ALDOA↓, PKM2↓, Hif1a↓,
2293- Ba,    Baicalein suppresses inflammation and attenuates acute lung injury by inhibiting glycolysis via HIF‑1α signaling
- in-vitro, Nor, MH-S - in-vivo, NA, NA
*Hif1a↓, *Glycolysis↓, *Inflam↓, *HK2↓, *PFK1↓, *PKM2↓,
2298- Ba,    Flavonoids Targeting HIF-1: Implications on Cancer Metabolism
- Review, Var, NA
TumCG↓, TumCP↓, Hif1a↓, VEGF↓, ChemoSen↑, Glycolysis↓, HK2↓, PDK1↓, LDHA↓, p‑Akt↓, PTEN↑,
2297- Ba,    Significance of flavonoids targeting PI3K/Akt/HIF-1α signaling pathway in therapy-resistant cancer cells – A potential contribution to the predictive, preventive, and personalized medicine
- Review, Var, NA
Glycolysis↓, Hif1a↓, PKM2↓, RadioS↑,
2620- Ba,    Natural compounds targeting glycolysis as promising therapeutics for gastric cancer: A review
- Review, GC, NA
Hif1a↓, HK2↓, LDHA↓, PDK1↓, p‑Akt↓, PTEN↑, GlucoseCon↓, lactateProd↓, Glycolysis↓,
2617- Ba,    Potential of baicalein in the prevention and treatment of cancer: A scientometric analyses based review
- Review, Var, NA
Ca+2↑, MMP2↓, MMP9↓, Vim↓, Snail↓, E-cadherin↑, Wnt↓, β-catenin/ZEB1↓, p‑Akt↓, p‑mTOR↓, NF-kB↓, i-ROS↑, Bcl-2↓, BAX↑, Cyt‑c↑, Casp3↑, Casp9↑, STAT3↓, IL6↓, MMP2↓, MMP9↓, NOTCH↓, PPARγ↓, p‑NRF2↓, HK2↓, LDHA↓, PDK1↓, Glycolysis↓, PTEN↑, Akt↓, Hif1a↓, MMP↓, VEGF↓, VEGFR2↓, TOP2↓, uPA↓, TIMP1↓, TIMP2↓, cMyc↓, TrxR↓, ASK1↑, Vim↓, ZO-1↑, E-cadherin↑, SOX2↓, OCT4↓, Shh↓, Smo↓, Gli1↓, N-cadherin↓, XIAP↓,
2616- Ba,    The Role of HK2 in Tumorigenesis and Development: Potential for Targeted Therapy with Natural Products
- Review, Var, NA
Glycolysis↓, HK2↓, LDHA↓, PDK1↓, PTEN↑,
2615- Ba,    The Multifaceted Role of Baicalein in Cancer Management through Modulation of Cell Signalling Pathways
- Review, Var, NA
*AntiCan↓, *Inflam↓, TumCP↓, NF-kB↓, PPARγ↑, TumCCA↑, JAK2↓, STAT3↓, TumCMig↓, Glycolysis↓, MMP2↓, MMP9↓, selectivity↑, VEGF↓, Hif1a↓, cMyc↓, ChemoSen↑, ROS↑, p‑mTOR↓, PTEN↑,
2391- Ba,    Scutellaria baicalensis and its flavonoids in the treatment of digestive system tumors
- Review, GC, NA
Hif1a↓, PKM2↓, RadioS↑, Glycolysis↓, PAK↓,
2707- BBR,    Berberine exerts its antineoplastic effects by reversing the Warburg effect via downregulation of the Akt/mTOR/GLUT1 signaling pathway
- in-vitro, Liver, HepG2 - in-vitro, BC, MCF-7
GLUT1↓, Akt↓, mTOR↓, ATP↓, GlucoseCon↓, TumCP↓, Warburg↓, selectivity↑, TumCCA↑, Glycolysis↓,
2708- BBR,    Berberine decelerates glucose metabolism via suppression of mTOR‑dependent HIF‑1α protein synthesis in colon cancer cells
- in-vitro, CRC, HCT116
TumCG↓, GlucoseCon↓, GLUT1↓, LDHA↓, HK2↓, Hif1a↓, mTOR↓, Glycolysis↓,
2709- BBR,    Berberine inhibits the glycolysis and proliferation of hepatocellular carcinoma cells by down-regulating HIF-1α
- in-vitro, HCC, HepG2
TumCP↓, TumCMig↓, TumCI↓, Apoptosis↑, Glycolysis↓, Hif1a↓, GLUT1↓, HK2↓, PKM2↓, LDHA↓,
2710- BBR,    Berberine inhibits the Warburg effect through TET3/miR-145/HK2 pathways in ovarian cancer cells
- in-vitro, Ovarian, SKOV3
Warburg↓, miR-145↑, HK2↓, TET3↑, Glycolysis↓, PKM2↓, GLUT1↓, LDH↓, PFK2↓, PDK1↓,
2686- BBR,    Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs
- Review, Nor, NA
Inflam↓, IL6↓, MCP1↓, COX2↓, PGE2↓, MMP2↓, MMP9↓, DNAdam↑, eff↝, Telomerase↓, Bcl-2↓, AMPK↑, ROS↑, MMP↓, ATP↓, p‑mTORC1↓, p‑S6K↓, ERK↓, PI3K↓, PTEN↑, Akt↓, Raf↓, MEK↓, Dose↓, Dose↑, selectivity↑, TumCCA↑, eff↑, EGFR↓, Glycolysis↓, Dose?, p27↑, CDK2↓, CDK4↓, cycD1↓, cycE↓, Bax:Bcl2↑, Casp3↑, Casp9↑, VEGFR2↓, ChemoSen↑, eff↑, eff↑, PGE2↓, JAK2↓, STAT3↓, CXCR4↓, CCR7↓, uPA↓, CSCs↓, EMT↓, Diff↓, CD133↓, Nestin↓, n-MYC↓, NOTCH↓, SOX2↓, Hif1a↓, VEGF↓, RadioS↑,
2335- BBR,    Chemoproteomics reveals berberine directly binds to PKM2 to inhibit the progression of colorectal cancer
- in-vitro, CRC, HT29 - in-vitro, CRC, HCT116 - in-vivo, NA, NA
PKM2↓, Glycolysis↓, p‑STAT3↓, Bcl-2↓, cycD1↓, TumCG↓, Ki-67↓, lactateProd↓, glucose↓,
943- BetA,    Betulinic acid suppresses breast cancer aerobic glycolysis via caveolin-1/NF-κB/c-Myc pathway
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
Glycolysis↓, lactateProd↓, GlucoseCon↓, ECAR↓, cMyc↓, LDHA↓, p‑PDK1↓, PDK1↓, Cav1↑, *Glycolysis↑, selectivity↑, OCR↓, OXPHOS↓,
2740- BetA,    Effects and mechanisms of fatty acid metabolism-mediated glycolysis regulated by betulinic acid-loaded nanoliposomes in colorectal cancer
- in-vitro, CRC, HCT116
TumCP↓, Glycolysis↓, HK2↓, PFK1↓, PKM2↓, ACSL1↓, CPT1A↓, FASN↓, FAO↓, GlucoseCon↓, lactateProd↓,
2729- BetA,    Betulinic acid in the treatment of tumour diseases: Application and research progress
- Review, Var, NA
ChemoSen↑, mt-ROS↑, STAT3↓, NF-kB↓, selectivity↑, *toxicity↓, eff↑, GRP78/BiP↑, MMP2↓, P90RSK↓, TumCI↓, EMT↓, MALAT1↓, Glycolysis↓, AMPK↑, Sp1/3/4↓, Hif1a↓, angioG↓, NF-kB↑, NF-kB↓, MMP↓, Cyt‑c↑, Casp9↑, Casp3↑, RadioS↑, PERK↑, CHOP↑, *toxicity↓,
2738- BetA,    Betulinic Acid Suppresses Breast Cancer Metastasis by Targeting GRP78-Mediated Glycolysis and ER Stress Apoptotic Pathway
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, BT549 - in-vivo, NA, NA
TumCI↓, TumCMig↓, Glycolysis↓, lactateProd↓, GRP78/BiP↑, ER Stress↑, PERK↑, p‑eIF2α↑, β-catenin/ZEB1↓, cMyc↓, ROS↑, angioG↓, Sp1/3/4↓, DNAdam↑, TOP1↓, TumMeta↓, MMP2↓, MMP9↓, N-cadherin↓, Vim↓, E-cadherin↑, EMT↓, LDHA↓, p‑PDK1↓, PDK1↓, ECAR↓, OCR↓, Hif1a↓, STAT3↓,
1416- Bos,    Anti-cancer properties of boswellic acids: mechanism of action as anti-cancerous agent
- Review, NA, NA
5LO↓, TumCCA↑, LC3B↓, PI3K↓, Akt↓, Glycolysis↓, AMPK↑, mTOR↓, Let-7↑, COX2↓, VEGF↓, CXCR4↓, MMP2↓, MMP9↓, HIF-1↓, angioG↓, TumCP↓, TumCMig↓, NF-kB↓,
1640- CA,  MET,    Caffeic Acid Targets AMPK Signaling and Regulates Tricarboxylic Acid Cycle Anaplerosis while Metformin Downregulates HIF-1α-Induced Glycolytic Enzymes in Human Cervical Squamous Cell Carcinoma Lines
- in-vitro, Cerv, SiHa
GLS↓, NADPH↓, ROS↑, TumCD↑, AMPK↑, Hif1a↓, GLUT1↓, GLUT3↓, HK2↓, PFK↓, PKM2↓, LDH↓, cMyc↓, BAX↓, cycD1↓, PDH↓, ROS↑, Apoptosis↑, eff↑, ACLY↓, FASN↓, Bcl-2↓, Glycolysis↓,
1261- CAP,    Capsaicin inhibits glycolysis in esophageal squamous cell carcinoma by regulating hexokinase‑2 expression
- in-vitro, ESCC, KYSE150
GlucoseCon↓, lactateProd↓, HK2↓, Glycolysis↓, PTEN↑, AKT1↓,
2393- Cela,    Celastrol mitigates inflammation in sepsis by inhibiting the PKM2-dependent Warburg effect
- in-vivo, Sepsis, NA - in-vitro, Nor, RAW264.7
OS↑, PKM2↓, Glycolysis↓, Warburg↓, Inflam↓, HMGB1↓, ALAT↓, AST↓, TNF-α↓, IL1β↓, IL6↓,
2398- CGA,    Polyphenol-rich diet mediates interplay between macrophage-neutrophil and gut microbiota to alleviate intestinal inflammation
- in-vivo, Col, NA
PKM2↓, Glycolysis↓, NLRP3↓, Inflam↓, HK2↓, PDK1↓, LDHA↓, GLUT1↓, ECAR↓,
1143- CHr,    Chrysin inhibited tumor glycolysis and induced apoptosis in hepatocellular carcinoma by targeting hexokinase-2
- in-vitro, HCC, HepG2 - in-vivo, NA, NA - in-vitro, HCC, HepG3 - in-vitro, HCC, HUH7
HK2↓, GlucoseCon↓, lactateProd↓, Glycolysis↓, Apoptosis↑,
2781- CHr,  PBG,    Chrysin a promising anticancer agent: recent perspectives
- Review, Var, NA
PI3K↓, Akt↓, mTOR↓, MMP9↑, uPA↓, VEGF↓, AR↓, Casp↑, TumMeta↓, TumCCA↑, angioG↓, BioAv↓, *hepatoP↑, *neuroP↑, *SOD↑, *GPx↑, *ROS↓, *Inflam↓, *Catalase↑, *MDA↓, ROS↓, BBB↑, Half-Life↓, BioAv↑, ROS↑, eff↑, ROS↑, ROS↑, lipid-P↑, ER Stress↑, NOTCH1↑, NRF2↓, p‑FAK↓, Rho↓, PCNA↓, COX2↓, NF-kB↓, PDK1↓, PDK3↑, GLUT1↓, Glycolysis↓, mt-ATP↓, Ki-67↓, cMyc↓, ROCK1↓, TOP1↓, TNF-α↓, IL1β↓, CycB↓, CDK2↓, EMT↓, STAT3↓, PD-L1↓, IL2↑,
2782- CHr,    Broad-Spectrum Preclinical Antitumor Activity of Chrysin: Current Trends and Future Perspectives
- Review, Var, NA - Review, Stroke, NA - Review, Park, NA
*antiOx↑, *Inflam↓, *hepatoP↑, *neuroP↑, *BioAv↓, *cardioP↑, *lipidLev↓, *RenoP↑, *TNF-α↓, *IL2↓, *PI3K↓, *Akt↓, *ROS↓, *cognitive↑, eff↑, cycD1↓, hTERT↓, VEGF↓, p‑STAT3↓, TumMeta↓, TumCP↓, eff↑, eff↑, IL1β↓, IL6↓, NF-kB↓, ROS↑, MMP↓, Cyt‑c↑, Apoptosis↑, ER Stress↑, Ca+2↑, TET1↑, Let-7↑, Twist↓, EMT↓, TumCCA↑, Casp3↑, Casp9↑, BAX↑, HK2↓, GlucoseCon↓, lactateProd↓, Glycolysis↓, SHP1↑, N-cadherin↓, E-cadherin↑, UPR↑, PERK↑, ATF4↑, eIF2α↑, RadioS↑, NOTCH1↑, NRF2↓, BioAv↑, eff↑,
1274- Cin,    Cinnamon bark extract suppresses metastatic dissemination of cancer cells through inhibition of glycolytic metabolism
- vitro+vivo, BC, MDA-MB-231
TumCI↓, G6PD↓, HK2↓, Glycolysis↓,
1576- Citrate,    Targeting citrate as a novel therapeutic strategy in cancer treatment
- Review, Var, NA
TCA↓, T-Cell↝, Glycolysis↓, PKM2↓, PFK2?, SDH↓, PDH↓, β-oxidation↓, CPT1A↓, FASN↑, Casp3↑, Casp2↑, Casp8↑, Casp9↑, cl‑PARP↑, Hif1a↓, GLUT1↓, angioG↓, Ca+2↓, ROS↓, eff↓, Dose↓, eff↑, Mcl-1↓, HK2↓, IGF-1R↓, PTEN↑, citrate↓, Dose∅, eff↑, eff↑, eff↑, eff↑,
1574- Citrate,    Citrate Suppresses Tumor Growth in Multiple Models through Inhibition of Glycolysis, the Tricarboxylic Acid Cycle and the IGF-1R Pathway
- in-vitro, Lung, A549 - in-vitro, Melanoma, WM983B - in-vivo, NA, NA
TumCG↓, eff↑, T-Cell↑, p‑IGF-1R↓, p‑Akt↓, PTEN↑, p‑eIF2α↑, OCR↓, ROS↓, ECAR∅, IL1↑, TNF-α↑, IL10↑, IGF-1R↓, eIF2α↑, PTEN↑, TCA↓, Glycolysis↓, selectivity↑, *toxicity∅, Dose∅,
1586- Citrate,    Extracellular Citrate Is a Trojan Horse for Cancer Cells
- in-vitro, Liver, HepG2
Dose?, ac‑H4↓, lipidDe↓, ACLY↓, selectivity↑, *ACLY∅, Glycolysis↓, NADH↓, OAA↑, other↑,
1577- Citrate,    Citric acid promotes SPARC release in pancreatic cancer cells and inhibits the progression of pancreatic tumors in mice on a high-fat diet
- in-vivo, PC, NA - in-vitro, PC, PANC1 - in-vitro, PC, PATU-8988 - in-vitro, PC, MIA PaCa-2
Apoptosis↑, TumCP↓, TumCG↑, SPARC↑, Glycolysis↓, OCR↓, pol-M1↑, pol-M2 MC↓, Weight∅, ATP↓, ECAR↓, mitResp↓, i-ATP↑, p65↓, i-Ca+2↑, eff↓,
1578- Citrate,    Understanding the Central Role of Citrate in the Metabolism of Cancer Cells and Tumors: An Update
- Review, Var, NA
TCA↑, FASN↑, Glycolysis↓, glucoNG↑, PFK1↓, PFK2↓, FBPase↑, TumCP↓, eff↑, ACLY↓, Dose↑, Casp3↑, Casp2↑, Casp8↑, Casp9↑, Bcl-xL↓, Mcl-1↓, IGF-1R↓, PI3K↓, Akt↓, mTOR↓, PTEN↑, ChemoSen↑, Dose?,
1579- Citrate,    Effect of Food Additive Citric Acid on The Growth of Human Esophageal Carcinoma Cell Line EC109
- in-vitro, ESCC, Eca109
TumCP↓, e-LDH↑, MMP↓, Ca+2?, PFK↓, Glycolysis↓,
1585- Citrate,    Sodium citrate targeting Ca2+/CAMKK2 pathway exhibits anti-tumor activity through inducing apoptosis and ferroptosis in ovarian cancer
- in-vitro, Ovarian, SKOV3 - in-vitro, Ovarian, A2780S - in-vitro, Nor, HEK293
Apoptosis↑, Ferroptosis↑, Ca+2↓, CaMKII ↓, Akt↓, mTOR↓, Hif1a↓, ROS↑, ChemoSen↑, Casp3↑, Casp9↑, BAX↑, Bcl-2↓, Cyt‑c↑, GlucoseCon↓, lactateProd↓, Pyruv↓, GLUT1↓, HK2↓, PFKP↓, Glycolysis↓, Hif1a↓, p‑Akt↓, p‑mTOR↓, Iron↑, lipid-P↑, MDA↑, ROS↑, H2O2↑, mtDam↑, GSH↓, GPx↓, GPx4↓, NADPH/NADP+↓, eff↓, FTH1↓, LC3‑Ⅱ/LC3‑Ⅰ↑, NCOA4↑, eff↓, TumCG↓,
1591- Citrate,    The biological significance of cancer: mitochondria as a cause of cancer and the inhibition of glycolysis with citrate as a cancer treatment
- Analysis, NA, NA
Glycolysis↓, PDK1↓, SDH↓,
1593- Citrate,    Citrate Induces Apoptotic Cell Death: A Promising Way to Treat Gastric Carcinoma?
- in-vitro, GC, BGC-823 - in-vitro, GC, SGC-7901
PFK↓, Glycolysis↓, tumCV↓, cl‑Casp3↑, cl‑PARP↑, Apoptosis↑, ATP↓, ChemoSen↑, Mcl-1↓, glucoNG↑, FBPase↑, OXPHOS↓, TCA↓, β-oxidation↓, HK2↓, PDH↓, ROS↑,
2305- CUR,    Mitochondrial targeting nano-curcumin for attenuation on PKM2 and FASN
- in-vitro, BC, MCF-7
BioAv↑, PKM2↓, FASN↓, Glycolysis↓,
2304- CUR,    Curcumin decreases Warburg effect in cancer cells by down-regulating pyruvate kinase M2 via mTOR-HIF1α inhibition
- in-vitro, Lung, H1299 - in-vitro, BC, MCF-7 - in-vitro, Cerv, HeLa - in-vitro, Pca, PC3 - in-vitro, Nor, HEK293
Glycolysis↓, GlucoseCon↓, lactateProd↓, PKM2↓, mTOR↓, Hif1a↓, selectivity↑, Dose↝, tumCV↓,
2307- CUR,    Cell-Type Specific Metabolic Response of Cancer Cells to Curcumin
- in-vitro, Colon, HT29 - in-vitro, Laryn, FaDu
PKM2↓, Warburg↓, mTOR↓, Hif1a↓, Glycolysis↓,
990- CUR,    Curcumin inhibits aerobic glycolysis and induces mitochondrial-mediated apoptosis through hexokinase II in human colorectal cancer cells in vitro
- in-vitro, CRC, HCT116 - in-vitro, CRC, HT-29
HK2↓, Glycolysis↓, Apoptosis↑,
1876- DCA,  Chemo,    In vitro cytotoxicity of novel platinum-based drugs and dichloroacetate against lung carcinoid cell lines
- in-vivo, Lung, H727
eff↑, TumCG↓, Glycolysis↓, mitResp↑,
1889- DCA,    A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth
- Review, Var, NA
PDKs↓, Glycolysis↓, mt-H2O2↑, Apoptosis↑, TumCP↓, TumCG↓, toxicity∅,
1885- DCA,    Role of SLC5A8, a plasma membrane transporter and a tumor suppressor, in the antitumor activity of dichloroacetate
- in-vitro, CRC, HCT116 - in-vitro, CRC, SW-620 - in-vitro, CRC, HT-29
SMCT1∅, eff↓, eff↑, eff↑, PDKs↓, MMP↓, Glycolysis↓, mitResp↑, ROS↑, eff↑,
1878- DCA,  5-FU,    Synergistic Antitumor Effect of Dichloroacetate in Combination with 5-Fluorouracil in Colorectal Cancer
- in-vitro, CRC, LS174T - in-vitro, CRC, LoVo - in-vitro, CRC, SW-620 - in-vitro, CRC, HT-29
tumCV↓, eff↑, PDKs↓, lactateProd↓, Glycolysis↓, mitResp↑, TumCCA↑, Bcl-2↓, BAX↑, Casp3↑,
1877- DCA,    Non-Hodgkin′s Lymphoma Reversal with Dichloroacetate
- Case Report, lymphoma, NA
Remission↑, p‑PDKs↓, Glycolysis↓, i-Ca+2↓, toxicity↓, Dose∅,
1875- DCA,    Dichloroacetate inhibits neuroblastoma growth by specifically acting against malignant undifferentiated cells
- in-vitro, neuroblastoma, NA - in-vivo, NA, NA
selectivity↑, AntiCan↑, TumVol↓, PDKs↓, mt-OXPHOS↑, MMP↓, Glycolysis↓, toxicity↓, Warburg↓, ROS↑, eff↑,
1854- dietFMD,    How Far Are We from Prescribing Fasting as Anticancer Medicine?
- Review, Var, NA
ChemoSideEff↓, ChemoSen↑, IGF-1↓, IGFBP1↑, adiP↑, glyC↓, E-cadherin↑, MMPs↓, Casp3↑, ROS↑, ATP↓, AMPK↑, mTOR↓, ROS↑, Glycolysis↓, NADPH↓, OXPHOS↝, eff↑, eff↑, *RAS↓, *MAPK↓, *PI3K↓, *Akt↓, eff↑, ROS↑, Akt↑, Casp3↑,
1861- dietFMD,  Chemo,    Fasting induces anti-Warburg effect that increases respiration but reduces ATP-synthesis to promote apoptosis in colon cancer models
- in-vitro, Colon, CT26 - in-vivo, NA, NA
selectivity↑, ChemoSen↑, BG↓, AminoA↓, Warburg↓, OCR↑, ATP↓, ROS↑, Apoptosis↑, GlucoseCon↓, PI3K↓, PTEN↑, GLUT1↓, GLUT2↓, HK2↓, PFK1↓, PKA↓, ATP:AMP↓, Glycolysis↓, lactateProd↓,
1863- dietFMD,  Chemo,    Effect of fasting on cancer: A narrative review of scientific evidence
- Review, Var, NA
eff↑, ChemoSideEff↓, ChemoSen↑, Insulin↓, HDAC↓, IGF-1↓, STAT5↓, BG↓, MAPK↓, HO-1↓, ATG3↑, Beclin-1↑, p62↑, SIRT1↑, LAMP2↑, OXPHOS↑, ROS↑, P53↑, DNAdam↑, TumCD↑, ATP↑, Treg lymp↓, M2 MC↓, CD8+↑, Glycolysis↓, GutMicro↑, GutMicro↑, Warburg↓, Dose↝,
1612- EA,    Negative Effect of Ellagic Acid on Cytosolic pH Regulation and Glycolytic Flux in Human Endometrial Cancer Cell
- in-vitro, EC, NA
NHE1↓, i-pH↓, ROS↓, GlucoseCon↓, NHE1↓, Glycolysis↓,
1605- EA,    Ellagic Acid and Cancer Hallmarks: Insights from Experimental Evidence
- Review, Var, NA
*BioAv↓, antiOx↓, Inflam↓, TumCP↓, TumCCA↑, cycD1↓, cycE↓, P53↑, P21↑, COX2↓, NF-kB↓, Akt↑, NOTCH↓, CDK2↓, CDK6↓, JAK↓, STAT3↓, EGFR↓, p‑ERK↓, p‑Akt↓, p‑STAT3↓, TGF-β↓, SMAD3↓, CDK6↓, Wnt/(β-catenin)↓, Myc↓, survivin↓, CDK8↓, PKCδ↓, tumCV↓, RadioS↑, eff↑, MDM2↓, XIAP↓, p‑RB1↓, PTEN↑, p‑FAK↓, Bax:Bcl2↑, Bcl-xL↓, Mcl-1↓, PUMA↑, NOXA↑, MMP↓, Cyt‑c↑, ROS↑, Ca+2↝, Endoglin↑, Diablo↑, AIF↑, iNOS↓, Casp9↑, Casp3↑, cl‑PARP↑, RadioS↑, Hif1a↓, HO-1↓, HO-2↓, SIRT1↓, selectivity↑, Dose∅, NHE1↓, Glycolysis↓, GlucoseCon↓, lactateProd↓, PDK1?, PDK1?, ECAR↝, COX1↓, Snail↓, Twist↓, cMyc↓, Telomerase↓, angioG↓, MMP2↓, MMP9↓, VEGF↓, Dose↝, PD-L1↓, eff↑, SIRT6↑, DNAdam↓,
989- EGCG,  Citrate,    In vitro and in vivo study of epigallocatechin-3-gallate-induced apoptosis in aerobic glycolytic hepatocellular carcinoma cells involving inhibition of phosphofructokinase activity
- in-vitro, HCC, NA - in-vivo, NA, NA
PFK↓, Glycolysis↓, lactateProd↓, GlucoseCon↓, TumCP↓, TumCCA↑, Casp3↑, cl‑PARP↑, Apoptosis↑, Casp8↑, Casp9↑, Cyt‑c↝, MMP↓, BAD↑, GLUT2↓, PKM2∅,
937- EGCG,    Metabolic Consequences of LDHA inhibition by Epigallocatechin Gallate and Oxamate in MIA PaCa-2 Pancreatic Cancer Cells
- in-vitro, Pca, MIA PaCa-2
lactateProd↓, Glycolysis↓, GlucoseCon↓, LDHA↓,
649- EGCG,  CUR,  PI,    Targeting Cancer Hallmarks with Epigallocatechin Gallate (EGCG): Mechanistic Basis and Therapeutic Targets
- Review, Var, NA
*BioEnh↑, EGFR↓, HER2/EBBR2↓, IGF-1↓, MAPK↓, ERK↓, RAS↓, Raf↓, NF-kB↓, p‑pRB↓, TumCCA↑, Glycolysis↓, Warburg↓, HK2↓, Pyruv↓,
694- EGCG,    Matcha green tea (MGT) inhibits the propagation of cancer stem cells (CSCs), by targeting mitochondrial metabolism, glycolysis and multiple cell signalling pathways
- in-vitro, BC, MCF-7
Glycolysis↓, GAPDH↓, ROS↑, OCR↓, ECAR↓, mTOR↓, OXPHOS↓,
2459- EGCG,    Epigallocatechin gallate inhibits human tongue carcinoma cells via HK2‑mediated glycolysis
- in-vitro, Tong, Tca8113 - in-vitro, Tong, TSCCa
EGFR↓, Akt↓, ERK↓, HK2↓, GlucoseCon↓, lactateProd↓, Glycolysis↓,
2309- EGCG,  Chemo,    Targeting Glycolysis with Epigallocatechin-3-Gallate Enhances the Efficacy of Chemotherapeutics in Pancreatic Cancer Cells and Xenografts
- in-vitro, PC, MIA PaCa-2 - in-vitro, Nor, HPNE - in-vitro, PC, PANC1 - in-vivo, NA, NA
TumCG↓, eff↑, ROS↑, ECAR↓, ChemoSen↑, selectivity↑, Glycolysis↓, PFK↓, PKA↓, HK2∅, LDHA∅, PFKP↓, PKM2↓, H2O2↑, TumW↓,
2310- EGCG,    Epigallocatechin-3-gallate downregulates PDHA1 interfering the metabolic pathways in human herpesvirus 8 harboring primary effusion lymphoma cells
- in-vitro, lymphoma, PEL
GLUT3↑, PDHA1↓, GDH↓, ROS↑, Glycolysis↓, OXPHOS↓,
2302- EGCG,    Flavonoids Targeting HIF-1: Implications on Cancer Metabolism
- Review, Var, NA
TumCP↓, Hif1a↓, LDHA↓, PFK↓, cardioP↑, Glycolysis↓, PKM2↓,
2422- EMD,    Anti-Cancer Effects of Emodin on HepG2 Cells as Revealed by 1H NMR Based Metabolic Profiling
- in-vitro, HCC, HepG2
HK2↓, PKM2↓, LDHA↓, Glycolysis↓, TumCCA↑, ROS↓, glut↓, Hif1a↓,
988- EMD,    Emodin Induced Necroptosis and Inhibited Glycolysis in the Renal Cancer Cells by Enhancing ROS
- in-vitro, RCC, NA
Necroptosis↑, p‑RIP1↑, MLKL↑, ROS↑, Glycolysis↓, GLUT1↓, PI3K↓, Akt↓,
1654- FA,    Molecular mechanism of ferulic acid and its derivatives in tumor progression
- Review, Var, NA
AntiCan↑, Inflam↓, RadioS↑, ROS↑, Apoptosis↑, TumCCA↑, TumCMig↑, TumCI↓, angioG↓, ChemoSen↑, ChemoSideEff↓, P53↑, cycD1↓, CDK4↓, CDK6↓, TumW↓, miR-34a↑, Bcl-2↓, Casp3↑, BAX↑, β-catenin/ZEB1↓, cMyc↓, Bax:Bcl2↑, SOD↓, GSH↓, LDH↓, ERK↑, eff↑, JAK2↓, STAT6↓, NF-kB↓, PYCR1↓, PI3K↓, Akt↓, mTOR↓, Ki-67↓, VEGF↓, FGFR1↓, EMT↓, CAIX↓, LC3II↑, p62↑, PKM2↓, Glycolysis↓, *BioAv↓,
2494- Fenb,    Oral Fenbendazole for Cancer Therapy in Humans and Animals
- Review, Var, NA
Glycolysis↓, GlucoseCon↓, ROS↑, Apoptosis↑, BioAv↓, eff↑, toxicity↓, BioAv↑, BioAv↑, hepatoP↓, eff↑,
2313- Flav,    Flavonoids against the Warburg phenotype—concepts of predictive, preventive and personalised medicine to cut the Gordian knot of cancer cell metabolism
- Review, Var, NA
Warburg↓, antiOx↑, angioG↓, Glycolysis↓, PKM2↓, PKM2:PKM1↓, β-catenin/ZEB1↓, cMyc↓, HK2↓, Akt↓, mTOR↓, GLUT1↓, Hif1a↓,
934- Gallo,    Galloflavin (CAS 568-80-9): a novel inhibitor of lactate dehydrogenase
- Analysis, NA, NA
LDH↓, Glycolysis↓, Apoptosis↑,
2512- H2,    Hydrogen Attenuates Allergic Inflammation by Reversing Energy Metabolic Pathway Switch
- in-vivo, asthmatic, NA
selectivity↑, lactateProd↓, ATP↑, HK2↓, PFK↓, Hif1a↓, PGC-1α↑, Glycolysis↓, OXPHOS↑, Dose↝,
2400- HCAs,    The Mixture of Ferulic Acid and P-Coumaric Acid Suppresses Colorectal Cancer through lncRNA 495810/PKM2 Mediated Aerobic Glycolysis
- in-vitro, CRC, NA - in-vivo, CRC, NA
PKM2↓, Glycolysis↓, TumCG↓,
960- HNK,    Honokiol Inhibits HIF-1α-Mediated Glycolysis to Halt Breast Cancer Growth
- vitro+vivo, BC, MCF-7 - vitro+vivo, BC, MDA-MB-231
OCR↑, ECAR↓, GlucoseCon↓, lactateProd↓, ATP↓, Glycolysis↓, Hif1a↓, GLUT1↓, HK2↓, PDK1↓, Apoptosis↑, LDHA↓,
2071- HNK,    Identification of senescence rejuvenation mechanism of Magnolia officinalis extract including honokiol as a core ingredient
- Review, Nor, HaCaT
*ROS↓, *antiOx↑, *AntiAge↑, *MMP↑, *ECAR↓, *Glycolysis↓, *PAR-2↓, *CXCL12↑, *BMAL1↑, *mt-ROS↓, *OXPHOS↓,
2178- itraC,    Itraconazole inhibits tumor growth via CEBPB-mediated glycolysis in colorectal cancer
- in-vivo, CRC, HCT116
TumCG↓, Glycolysis↓, CEBPB?, ENO1↓, LDHA↓, PKM2↓, GAPDH↓, ECAR↓, OCR↓,
1070- IVM,    Ivermectin accelerates autophagic death of glioma cells by inhibiting glycolysis through blocking GLUT4 mediated JAK/STAT signaling pathway activation
- vitro+vivo, GBM, NA
TumCG↓, LC3II↑, p62↓, ATP↓, Pyruv↓, GlucoseCon↑, HK2↓, PFK1↓, GLUT4↓, Glycolysis↓, JAK2↓, p‑STAT3↓, p‑STAT5↓,
2390- KaempF,    Kaempferol Can Reverse the 5-Fu Resistance of Colorectal Cancer Cells by Inhibiting PKM2-Mediated Glycolysis
- in-vitro, CRC, HCT8
eff↑, GlucoseCon↓, lactateProd↓, PKM2↓, Glycolysis↓, glucose↑,
2351- lamb,    Anti-Warburg effect via generation of ROS and inhibition of PKM2/β-catenin mediates apoptosis of lambertianic acid in prostate cancer cells
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3
proCasp3↓, proPARP↓, LDHA↓, Glycolysis↓, HK2↓, PKM2↓, lactateProd↓, p‑STAT3↓, cycD1↓, cMyc↓, β-catenin/ZEB1↓, p‑GSK‐3β↓, ROS↑, eff↓,
2453- LE,    The Promoting Role of HK II in Tumor Development and the Research Progress of Its Inhibitors
- Review, Var, NA
HK2↓, PI3K↓, Akt↓, TumCP↓, Glycolysis↓,
986- LT,  doxoR,    Luteolin as a glycolysis inhibitor offers superior efficacy and lesser toxicity of doxorubicin in breast cancer cells
- in-vitro, BC, 4T1 - in-vitro, BC, MCF-7
SOD↓, Catalase↓, Glycolysis↓,
2929- LT,    Loss of BRCA1 in the cells of origin of ovarian cancer induces glycolysis: A window of opportunity for ovarian cancer chemoprevention
- in-vitro, Ovarian, NA
HK2↓, Myc↓, Glycolysis↓,
3276- Lyco,    Lycopene modulates cellular proliferation, glycolysis and hepatic ultrastructure during hepatocellular carcinoma
- in-vivo, HCC, NA
G6PD↓, PCNA↓, cycD1↓, P21↑, Hif1a↓, Glycolysis↓,
2542- M-Blu,    In Vitro Methylene Blue and Carboplatin Combination Triggers Ovarian Cancer Cells Death
- in-vitro, Ovarian, OV1369 - in-vitro, Ovarian, OV1946 - in-vitro, Nor, ARPE-19
BioAv↝, TumCP↓, GlutaM↓, Warburg↓, OCR↑, Glycolysis↓, ATP↓, BioAv↝, ROS↑,
2545- M-Blu,    Reversing the Warburg Effect as a Treatment for Glioblastoma
- in-vitro, GBM, U87MG - NA, AD, NA - in-vitro, GBM, A172 - in-vitro, GBM, T98G
Warburg↓, OCR↑, lactateProd↓, TumCP↓, TumCCA↑, AMPK↑, ACC↓, Cyc↓, neuroP↑, Cyt‑c↝, Glycolysis↓, ECAR↓, TumCG↓, other↓,
2541- M-Blu,    Spectroscopic Study of Methylene Blue Interaction with Coenzymes and its Effect on Tumor Metabolism
- in-vivo, Var, NA
TumCG↓, Glycolysis↓, OXPHOS↑, ROS↑, OCR↑, GlucoseCon↑, lactateProd↓,
2540- M-Blu,    Alternative mitochondrial electron transfer for the treatment of neurodegenerative diseases and cancers: Methylene blue connects the dots
- Review, Var, NA - Review, AD, NA
*OCR↑, *Glycolysis↓, *GlucoseCon↑, neuroP↑, Warburg↓, mt-OXPHOS↑, TumCCA↑, TumCP↓, ROS⇅, *cognitive↑, *mTOR↓, *mt-antiOx↑, *memory↑, *BBB↑, *eff↝, *ECAR↓, eff↑, lactateProd↓, NADPH↓, OXPHOS↑, AMPK↑, selectivity↑,
995- MEL,    Melatonin Treatment Triggers Metabolic and Intracellular pH Imbalance in Glioblastoma
- vitro+vivo, GBM, NA
LDHA↓, MCT4↓, lactateProd↓, i-pH↓, ROS↑, ATP↓, TumCD↑, TumCCA↑, PDH↓, Glycolysis↓, GlucoseCon↓, TumCG↓,
994- MET,    Tumor metabolism destruction via metformin-based glycolysis inhibition and glucose oxidase-mediated glucose deprivation for enhanced cancer therapy
- in-vitro, Var, NA
Glycolysis↓, HK2↓, ATP↓, AMPK↑, P53↑, Warburg↓, Apoptosis↑,
2384- MET,    Integration of metabolomics and transcriptomics reveals metformin suppresses thyroid cancer progression via inhibiting glycolysis and restraining DNA replication
- in-vitro, Thyroid, BCPAP - in-vivo, NA, NA - in-vitro, Thyroid, TPC-1
Glycolysis↓, OXPHOS↑, tumCV↓, TumCI↓, TumCMig↓, EMT↓, Apoptosis↑, TumCCA↑, LDHA↓, PKM2↓, IDH1↑, TumCG↓,
2374- MET,    Metformin Induces Apoptosis and Downregulates Pyruvate Kinase M2 in Breast Cancer Cells Only When Grown in Nutrient-Poor Conditions
- in-vitro, BC, MCF-7 - in-vitro, BC, SkBr3 - in-vitro, BC, MDA-MB-231
eff↑, Apoptosis↑, Glycolysis↓, PKM2↓, mTOR↓, PARP↓,
2247- MF,    Effects of Pulsed Electromagnetic Field Treatment on Skeletal Muscle Tissue Recovery in a Rat Model of Collagenase-Induced Tendinopathy: Results from a Proteome Analysis
- in-vivo, Nor, NA
*Glycolysis↓, *LDHB↑, *NAD↑, *ATP↑, *antiOx↑, *ROS↑, *YAP/TEAD↑, *PGC-1α↑, *TCA↑, *FAO↑, *OXPHOS↑,
2245- MF,    Quantum based effects of therapeutic nuclear magnetic resonance persistently reduce glycolysis
- in-vitro, Nor, NIH-3T3
Warburg↓, Hif1a↓, *Hif1a∅, Glycolysis↓, *lactateProd↓, *ADP:ATP↓, Pyruv↓, ADP:ATP↓, *PPP↓, *mt-ROS↑, *ROS↓, RPM↑, *ECAR↓,
2260- MF,    Alternative magnetic field exposure suppresses tumor growth via metabolic reprogramming
- in-vitro, GBM, U87MG - in-vitro, GBM, LN229 - in-vivo, NA, NA
TumCP↓, TumCG↓, OS↑, ROS↑, SOD2↑, eff↓, ECAR↓, OCR↑, selectivity↑, *toxicity∅, TumVol↓, PGC-1α↑, OXPHOS↑, Glycolysis↓, PKM2↓,
1170- MushCha,    Chaga mushroom extract suppresses oral cancer cell growth via inhibition of energy metabolism
- in-vitro, Oral, HSC4
tumCV↓, TumCP↓, TumCCA↑, STAT3↓, Glycolysis↓, MMP↓, TumAuto↑, p38↑, NF-kB↑,
1271- NCL,    Niclosamide inhibits ovarian carcinoma growth by interrupting cellular bioenergetics
- vitro+vivo, Ovarian, SKOV3
Wnt/(β-catenin)↓, mTOR↓, STAT3↓, NF-kB↓, NOTCH↓, TumCG↓, Apoptosis↑, MEK↓, ERK↓, mitResp↓, Glycolysis↓, ROS↑, JNK↑,
946- Nimb,    Nimbolide retards T cell lymphoma progression by altering apoptosis, glucose metabolism, pH regulation, and ROS homeostasis
- in-vivo, NA, NA
Apoptosis↑, Bcl-2↓, P53↑, cl‑Casp3↑, Cyt‑c↑, ROS↑, SOD↓, Catalase↓, Glycolysis↓, GLUT3↓, LDHA↓, MCT1↓, NHE1↓, ATPase↓, CAIX↓,
991- OA,    Blockade of glycolysis-dependent contraction by oroxylin a via inhibition of lactate dehydrogenase-a in hepatic stellate cells
- in-vivo, NA, NA - in-vivo, Nor, NA
*Glycolysis↓, *GlucoseCon↓, *lactateProd↓, *ECAR↓, *HK2↓, *PFK↓, *PKM2↓, *LDHA↓,
968- OA,    Oroxylin A inhibits glycolysis-dependent proliferation of human breast cancer via promoting SIRT3-mediated SOD2 transcription and HIF1α destabilization
- vitro+vivo, BC, MDA-MB-231 - in-vitro, BC, MBT-2
Hif1a↓, SIRT3↑, SOD2↑, GlucoseCon↓, Glycolysis↓, TumCG↓,
2396- PACs,    PKM2 is the target of proanthocyanidin B2 during the inhibition of hepatocellular carcinoma
- in-vitro, HCC, HCCLM3 - in-vitro, HCC, SMMC-7721 cell - in-vitro, HCC, Bel-7402 - in-vitro, HCC, HUH7 - in-vitro, HCC, HepG2 - in-vitro, Nor, L02
TumCP↓, TumCCA↓, Apoptosis↑, GlucoseCon↓, lactateProd↓, PKM2↓, Glycolysis↓, HK2↓, PFK↓, OXPHOS↑, ChemoSen↑, HSP90↓, Hif1a↓,
2421- PB,    Sodium butyrate inhibits aerobic glycolysis of hepatocellular carcinoma cells via the c‐myc/hexokinase 2 pathway
- in-vitro, HCC, HCCLM3 - in-vivo, NA, NA - in-vitro, HCC, Bel-7402 - in-vitro, HCC, SMMC-7721 cell - in-vitro, Nor, L02
Glycolysis↓, Apoptosis↑, TumCP↓, lactateProd↓, GlucoseCon↓, HK2↓, ChemoSen↑, *toxicity↓, cMyc↓, PFK1↓, LDHA↓, cMyc↓, ChemoSen↑,
998- PB,    Phenyl butyrate inhibits pyruvate dehydrogenase kinase 1 and contributes to its anti-cancer effect
- in-vivo, NA, NA
p‑PDH↓, PDH↑, PDK1↓, HDAC↓, Glycolysis↓, MMP↓, Apoptosis↑,
1672- PBG,    The Potential Use of Propolis as an Adjunctive Therapy in Breast Cancers
- Review, BC, NA
ChemoSen↓, RadioS↑, Inflam↓, AntiCan↑, Dose∅, mtDam↑, Apoptosis?, OCR↓, ATP↓, ROS↑, ROS↑, LDH↓, TP53↓, Casp3↓, BAX↓, P21↓, ROS↑, eNOS↑, iNOS↑, eff↑, hTERT↓, cycD1↓, eff↑, eff↑, eff↑, eff↑, STAT3↓, TIMP1↓, IL4↓, IL10↓, OS↑, Dose∅, ER Stress↑, ROS↑, NF-kB↓, p65↓, MMP↓, TumAuto↑, LC3II↑, p62↓, TLR4↓, mtDam↑, LDH↓, ROS↑, Glycolysis↓, HK2↓, PFK↓, PKM2↓, LDH↓, IL10↓, HDAC8↓, eff↑, eff↑, P21↑,
1661- PBG,    Propolis: a natural compound with potential as an adjuvant in cancer therapy - a review of signaling pathways
- Review, Var, NA
JNK↓, ERK↓, Akt↓, NF-kB↓, FAK↓, MAPK↓, PI3K↓, Akt↓, P21↑, p27↑, TRAIL↑, BAX↑, P53↑, ERK↓, ChemoSen↑, RadioS↑, Glycolysis↓, HK2↓, PKM2↓, LDHA↓, PFK↓,
2382- PBG,    Integration with Transcriptomic and Metabolomic Analyses Reveals the In Vitro Cytotoxic Mechanisms of Chinese Poplar Propolis by Triggering the Glucose Metabolism in Human Hepatocellular Carcinoma Cells
- in-vitro, HCC, HepG2
TumCP↓, Glycolysis↓, GlucoseCon↓, lactateProd↓, GLUT1↓, GLUT2↓, LDHA↓, HK2↓, PKM2↓, PFK↓, Dose↝,
2381- PBG,    Chinese Poplar Propolis Inhibits MDA-MB-231 Cell Proliferation in an Inflammatory Microenvironment by Targeting Enzymes of the Glycolytic Pathway
- in-vitro, BC, MDA-MB-231
TumCP↓, TumCMig↓, TumCI↓, angioG↓, TNF-α↓, IL1β↓, IL6↓, NLRP3↓, Glycolysis↓, HK2↓, PFK↓, PKM2↓, LDHA↓, ROS↑, MMP↓,
2380- PBG,    Potential Strategies for Overcoming Drug Resistance Pathways Using Propolis and Its Polyphenolic/Flavonoid Compounds in Combination with Chemotherapy and Radiotherapy
- Review, Var, NA
Hif1a↓, Glycolysis↓, PKM2↓, LDHA↓, GLUT2↓, HK2↓, PFK1↓, PDK1↓, chemoP↓, radioP↑,
992- PL,    Piperlongumine based nanomedicine impairs glycolytic metabolism in triple negative breast cancer stem cells through modulation of GAPDH & FBP1
- in-vivo, BC, NA
EPR↓, Glycolysis↓, GAPDH↓, GSTP1/GSTπ↝, FBPase↑,
2948- PL,    The promising potential of piperlongumine as an emerging therapeutics for cancer
- Review, Var, NA
tumCV↓, TumCP↓, TumCI↓, angioG↓, EMT↓, TumMeta↓, *hepatoP↑, *lipid-P↓, *GSH↑, cardioP↑, CycB↓, cycD1↓, CDK2↓, CDK1↓, CDK4↓, CDK6↓, PCNA↓, Akt↓, mTOR↓, Glycolysis↓, NF-kB↓, IKKα↓, JAK1↓, JAK2↓, STAT3↓, ERK↓, cFos↓, Slug↓, E-cadherin↑, TOP2↓, P53↑, P21↑, Bcl-2↓, BAX↑, Casp3↑, Casp7↑, Casp8↑, p‑HER2/EBBR2↓, HO-1↑, NRF2↑, BIM↑, p‑FOXO3↓, NA↓, Sp1/3/4↓, cMyc↓, EGFR↓, survivin↓, cMET↓, NQO1↑, SOD2↑, TrxR↓, MDM2↓, p‑eIF2α↑, ATF4↑, CHOP↑, MDA↑, Ki-67↓, MMP9↓, Twist↓, SOX2↓, Nanog↓, OCT4↓, N-cadherin↓, Vim↓, Snail↓, TumW↓, TumCG↓, HK2↓, RB1↓, IL6↓, IL8↓, SOD1↑, RadioS↑, ChemoSen↑, toxicity↓, Sp1/3/4↓, GSH↓, SOD↑,
2946- PL,    Piperlongumine, a potent anticancer phytotherapeutic: Perspectives on contemporary status and future possibilities as an anticancer agent
- Review, Var, NA
ROS↑, GSH↓, DNAdam↑, ChemoSen↑, RadioS↑, BioEnh↑, selectivity↑, BioAv↓, eff↑, p‑Akt↓, mTOR↓, GSK‐3β↓, β-catenin/ZEB1↓, HK2↓, Glycolysis↓, Cyt‑c↑, Casp9↑, Casp3↑, Casp7↑, cl‑PARP↑, TrxR↓, ER Stress↑, ATF4↝, CHOP↑, Prx4↑, NF-kB↓, cycD1↓, CDK4↓, CDK6↓, p‑RB1↓, RAS↓, cMyc↓, TumCCA↑, selectivity↑, STAT3↓, NRF2↑, HO-1↑, PTEN↑, P-gp↓, MDR1↓, MRP1↓, survivin↓, Twist↓, AP-1↓, Sp1/3/4↓, STAT1↓, STAT6↓, SOX4↑, XBP-1↑, P21↑, eff↑, Inflam↓, COX2↓, IL6↓, MMP9↓, TumMeta↓, TumCI↓, ICAM-1↓, CXCR4↓, VEGF↓, angioG↓, Half-Life↝, BioAv↑,
2409- PS,    Pterostilbene Induces Pyroptosis in Breast Cancer Cells through Pyruvate Kinase 2/Caspase-8/Gasdermin C Signaling Pathway
- in-vitro, BC, EMT6 - in-vitro, BC, 4T1 - in-vitro, Nor, HC11
Pyro↑, Glycolysis↓, *toxicity∅, selectivity↑, GSDMC↑, PKM2↓, PKM1↑, GlucoseCon↓, lactateProd↓, ATP↓, TumCG↓,
1201- QC,    Quercetin: a silent retarder of fatty acid oxidation in breast cancer metastasis through steering of mitochondrial CPT1
- in-vivo, BC, NA
mitResp↓, Glycolysis↓, ATP↓, ROS↑, GSH↓, TumMeta↓, Apoptosis↑, FAO↓,
910- QC,    The Anti-Cancer Effect of Quercetin: Molecular Implications in Cancer Metabolism
tumCV↓, Apoptosis↑, PI3k/Akt/mTOR↓, Wnt/(β-catenin)↓, MAPK↝, ERK↝, TumCCA↑, H2O2↑, ROS↑, TumAuto↑, MMPs↓, P53↑, Casp3↑, Hif1a↓, cFLIP↓, IL6↓, IL10↓, lactateProd↓, Glycolysis↓, PKM2↓, GLUT1↓, COX2↓, VEGF↓, OCR↓, ECAR↓, STAT3↓, MMP2↓, MMP9:TIMP1↓, mTOR↓,
2300- QC,    Flavonoids Targeting HIF-1: Implications on Cancer Metabolism
- Review, Var, NA
AntiTum↑, Hif1a↓, *Hif1a↑, Glycolysis↓, HK2↓, PDK3↓, PFKP?,
2342- QC,    Quercetin Inhibits the Proliferation of Glycolysis-Addicted HCC Cells by Reducing Hexokinase 2 and Akt-mTOR Pathway
- in-vitro, HCC, Bel-7402 - in-vitro, HCC, SMMC-7721 cell - in-vivo, NA, NA
TumCP↓, HK2↓, Akt↓, mTOR↓, GlucoseCon↓, lactateProd↓, Glycolysis↓,
2344- QC,    Quercetin: A natural solution with the potential to combat liver fibrosis
- Review, Nor, NA
*HK2↓, *PFKP↓, *PKM2↓, *hepatoP↑, *ALAT↓, *AST↓, *Glycolysis↓, *lactateProd↓, *GlucoseCon↓, *CXCL1↓, *Inflam↓,
2341- QC,    Quercetin suppresses the mobility of breast cancer by suppressing glycolysis through Akt-mTOR pathway mediated autophagy induction
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
MMP2↓, MMP9↓, VEGF↓, Glycolysis↓, lactateProd↓, PKM2↓, GLUT1↓, LDHA↓, TumAuto↑, Akt↓, mTOR↓, TumMeta↓, MMP3↓, eff↓, GlucoseCon↓, lactateProd↓, TumAuto↑, LC3B-II↑,
2340- QC,    Oral Squamous Cell Carcinoma Cells with Acquired Resistance to Erlotinib Are Sensitive to Anti-Cancer Effect of Quercetin via Pyruvate Kinase M2 (PKM2)
- in-vitro, OS, NA
TumCG↓, GlucoseCon↓, TumCI↓, GLUT1↓, PKM2↓, LDHA↓, Glycolysis↓, lactateProd↓, HK2↓, eff↑,
3374- QC,    Therapeutic effects of quercetin in oral cancer therapy: a systematic review of preclinical evidence focused on oxidative damage, apoptosis and anti-metastasis
- Review, Oral, NA - Review, AD, NA
α-SMA↓, α-SMA↑, TumCP↓, tumCV↓, TumVol↓, TumCI↓, TumMeta↓, TumCMig↓, ROS↑, Apoptosis↑, BioAv↓, *neuroP↑, *antiOx↑, *Inflam↓, *Aβ↓, *cardioP↑, MMP↓, Cyt‑c↑, MMP2↓, MMP9↓, EMT↓, MMPs↓, Twist↓, Slug↓, Ca+2↑, AIF↑, Endon↑, P-gp↓, LDH↑, HK2↓, PKA↓, Glycolysis↓, GlucoseCon↓, lactateProd↓, GRP78/BiP↑, Casp12↑, CHOP↑,
993- RES,    Resveratrol reverses the Warburg effect by targeting the pyruvate dehydrogenase complex in colon cancer cells
- in-vitro, CRC, Caco-2 - in-vivo, Nor, HCEC 1CT
TumCG↓, Glycolysis↓, PPP↓, ATP↑, PDH↑, Ca+2↝, TumCP↓, lactateProd↓, OCR↑, ECAR↓, *ECAR∅, *other?, cycE↑, cycA1↑, TumCCA↑, cycD1↑, OXPHOS↑,
2332- RES,    Resveratrol’s Anti-Cancer Effects through the Modulation of Tumor Glucose Metabolism
- Review, Var, NA
Glycolysis↓, GLUT1↓, PFK1↓, Hif1a↓, ROS↑, PDH↑, AMPK↑, TumCG↓, TumCI↓, TumCP↓, p‑NF-kB↓, SIRT1↑, SIRT3↑, LDH↓, PI3K↓, mTOR↓, PKM2↓, R5P↝, G6PD↓, TKT↝, talin↓, HK2↓, GRP78/BiP↑, GlucoseCon↓, ER Stress↑, Warburg↓, PFK↓,
2441- RES,    Anti-Cancer Properties of Resveratrol: A Focus on Its Impact on Mitochondrial Functions
- Review, Var, NA
*toxicity↓, *BioAv↝, *Dose↝, *hepatoP↑, *neuroP↑, *AntiAg↑, *COX2↓, *antiOx↑, *ROS↓, *ROS↑, PI3K↓, Akt↓, NF-kB↓, Wnt↓, β-catenin/ZEB1↓, NRF2↑, GPx↑, HO-1↑, BioEnh?, PTEN↑, ChemoSen↑, eff↑, mt-ROS↑, Warburg↓, Glycolysis↓, GlucoseCon↓, GLUT1↓, lactateProd↓, HK2↓, EGFR↓, cMyc↓, ROS↝, MMPs↓, MMP7↓, survivin↓, TumCP↓, TumCMig↓, TumCI↓,
2440- RES,    Resveratrol inhibits Hexokinases II mediated glycolysis in non-small cell lung cancer via targeting Akt signaling pathway
- in-vitro, Lung, H460 - in-vivo, Lung, NA - in-vitro, Lung, H1650 - in-vitro, Lung, HCC827
AntiTum↑, Glycolysis↓, HK2↓, EGFR↓, Akt↓, ERK↓, GlucoseCon↓, lactateProd↓, TumCG↓, Ki-67↓,
2439- RES,    By reducing hexokinase 2, resveratrol induces apoptosis in HCC cells addicted to aerobic glycolysis and inhibits tumor growth in mice
- in-vitro, HCC, HCCLM3 - in-vitro, Nor, L02 - in-vitro, HCC, SMMC-7721 cell - in-vitro, HCC, Bel-7402 - in-vitro, HCC, HUH7
HK2↓, ChemoSen↑, other↑, Glycolysis↓, lactateProd↓, TumCP↓, Casp3↑, cl‑PARP↑, PKM2↓,
3055- RES,    Resveratrol and Tumor Microenvironment: Mechanistic Basis and Therapeutic Targets
- Review, Var, NA
BioAv↓, BioAv↓, Dose↑, eff↑, eff↑, Dose↑, BioAv↑, ROS↑, MMP↓, P21↑, p27↑, TumCCA↑, ChemoSen↑, COX2↓, 5LO↓, VEGF↓, IL1↓, IL6↓, IL8↓, AR↓, PSA↓, MAPK↓, Hif1a↓, Glycolysis↓, miR-21↓, PTEN↑, Half-Life↝, *IGF-1↓, *IGFBP3↑, Half-Life↓,
3036- RosA,    Anti-Warburg effect of rosmarinic acid via miR-155 in colorectal carcinoma cells
- in-vitro, CRC, HCT8 - in-vitro, CRC, HCT116 - in-vitro, CRC, LS174T
GlucoseCon↓, lactateProd↓, Hif1a↓, Inflam↓, miR-155↓, STAT3↓, Glycolysis↓, IL6↓, Warburg↓,
3195- SFN,    AKT1/HK2 Axis-mediated Glucose Metabolism: A Novel Therapeutic Target of Sulforaphane in Bladder Cancer
- in-vitro, Bladder, UMUC3
ATP↓, Glycolysis↓, OXPHOS↓, HK2↓, PDH↓, AKT1↓, p‑Akt↓,
2403- SFN,    Reversal of the Warburg phenomenon in chemoprevention of prostate cancer by sulforaphane
- in-vitro, Pca, LNCaP - in-vitro, Pca, 22Rv1 - in-vitro, Pca, PC3 - in-vivo, NA, NA
ECAR↓, HK2↓, PKM2↓, LDHA↓, Glycolysis↓, Warburg↓,
2404- SFN,    Prostate cancer chemoprevention by sulforaphane in a preclinical mouse model is associated with inhibition of fatty acid metabolism
- in-vitro, Pca, LNCaP - in-vitro, Pca, 22Rv1 - in-vivo, NA, NA
ACC1↓, FASN↓, CPT1A↓, β-oxidation↓, SREBP1?, HK2↓, PKM2↓, LDHA↓, Glycolysis↓,
2448- SFN,    Sulforaphane and bladder cancer: a potential novel antitumor compound
- Review, Bladder, NA
Apoptosis↑, TumCG↓, TumCI↓, TumMeta↓, glucoNG↓, ChemoSen↑, TumCCA↑, Casp3↑, Casp7↑, cl‑PARP↑, survivin↓, EGFR↓, HER2/EBBR2↓, ATP↓, Glycolysis↓, mt-OXPHOS↓, AKT1↓, HK2↓, Hif1a↓, ROS↑, NRF2↑, EMT↓, COX2↓, MMP2↓, MMP9↓, Zeb1↓, Snail↓, HDAC↓, HATs↓, MMP↓, Cyt‑c↓, Shh↓, Smo↓, Gli1↓, BioAv↝, BioAv↝, Dose↝,
2405- SFN,    Sulforaphane Targets the TBX15/KIF2C Pathway to Repress Glycolysis and Cell Proliferation in Gastric Carcinoma Cells
- in-vitro, GC, SGC-7901 - in-vitro, GC, BGC-823
TumCP↓, Glycolysis↓, TBX15↑, GlucoseCon↓, lactateProd↓, tumCV↓, PKM2↓, KIF2C↓,
2446- SFN,  CAP,    The Molecular Effects of Sulforaphane and Capsaicin on Metabolism upon Androgen and Tip60 Activation of Androgen Receptor
- in-vitro, Pca, LNCaP
AR↓, Bcl-xL↓, TumCP↓, Glycolysis↓, HK2↓, PKA↓, Hif1a↓, PSA↓, ECAR↓, BioAv↑, BioAv↓, *toxicity↓,
2406- SFN,    Sulforaphane and Its Protective Role in Prostate Cancer: A Mechanistic Approach
- Review, Pca, NA
HK2↓, PKM2↓, LDHA↓, Glycolysis↓, LAMP2↑, Hif1a↓, DNAdam↓, DNArepair↓, Dose↝,
1734- SFN,    Sulforaphane Inhibits Nonmuscle Invasive Bladder Cancer Cells Proliferation through Suppression of HIF-1α-Mediated Glycolysis in Hypoxia
- in-vitro, Bladder, RT112
selectivity↑, TumCP↓, Glycolysis↓, Hif1a↓,
1484- SFN,    Sulforaphane’s Multifaceted Potential: From Neuroprotection to Anticancer Action
- Review, Var, NA - Review, AD, NA
neuroP↑, AntiCan↑, NRF2↑, HDAC↓, eff↑, *ROS↓, neuroP↑, HDAC↓, *toxicity∅, BioAv↑, eff↓, cycD1↓, CDK4↓, p‑RB1↓, Glycolysis↓, miR-30a-5p↑, TumCCA↑, TumCG↓, TumMeta↓, eff↑, ChemoSen↑, RadioS↑, CardioT↓, angioG↓, Hif1a↓, VEGF↓, *BioAv?, *Half-Life∅,
1452- SFN,    Sulforaphane Suppresses the Nicotine-Induced Expression of the Matrix Metalloproteinase-9 via Inhibiting ROS-Mediated AP-1 and NF-κB Signaling in Human Gastric Cancer Cells
- in-vitro, GC, AGS
MMP9↓, p38↓, ERK↓, AP-1↓, ROS↓, NF-kB↓, TumCI↓, MMP9↓, HDAC↓, Glycolysis↓, Hif1a↓, *memory↑, *cognitive↑,
1481- SFN,  docx,    Combination of Low-Dose Sulforaphane and Docetaxel on Mitochondrial Function and Metabolic Reprogramming in Prostate Cancer Cell Lines
- in-vitro, Pca, LNCaP - in-vitro, Pca, PC3
ChemoSen↑, Casp3↑, ROS↑, Casp8↑, Cyt‑c↑, Glycolysis↓, GSH↓, GSH/GSSG↓, *toxicity↓,
1140- SIL,    Silibinin-mediated metabolic reprogramming attenuates pancreatic cancer-induced cachexia and tumor growth
- in-vitro, PC, AsPC-1 - in-vivo, PC, NA - in-vitro, PC, MIA PaCa-2 - in-vitro, PC, PANC1 - in-vitro, PC, Bxpc-3
TumCG↓, Glycolysis↓, cMyc↓, STAT3↓, TumCP↓, Weight∅, Strength↑, DNAdam↑, Casp3↑, Casp9↑, GLUT1↓, HK2↓, LDHA↓, GlucoseCon↓, lactateProd↓, PPP↓, Ki-67↓, p‑STAT3↓, cachexia↓,
1001- SIL,    Silibinin down-regulates PD-L1 expression in nasopharyngeal carcinoma by interfering with tumor cell glycolytic metabolism
- in-vitro, NA, NA
TumCG↓, Glycolysis↓, OXPHOS↑, LDHA↓, lactateProd↓, i-citrate↑, Hif1a↓, PD-L1↓,
2410- SIL,    Autophagy activated by silibinin contributes to glioma cell death via induction of oxidative stress-mediated BNIP3-dependent nuclear translocation of AIF
- in-vitro, GBM, U87MG - in-vitro, GBM, U251 - in-vivo, NA, NA
TumAuto↑, ATP↓, Glycolysis↓, H2O2↑, P53↑, GSH↓, xCT↓, BNIP3↝, MMP↑, mt-ROS↑, mtDam↑, HK2↓, PFKP↓, PKM2↓, TumCG↓,
2362- SK,    RIP1 and RIP3 contribute to shikonin-induced glycolysis suppression in glioma cells via increase of intracellular hydrogen peroxide
- in-vitro, GBM, U87MG - in-vivo, GBM, NA - in-vitro, GBM, U251
RIP1↑, RIP3↑, Glycolysis↓, G6PD↓, HK2↓, PKM2↓, H2O2↑, GSH↓, ROS↑,
2359- SK,    Regulating lactate-related immunometabolism and EMT reversal for colorectal cancer liver metastases using shikonin targeted delivery
- in-vivo, Liver, NA
TumCG↓, PKM2↓, EMT↓, TGF-β↓, Glycolysis↓, lactateProd↓, ATP↓,
2357- SK,    GTPBP4 promotes hepatocellular carcinoma progression and metastasis via the PKM2 dependent glucose metabolism
- Study, HCC, NA - in-vivo, NA, NA
AntiTum↑, GTPBP4↓, PKM2↓, lactateProd↓, GlucoseCon↓, Glycolysis↓, E-cadherin↑, TumCG↓,
2356- SK,    ESM1 enhances fatty acid synthesis and vascular mimicry in ovarian cancer by utilizing the PKM2-dependent warburg effect within the hypoxic tumor microenvironment
- in-vitro, Ovarian, CaOV3 - in-vitro, Ovarian, OV90 - in-vivo, NA, NA
PKM2↓, Glycolysis↓, FASN↓, lactateProd↓, Warburg↓, TumCG↓, VM↓,
2370- SK,    The role of pyruvate kinase M2 in anticancer therapeutic treatments
- Review, Var, NA
Glycolysis↓, PKM2↓, EGFR↓, PI3K↓, p‑Akt↓, Hif1a↓,
2415- SK,    Shikonin induces programmed death of fibroblast synovial cells in rheumatoid arthritis by inhibiting energy pathways
- in-vivo, Arthritis, NA
Apoptosis?, TumAuto↑, ROS↑, ATP↓, Glycolysis↓, PI3K↓, Akt↓, mTOR↓, *Apoptosis↓, *Inflam↓, *TNF-α↓, *IL6↓, *IL8↓, *IL10↓, *IL17↓, *hepatoP↑, *RenoP↑, PKM2↓, GLUT1↓, HK2↓,
2418- SK,    Experimental Study of Hepatocellular Carcinoma Treatment by Shikonin Through Regulating PKM2
- in-vitro, HCC, SMMC-7721 cell - in-vitro, HCC, HUH7 - in-vitro, HCC, HepG2
tumCV↓, GlucoseCon↓, lactateProd↓, ChemoSen↑, PKM2↓, Glycolysis↓,
2419- SK,    Regulation of glycolysis and the Warburg effect in wound healing
- in-vivo, Nor, NA
Glycolysis↓, GLUT1↓, GLUT3↓, HK2↓, HK1↓, PFK1↓, PFK2↓, PKM2↓, lactateProd↓, GlucoseCon↓,
2470- SK,    PKM2/PDK1 dual-targeted shikonin derivatives restore the sensitivity of EGFR-mutated NSCLC cells to gefitinib by remodeling glucose metabolism
- in-vitro, Lung, H1299
PKM2↓, PDK1↓, Glycolysis↓,
3041- SK,    Promising Nanomedicines of Shikonin for Cancer Therapy
- Review, Var, NA
Glycolysis↓, TAMS↝, BioAv↓, Half-Life↝, P21↑, ERK↓, ROS↑, GSH↓, MMP↓, TrxR↓, MMP13↓, MMP2↓, MMP9↓, SIRT2↑, Hif1a↓, PKM2↓, TumCP↓, TumMeta↓, TumCI↓,
3045- SK,    Cutting off the fuel supply to calcium pumps in pancreatic cancer cells: role of pyruvate kinase-M2 (PKM2)
- in-vitro, PC, MIA PaCa-2
ECAR↓, Glycolysis↓, ATP↓, PKM2↓, TumCMig↓, Ca+2↑, GlucoseCon↓, lactateProd↓, MMP↓, ROS↑,
2192- SK,    Shikonin Inhibits Tumor Growth of ESCC by suppressing PKM2 mediated Aerobic Glycolysis and STAT3 Phosphorylation
- in-vitro, ESCC, KYSE-510 - in-vitro, ESCC, Eca109 - in-vivo, NA, NA
TumCP↓, Glycolysis↓, GlucoseCon↓, lactateProd↓, PKM2↓, p‑PKM2↓, p‑STAT3↓, GLUT1↓, HK2↓, TumW↓,
2187- SK,  VitK3,    Shikonin, vitamin K3 and vitamin K5 inhibit multiple glycolytic enzymes in MCF-7 cells
- in-vitro, BC, MCF-7
Glycolysis↓, PKM2↓,
2186- SK,    Shikonin differentially regulates glucose metabolism via PKM2 and HIF1α to overcome apoptosis in a refractory HCC cell line
- in-vitro, HCC, HepG2 - in-vitro, HCC, HCCLM3
Glycolysis↓, PKM2↓, Apoptosis↑, ROS↑, OXPHOS⇅, eff↓,
2185- SK,    Shikonin Inhibits Tumor Growth in Mice by Suppressing Pyruvate Kinase M2-mediated Aerobic Glycolysis
- in-vitro, Lung, LLC1 - in-vitro, Melanoma, B16-BL6 - in-vivo, NA, NA
Glycolysis↓, GlucoseCon↓, lactateProd↓, PKM2↓, selectivity↑, Warburg↓, TumVol↓, TumW↓,
2182- SK,  Cisplatin,    Shikonin inhibited glycolysis and sensitized cisplatin treatment in non-small cell lung cancer cells via the exosomal pyruvate kinase M2 pathway
- in-vitro, Lung, A549 - in-vitro, Lung, PC9 - in-vivo, NA, NA
tumCV↓, TumCP↓, TumCI↓, TumCMig↓, Apoptosis↑, PKM2↓, Glycolysis↓, GlucoseCon↓, lactateProd↓, ChemoSen↑, TumVol↓, TumW↓, GLUT1↓,
2181- SK,    Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2
- in-vitro, BC, MCF-7 - in-vitro, Lung, A549 - in-vitro, Cerv, HeLa
Glycolysis↓, lactateProd↓, GlucoseCon↓, PKM2↓, LDH∅,
2200- SK,    Shikonin inhibits the growth of anaplastic thyroid carcinoma cells by promoting ferroptosis and inhibiting glycolysis
- in-vitro, Thyroid, CAL-62 - in-vitro, Thyroid, 8505C
NF-kB↓, GPx4↓, TrxR1↓, PKM2↓, GLUT1↓, Glycolysis↓, Ferroptosis↑, GlucoseCon↓, lactateProd↓, ROS↑,
2196- SK,    Research progress in mechanism of anticancer action of shikonin targeting reactive oxygen species
- Review, Var, NA
*ALAT↓, *AST↓, *Inflam?, *EMT↑, ROS?, TrxR1↓, PERK↑, eIF2α↑, ATF4↑, CHOP↑, IRE1↑, JNK↑, eff↝, DR5↑, Glycolysis↓, PKM2↓, ChemoSen↑, GPx4↓, HO-1↑,
2125- TQ,    Thymoquinone Selectively Kills Hypoxic Renal Cancer Cells by Suppressing HIF-1α-Mediated Glycolysis
- in-vitro, RCC, RCC4 - in-vitro, RCC, Caki-1
Hif1a↓, eff↝, uPAR↓, VEGF↓, CAIX↓, PDK1↓, GLUT1↓, LDHA↓, Glycolysis↓, e-lactateProd↓, i-ATP↓,
3431- TQ,    PI3K-AKT Pathway Modulation by Thymoquinone Limits Tumor Growth and Glycolytic Metabolism in Colorectal Cancer
- in-vitro, CRC, HCT116 - in-vitro, CRC, SW48
Glycolysis↓, Warburg↓, HK2↓, ATP↓, NADPH↓, PI3K↓, Akt↓, TumCP↓, E-cadherin↑, N-cadherin↓, Hif1a↓, PKM2↓, GlucoseCon↓, lactateProd↓, EMT↓,
2454- Trip,    Natural product triptolide induces GSDME-mediated pyroptosis in head and neck cancer through suppressing mitochondrial hexokinase-ΙΙ
- in-vitro, HNSCC, HaCaT - in-vivo, NA, NA
GSDME-N↑, Pyro↑, cMyc↓, HK2↓, BAD↑, BAX↑, Casp3↑, NRF2↓, xCT↓, ROS↑, eff↑, Glycolysis↓, GlucoseCon↓, lactateProd↓, ATP↓, xCT↓, eff↑,
2413- TTT,    Tumor treating fields (TTFields) impairs aberrant glycolysis in glioblastoma as evaluated by [18F]DASA-23, a non-invasive probe of pyruvate kinase M2 (PKM2) expression
- in-vitro, GBM, U87MG
PKM2↓, Glycolysis↓, OXPHOS↑,
2350- UA,    Ursolic acid-mediated changes in glycolytic pathway promote cytotoxic autophagy and apoptosis in phenotypically different breast cancer cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
Akt↓, Glycolysis↓, HK2↓, PKM2↓, ATP↓, lactateProd↓, AMPK↑, TumAuto↑, Apoptosis↑, ERK↓, MMP↓, NO↑, ROS↑, DNAdam↑,
942- UA,    Ursolic Acid Inhibits Breast Cancer Metastasis by Suppressing Glycolytic Metabolism via Activating SP1/Caveolin-1 Signaling
- vitro+vivo, BC, MCF-7 - in-vitro, BC, MDA-MB-231
Cav1↑, Glycolysis↓, cMyc↓, LDHA↓, Nrf1↓, PGC-1α↓, Sp1/3/4↑, TumCG↓,
3107- VitC,    Repurposing Vitamin C for Cancer Treatment: Focus on Targeting the Tumor Microenvironment
- Review, Var, NA
Risk↓, *ROS↓, ROS↑, VEGF↓, COX2↓, ER Stress↑, IRE1↑, JNK↑, CHOP↑, Hif1a↓, eff↑, Glycolysis↓, MMPs↓, TumMeta↓, YAP/TEAD↓, eff↑, TET1↑,
3140- VitC,    Vitamin-C-dependent downregulation of the citrate metabolism pathway potentiates pancreatic ductal adenocarcinoma growth arrest
- in-vitro, PC, MIA PaCa-2 - in-vitro, Nor, HEK293
citrate↓, FASN↓, ACLY↓, LDH↓, Glycolysis↓, Warburg↓, PDK1↓, GLUT1↓, LDHA↓, ECAR↓, PDH↑, eff↑,
3145- VitC,    Vitamin C inhibits the growth of colorectal cancer cell HCT116 and reverses the glucose‐induced oncogenic effect by downregulating the Warburg effect
- in-vitro, CRC, HCT116
Warburg↓, TumCG↓, Glycolysis↓, GlucoseCon↓, ATP↓, lactateProd↓, selectivity↑, GLUT1↓, PKM2↓, LDHA↓, mTOR↓,
3143- VitC,  ATO,    Vitamin C enhances the sensitivity of osteosarcoma to arsenic trioxide via inhibiting aerobic glycolysis
- in-vitro, OS, NA
TumCP↓, TumCMig↓, TumCI↓, eff↑, Glycolysis↓, lactateProd↓, ATP↓, PGK1↓, PGM1↓, LDHA↓,
3141- VitC,    High-dose Vitamin C inhibits PD-L1 expression by activating AMPK in colorectal cancer
- in-vitro, CRC, HCT116
Glycolysis↓, eff↑, PD-L1↓, AMPK↑, HK2↓, NF-kB↓, Warburg↓, tumCV↓, GLUT1↓, PKM2↓, LDHA↓, CD4+↑, CD8+↑,
2369- VitD3,    Long Non-coding RNA MEG3 Activated by Vitamin D Suppresses Glycolysis in Colorectal Cancer via Promoting c-Myc Degradation
- in-vitro, CRC, DLD1 - in-vitro, CRC, RKO
MEG3↑, Glycolysis↓, lactateProd↓, LDHA↓, PKM2↓, HK2↓,
2367- VitD3,    Vitamin D activates FBP1 to block the Warburg effect and modulate blast metabolism in acute myeloid leukemia
- in-vivo, AML, NA
FBP1↑, Warburg↓, Glycolysis↓, lactateProd↓,
2366- VitD3,    Vitamin D3 decreases glycolysis and invasiveness, and increases cellular stiffness in breast cancer cells
- in-vitro, BC, MCF-7
Glycolysis↓, tumCV↓, Apoptosis↑, mTOR↓, AMPK↑, EMT↓, E-cadherin↑, F-actin↑, Vim↓,
2365- VitD3,    Vitamin D Affects the Warburg Effect and Stemness Maintenance of Non- Small-Cell Lung Cancer Cells by Regulating the PI3K/AKT/mTOR Signaling Pathway
- in-vitro, Lung, A549 - in-vitro, Lung, H1975 - in-vivo, NA, NA
Glycolysis↓, Warburg↓, GLUT1↓, LDHA↓, HK2↓, PKM2↓, OCT4↓, SOX2↓, Nanog↓, PI3K↓, Akt↓, mTOR↓,
2301- Wog,    Flavonoids Targeting HIF-1: Implications on Cancer Metabolism
- Review, Var, NA
HK2↓, PDK1↓, LDHA↓, Hif1a↓, PI3K↓, Akt↓, Glycolysis↓, P53↑, GLUT1↓,
2621- Wog,    Natural compounds targeting glycolysis as promising therapeutics for gastric cancer: A review
- Review, Var, NA
Hif1a↓, MCT4↓, LDH↓, lactateProd↓, ECAR↓, TumCP↓, Glycolysis↓,
2414- β‐Ele,    Beta‐elemene inhibits breast cancer metastasis through blocking pyruvate kinase M2 dimerization and nuclear translocation
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vivo, NA, NA
TumCMig↓, TumCI↓, TumMeta↓, Glycolysis↓, GlucoseCon↓, lactateProd↓, PKM2↓, EGFR↓, GLUT1↓, LDHA↓, ECAR↓, OCR↓,
2425- γ-Toc,    Anticancer Effects of γ-Tocotrienol Are Associated with a Suppression in Aerobic Glycolysis
- in-vitro, NA, MCF-7 - in-vivo, NA, NA
TumCG↓, GlucoseCon↓, ATP↓, lactateProd↓, Glycolysis↓, HK2↓, PFK↓, PKM2↓, LDHA↓, Akt↓, p‑mTOR↓, cMyc↓,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 202

Results for Effect on Cancer/Diseased Cells:
5LO↓,2,   ACC↓,1,   ACC1↓,1,   ACLY↓,4,   ACSL1↓,1,   adiP↑,1,   ADP:ATP↓,1,   AIF↑,2,   Akt↓,32,   Akt↑,2,   p‑Akt↓,10,   AKT1↓,3,   ALAT↓,1,   ALDH↓,2,   ALDH1A1↓,1,   ALDOA↓,2,   ALDOAiso2↓,1,   AminoA↓,1,   AMPK↑,13,   p‑AMPK↑,1,   angioG↓,15,   AntiCan↑,5,   antiOx↓,1,   antiOx↑,1,   AntiTum↑,3,   AP-1↓,3,   Apoptosis?,2,   Apoptosis↑,36,   AR↓,3,   ASK1↑,1,   AST↓,1,   ATF4↑,3,   ATF4↝,1,   ATG3↑,1,   ATP↓,32,   ATP↑,3,   i-ATP↓,1,   i-ATP↑,1,   mt-ATP↓,1,   ATP:AMP↓,1,   ATPase↓,1,   AXL↓,1,   BAD↑,2,   BAX↓,2,   BAX↑,10,   Bax:Bcl2↑,4,   BBB↑,1,   Bcl-2↓,10,   Bcl-2↑,1,   Bcl-xL↓,3,   Beclin-1↑,2,   BG↓,2,   BIM↑,2,   BioAv↓,8,   BioAv↑,9,   BioAv↝,5,   BioEnh?,1,   BioEnh↑,1,   BNIP3↝,1,   Ca+2?,1,   Ca+2↓,2,   Ca+2↑,5,   Ca+2↝,2,   i-Ca+2↓,1,   i-Ca+2↑,1,   cachexia↓,1,   CAFs/TAFs↓,1,   CAIX↓,3,   CaMKII ↓,1,   cardioP↑,2,   CardioT↓,1,   Casp↑,1,   Casp12↑,1,   Casp2↑,2,   Casp3↓,1,   Casp3↑,23,   cl‑Casp3↑,2,   proCasp3↓,1,   Casp7↑,3,   Casp8↑,5,   Casp9↑,12,   Catalase↓,2,   Cav1↑,2,   CCR7↓,1,   CD133↓,1,   CD24↓,1,   CD4+↑,1,   CD44↓,2,   CD8+↑,2,   CDC2↑,1,   CDK1↓,2,   CDK2↓,5,   CDK4↓,7,   CDK6↓,6,   CDK8↓,1,   CEBPB?,1,   cFLIP↓,1,   cFos↓,1,   chemoP↓,1,   ChemoSen↓,2,   ChemoSen↑,31,   ChemoSideEff↓,3,   CHOP↑,9,   citrate↓,2,   i-citrate↑,1,   cMET↓,2,   cMyc↓,24,   COX1↓,1,   COX2↓,10,   CPT1A↓,3,   CSCs↓,4,   CXCR4↓,3,   Cyc↓,1,   cycA1↑,1,   CycB↓,2,   CycB↑,1,   cycD1↓,13,   cycD1↑,1,   cycE↓,3,   cycE↑,1,   Cyt‑c↓,1,   Cyt‑c↑,10,   Cyt‑c↝,2,   Diablo↑,1,   Diff↓,1,   DNAdam↓,2,   DNAdam↑,6,   DNArepair↓,1,   Dose?,3,   Dose↓,2,   Dose↑,4,   Dose↝,7,   Dose∅,6,   DR5↑,4,   E-cadherin↑,9,   E6↓,2,   E7↓,2,   ECAR↓,22,   ECAR↝,1,   ECAR∅,1,   eff↓,13,   eff↑,67,   eff↝,4,   EGFR↓,11,   eIF2α↓,1,   eIF2α↑,3,   p‑eIF2α↑,3,   EMT↓,15,   Endoglin↑,1,   Endon↑,1,   ENO1↓,2,   eNOS↑,1,   EPR↓,1,   ER Stress↑,8,   ERK↓,12,   ERK↑,1,   ERK↝,1,   p‑ERK↓,1,   F-actin↑,1,   FADD↑,1,   FAK↓,1,   p‑FAK↓,2,   FAO↓,2,   Fas↑,1,   FASN↓,6,   FASN↑,2,   FBP1↑,1,   FBPase↑,3,   Ferroptosis↑,3,   FGFR1↓,1,   p‑FOXO3↓,1,   FTH1↓,1,   Furin↓,1,   G6PD↓,4,   GAPDH↓,3,   GDH↓,1,   Gli1↓,2,   GLS↓,1,   glucoNG↓,1,   glucoNG↑,2,   glucose↓,1,   glucose↑,1,   GlucoseCon↓,56,   GlucoseCon↑,2,   glut↓,1,   GLUT1↓,39,   GLUT2↓,4,   GLUT3↓,4,   GLUT3↑,1,   GLUT4↓,1,   GlutaM↓,1,   glyC↓,1,   Glycolysis↓,196,   GPx↓,1,   GPx↑,2,   GPx4↓,4,   GRP78/BiP↑,5,   GSDMC↑,1,   GSDME-N↑,1,   GSH↓,11,   GSH/GSSG↓,1,   GSK‐3β↓,1,   p‑GSK‐3β↓,1,   GSTP1/GSTπ↝,1,   GTPBP4↓,1,   GutMicro↑,2,   H2O2↑,6,   mt-H2O2↑,1,   ac‑H4↓,1,   Half-Life↓,3,   Half-Life↝,3,   HATs↓,1,   HDAC↓,6,   HDAC8↓,1,   hepatoP↓,1,   HER2/EBBR2↓,2,   p‑HER2/EBBR2↓,1,   HH↓,1,   HIF-1↓,1,   Hif1a↓,57,   HK1↓,4,   HK2↓,76,   HK2∅,1,   HMGB1↓,1,   HO-1↓,2,   HO-1↑,5,   HO-2↓,1,   HSP70/HSPA5↓,1,   HSP90↓,3,   hTERT↓,2,   ICAM-1↓,1,   IDH1↑,2,   IGF-1↓,3,   IGF-1R↓,4,   p‑IGF-1R↓,1,   IGFBP1↑,1,   IKKα↓,1,   IL1↓,1,   IL1↑,1,   IL10↓,3,   IL10↑,1,   IL1β↓,4,   IL2↑,1,   IL4↓,2,   IL6↓,10,   IL8↓,2,   Inflam↓,8,   iNOS↓,1,   iNOS↑,1,   Insulin↓,1,   IRE1↑,2,   Iron↑,2,   JAK↓,1,   JAK1↓,1,   JAK2↓,5,   JNK↓,1,   JNK↑,4,   Ki-67↓,7,   KIF2C↓,1,   lact/pyru↓,1,   lactateProd↓,70,   e-lactateProd↓,1,   LAMP2↑,2,   LC3‑Ⅱ/LC3‑Ⅰ↑,1,   LC3B↓,1,   LC3B-II↑,2,   LC3II↑,3,   LDH↓,13,   LDH↑,1,   LDH∅,1,   e-LDH↑,1,   LDHA↓,47,   LDHA∅,1,   Let-7↑,2,   lipid-P↓,1,   lipid-P↑,2,   lipidDe↓,1,   pol-M1↑,1,   M2 MC↓,2,   pol-M2 MC↓,1,   MALAT1↓,1,   MAPK↓,4,   MAPK↑,1,   MAPK↝,1,   Mcl-1↓,5,   MCP1↓,1,   MCT1↓,1,   MCT4↓,2,   MDA↑,2,   MDM2↓,2,   MDR1↓,1,   MEG3↑,1,   MEK↓,2,   miR-145↑,1,   miR-155↓,1,   miR-21↓,1,   miR-30a-5p↑,1,   miR-34a↑,1,   mitResp↓,4,   mitResp↑,3,   MLKL↑,1,   MMP↓,20,   MMP↑,1,   MMP13↓,1,   MMP2↓,13,   MMP3↓,1,   MMP7↓,1,   MMP9↓,16,   MMP9↑,1,   MMP9:TIMP1↓,1,   MMPs↓,5,   MRP1↓,1,   mtDam↑,4,   mTOR↓,27,   p‑mTOR↓,4,   p‑mTORC1↓,1,   Myc↓,2,   N-cadherin↓,6,   n-MYC↓,1,   NA?,1,   NA↓,1,   NAD↓,1,   NADH↓,1,   NADPH↓,5,   NADPH/NADP+↓,1,   Nanog↓,3,   NCOA4↑,1,   Necroptosis↑,1,   Nestin↓,1,   neuroP↑,4,   NF-kB↓,23,   NF-kB↑,2,   p‑NF-kB↓,1,   NHE1↓,4,   NLRP3↓,2,   NO↑,1,   NOTCH↓,4,   NOTCH1↓,1,   NOTCH1↑,2,   NOXA↑,1,   NQO1↑,1,   Nrf1↓,1,   NRF2↓,3,   NRF2↑,5,   p‑NRF2↓,1,   OAA↑,1,   OCR↓,10,   OCR↑,7,   OCT4↓,3,   OS↑,3,   other↓,1,   other↑,2,   other↝,3,   OXPHOS↓,7,   OXPHOS↑,10,   OXPHOS⇅,1,   OXPHOS↝,1,   mt-OXPHOS↓,1,   mt-OXPHOS↑,2,   P-gp↓,2,   P21↓,1,   P21↑,9,   p27↑,4,   p38↓,1,   p38↑,3,   P53↑,12,   p62↓,2,   p62↑,2,   p65↓,3,   p‑P70S6K↓,1,   P90RSK↓,1,   PAK↓,1,   PARP↓,1,   cl‑PARP↑,9,   proPARP↓,1,   PCNA↓,4,   PD-L1↓,4,   PDH↓,5,   PDH↑,5,   p‑PDH↓,1,   PDHA1↓,1,   PDK1?,2,   PDK1↓,18,   p‑PDK1↓,2,   PDK3↓,1,   PDK3↑,1,   PDKs↓,4,   p‑PDKs↓,1,   PERK↑,4,   PFK↓,15,   PFK1↓,8,   PFK2?,1,   PFK2↓,3,   PFKP?,1,   PFKP↓,3,   PGC-1α↓,1,   PGC-1α↑,2,   PGE2↓,2,   PGK1↓,3,   PGM1↓,1,   i-pH↓,2,   PI3K↓,20,   PI3K/Akt↓,1,   PI3k/Akt/mTOR↓,1,   PKA↓,4,   PKCδ↓,1,   PKM1↑,1,   PKM2↓,84,   PKM2∅,1,   p‑PKM2↓,1,   PKM2:PKM1↓,2,   PPARγ↓,1,   PPARγ↑,2,   PPP↓,3,   pRB↑,1,   p‑pRB↓,1,   Prx4↑,1,   PSA↓,2,   PTEN↑,17,   PUMA↑,1,   PYCR1↓,1,   Pyro↑,2,   Pyruv↓,4,   R5P↝,1,   radioP↑,1,   RadioS↑,16,   Raf↓,2,   RAS↓,2,   RB1↓,1,   p‑RB1↓,3,   Remission↑,1,   RET↓,1,   Rho↓,1,   RIP1↑,1,   p‑RIP1↑,1,   RIP3↑,1,   Risk↓,1,   ROCK1↓,1,   ROS?,1,   ROS↓,7,   ROS↑,65,   ROS⇅,1,   ROS↝,1,   i-ROS↑,1,   mt-ROS↑,4,   RPM↑,1,   p‑S6K↓,1,   SDH↓,2,   selectivity↑,23,   Shh↓,2,   SHP1↑,1,   SIRT1↓,1,   SIRT1↑,2,   SIRT2↑,1,   SIRT3↑,2,   SIRT6↑,1,   Slug↓,3,   SMAD3↓,1,   SMCT1∅,1,   Smo↓,2,   Snail?,1,   Snail↓,4,   SOD↓,3,   SOD↑,2,   SOD1↑,1,   SOD2↑,3,   SOX2↓,5,   SOX4↑,1,   Sp1/3/4↓,5,   Sp1/3/4↑,1,   SPARC↑,1,   SREBP1?,1,   STAT1↓,1,   STAT3↓,16,   p‑STAT3↓,8,   STAT5↓,1,   p‑STAT5↓,1,   STAT6↓,2,   Strength↑,1,   survivin↓,5,   T-Cell↑,1,   T-Cell↝,1,   talin↓,1,   TAMS↝,1,   TBX15↑,1,   TCA↓,4,   TCA↑,1,   Telomerase↓,2,   TET1↑,2,   TET3↑,1,   TGF-β↓,3,   TIMP1↓,2,   TIMP2↓,1,   TKT↝,1,   TLR4↓,1,   TNF-α↓,3,   TNF-α↑,1,   TOP1↓,2,   TOP2↓,2,   toxicity↓,4,   toxicity∅,1,   TP53↓,1,   TRAIL↑,1,   Treg lymp↓,1,   TrxR↓,4,   TrxR1↓,2,   TumAuto↑,9,   TumCCA↓,1,   TumCCA↑,27,   TumCD↑,4,   TumCG↓,36,   TumCG↑,3,   TumCI↓,19,   TumCMig↓,13,   TumCMig↑,1,   TumCP↓,47,   tumCV↓,15,   TumMeta↓,16,   TumVol↓,7,   TumW↓,7,   Twist↓,6,   uPA↓,5,   uPAR↓,1,   UPR↑,1,   VEGF↓,18,   VEGFR2↓,3,   Vim↓,6,   VM↓,1,   Warburg↓,27,   Weight∅,2,   Wnt↓,4,   Wnt/(β-catenin)↓,3,   XBP-1↑,1,   xCT↓,3,   XIAP↓,2,   XIST↓,1,   YAP/TEAD↓,1,   Zeb1↓,2,   ZEB2↓,1,   ZO-1↑,1,   α-SMA↓,1,   α-SMA↑,1,   β-catenin/ZEB1↓,9,   β-oxidation↓,3,  
Total Targets: 544

Results for Effect on Normal Cells:
ACLY∅,1,   ADP:ATP↓,1,   Akt↓,2,   ALAT↓,2,   AntiAg↑,1,   AntiAge↑,2,   AntiCan↓,1,   antiOx↑,6,   mt-antiOx↑,1,   Apoptosis↓,1,   AST↓,2,   ATP↑,1,   Aβ↓,1,   BBB↑,1,   BioAv?,1,   BioAv↓,4,   BioAv↝,2,   BioEnh↑,1,   BMAL1↑,1,   cardioP↓,1,   cardioP↑,2,   Catalase↑,1,   cognitive↑,4,   COX2↓,1,   CXCL1↓,1,   CXCL12↑,1,   Dose↝,1,   ECAR↓,4,   ECAR∅,1,   eff↑,1,   eff↝,1,   EMT↑,1,   FAO↑,1,   GlucoseCon↓,2,   GlucoseCon↑,1,   Glycolysis↓,6,   Glycolysis↑,1,   GPx↑,1,   GSH↑,2,   GutMicro↑,1,   Half-Life↓,1,   Half-Life∅,1,   hepatoP↑,7,   Hif1a↓,1,   Hif1a↑,1,   Hif1a∅,1,   HK2↓,3,   IGF-1↓,1,   IGFBP3↑,1,   IL10↓,1,   IL17↓,1,   IL2↓,1,   IL6↓,1,   IL8↓,1,   Inflam?,1,   Inflam↓,8,   IronCh↑,1,   lactateProd↓,3,   LDHA↓,1,   LDHB↑,1,   lipid-P↓,1,   lipidLev↓,1,   MAPK↓,1,   MDA↓,1,   memory↑,3,   MMP↑,1,   motorD↑,1,   mTOR↓,1,   NAD↑,1,   neuroP↑,5,   NRF2↑,1,   OCR↑,1,   other?,1,   OXPHOS↓,1,   OXPHOS↑,1,   PAR-2↓,1,   PFK↓,1,   PFK1↓,1,   PFKP↓,1,   PGC-1α↑,1,   PI3K↓,2,   PKM2↓,3,   PPP↓,1,   RAS↓,1,   RenoP↑,2,   ROS↓,8,   ROS↑,2,   mt-ROS↓,1,   mt-ROS↑,1,   SOD↑,1,   TCA↑,1,   TNF-α↓,2,   toxicity↓,7,   toxicity∅,4,   YAP/TEAD↑,1,  
Total Targets: 95

Scientific Paper Hit Count for: Glycolysis, Glycolysis
19 Shikonin
11 Baicalein
11 Sulforaphane (mainly Broccoli)
10 Citric Acid
8 EGCG (Epigallocatechin Gallate)
8 Quercetin
6 Artemisinin
6 Berberine
6 Propolis -bee glue
6 Dichloroacetate
6 Resveratrol
5 Apigenin (mainly Parsley)
5 Ashwagandha
5 Curcumin
5 Vitamin C (Ascorbic Acid)
4 Alpha-Lipoic-Acid
4 Betulinic acid
4 Metformin
4 Chemotherapy
4 Methylene blue
4 Vitamin D3
3 2-DeoxyGlucose
3 Chrysin
3 diet FMD Fasting Mimicking Diet
3 Magnetic Fields
3 Piperlongumine
3 Silymarin (Milk Thistle) silibinin
2 3-bromopyruvate
2 5-fluorouracil
2 Capsaicin
2 Ellagic acid
2 Emodin
2 Honokiol
2 Luteolin
2 Oroxylin-A
2 Phenylbutyrate
2 Thymoquinone
2 Ursolic acid
2 Wogonin
1 Sorafenib (brand name Nexavar)
1 5-Aminolevulinic acid
1 Astragalus
1 tamoxifen
1 Radiotherapy/Radiation
1 Boswellia (frankincense)
1 Caffeic acid
1 Celastrol
1 Chlorogenic acid
1 Cinnamon
1 Piperine
1 Ferulic acid
1 Fenbendazole
1 flavonoids
1 Galloflavin
1 Hydrogen Gas
1 Hydroxycinnamic-acid
1 itraconazole
1 Ivermectin
1 Kaempferol
1 lambertianic acid
1 Licorice
1 doxorubicin
1 Lycopene
1 Melatonin
1 Mushroom Chaga
1 Niclosamide (Niclocide)
1 Nimbolide
1 Proanthocyanidins
1 Pterostilbene
1 Rosmarinic acid
1 Docetaxel
1 VitK3,menadione
1 Cisplatin
1 triptolide
1 Tumor Treating Fields
1 Arsenic trioxide
1 β‐Elemene
1 γ-Tocotrienol
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:%  Target#:129  State#:%  Dir#:1
wNotes=0 sortOrder:rid,rpid

 

Home Page