Database Query Results : , , Hif1a

Hif1a, HIF1α/HIF1a: Click to Expand ⟱
Source:
Type:
Hypoxia-Inducible-Factor 1A (HIF1A gene, HIF1α, HIF-1α protein product)
-Dominantly expressed under hypoxia(low oxygen levels) in solid tumor cells
-HIF1A induces the expression of vascular endothelial growth factor (VEGF)
-High HIF-1α expression is associated with Poor prognosis
-Low HIF-1α expression is associated with Better prognosis

-Functionally, HIF-1α is reported to regulate glycolysis, whilst HIF-2α regulates genes associated with lipoprotein metabolism.
-Cancer cells produce HIF in response to hypoxia in order to generate more VEGF that promote angiogenesis

Key mediators of aerobic glycolysis regulated by HIF-1α.
-GLUT-1 → regulation of the flux of glucose into cells.
-HK2 → catalysis of the first step of glucose metabolism.
-PKM2 → regulation of rate-limiting step of glycolysis.
-Phosphorylation of PDH complex by PDK → blockage of OXPHOS and promotion of aerobic glycolysis.
-LDH (LDHA): Rapid ATP production, conversion of pyruvate to lactate;

HIF-1α Inhibitors:
-Curcumin: disruption of signaling pathways that stabilize HIF-1α (ie downregulate).
-Resveratrol: downregulate HIF-1α protein accumulation under hypoxic conditions.
-EGCG: modulation of upstream signaling pathways, leading to decreased HIF-1α activity.
-Emodin: reduce HIF-1α expression. (under hypoxia).
-Apigenin: inhibit HIF-1α accumulation.


Scientific Papers found: Click to Expand⟱
2660- AL,    Allicin: A review of its important pharmacological activities
- Review, AD, NA - Review, Var, NA - Review, Park, NA - Review, Stroke, NA
*Inflam↓, AntiCan↑, *antiOx↑, *cardioP↑, *hepatoP↑, *BBB↑, *Half-Life↝, *H2S↑, *BP↓, *neuroP↑, *cognitive↑, *neuroP↑, *ROS↓, *GutMicro↑, *LDH↓, *ROS↓, *lipid-P↓, *antiOx↑, *other↑, *PI3K↓, *Akt↓, *NF-kB↓, *NO↓, *iNOS↓, *PGE2↓, *COX2↓, *IL6↓, *TNF-α↓, *MPO↓, *eff↑, *NRF2↑, *Keap1↓, *TBARS↓, *creat↓, *LDH↓, *AST↓, *ALAT↓, *MDA↓, *SOD↑, *GSH↑, *GSTs↑, *memory↑, chemoP↑, IL8↓, Cyt‑c↑, Casp3↑, Casp8↑, Casp9↑, Casp12↑, p38↑, Fas↑, P53↑, P21↑, CHK1↓, CycB↓, GSH↓, ROS↑, TumCCA↑, Hif1a↓, Bcl-2↓, VEGF↓, TumCMig↓, STAT3↓, VEGFR2↓, p‑FAK↓,
278- ALA,    The Multifaceted Role of Alpha-Lipoic Acid in Cancer Prevention, Occurrence, and Treatment
- Review, NA, NA
ROS↑, NRF2↑, Inflam↓, frataxin↑, *BioAv↓, ChemoSen↑, Hif1a↓, eff↑, FAK↓, ITGB1↓, MMP2↓, MMP9↓, EMT↓, Snail↓, Vim↓, Zeb1↓, P53↑, MGMT↓, Mcl-1↓, Bcl-xL↓, Bcl-2↓, survivin↓, Casp3↑, Casp9↑, BAX↑, p‑Akt↓, GSK‐3β↓, *antiOx↑, *ROS↓, selectivity↑, angioG↓, MMPs↓, NF-kB↓, ITGB3↓, NADPH↓,
1253- aLinA,    The Antitumor Effects of α-Linolenic Acid
- Review, NA, NA
PPARγ↑, COX2↓, E6↓, E7↓, P53↑, p‑ERK↓, p38↓, lipid-P↑, ROS⇅, MPT↑, MMP↓, Cyt‑c↑, Casp↑, iNOS↓, NO↓, Casp3↑, Bcl-2↓, Hif1a↓, FASN↓, CRP↓, IL6↓, IL1β↓, IFN-γ↓, TNF-α↓, Twist↓, VEGF↓, MMP2↓, MMP9↓,
1159- And,    Andrographolide, an Anti-Inflammatory Multitarget Drug: All Roads Lead to Cellular Metabolism
- Review, NA, NA
NRF2↑, COX2↓, IL6↓, IL8↓, IL1↓, iNOS↓, MPO↓, TNF-α↓, VEGF↓, Hif1a↓, p‑AMPK↑,
958- Api,    Apigenin suppresses tumor angiogenesis and growth via inhibiting HIF-1α expression in non-small cell lung carcinoma
- in-vitro, Lung, NCIH1299
Hif1a↓, VEGF↓, VEGFR2↓, PDGF↓, angioG↓,
176- Api,    Induction of caspase-dependent extrinsic apoptosis by apigenin through inhibition of signal transducer and activator of transcription 3 (STAT3) signalling in HER2-overexpressing BT-474 breast cancer cells
- in-vitro, BC, BT474
cl‑Casp8↑, cl‑Casp3↑, p‑JAK1↓, p‑JAK2↓, p‑STAT3↓, P53↑, VEGF↓, Hif1a↓, MMP9↓,
2640- Api,    Apigenin: A Promising Molecule for Cancer Prevention
- Review, Var, NA
chemoP↑, ITGB4↓, TumCI↓, TumMeta↓, Akt↓, ERK↓, p‑JNK↓, *Inflam↓, *PKCδ↓, *MAPK↓, EGFR↓, CK2↓, TumCCA↑, CDK1↓, P53↓, P21↑, Bax:Bcl2↑, Cyt‑c↑, APAF1↑, Casp↑, cl‑PARP↑, VEGF↓, Hif1a↓, IGF-1↓, IGFBP3↑, E-cadherin↑, β-catenin/ZEB1↓, HSPs↓, Telomerase↓, FASN↓, MMPs↓, HER2/EBBR2↓, CK2↓, eff↑, AntiAg↑, eff↑, FAK↓, ROS↑, Bcl-2↓, Cyt‑c↑, cl‑Casp3↑, cl‑Casp7↑, cl‑Casp8↑, cl‑Casp9↑, cl‑IAP2↑, AR↓, PSA↓, p‑pRB↓, p‑GSK‐3β↓, CDK4↓, ChemoSen↑, Ca+2↑, cal2↑,
2639- Api,    Plant flavone apigenin: An emerging anticancer agent
- Review, Var, NA
*antiOx↑, *Inflam↓, AntiCan↑, ChemoSen↑, BioEnh↑, chemoP↑, IL6↓, STAT3↓, NF-kB↓, IL8↓, eff↝, Akt↓, PI3K↓, HER2/EBBR2↓, cycD1↓, CycD3↓, p27↑, FOXO3↑, STAT3↓, MMP2↓, MMP9↓, VEGF↓, Twist↓, MMP↓, ROS↑, NADPH↑, NRF2↓, SOD↓, COX2↓, p38↑, Telomerase↓, HDAC↓, HDAC1↓, HDAC3↓, Hif1a↓, angioG↓, uPA↓, Ca+2↑, Bax:Bcl2↑, Cyt‑c↑, Casp9↑, Casp12↑, Casp3↑, cl‑PARP↑, E-cadherin↑, β-catenin/ZEB1↓, cMyc↓, CDK4↓, CDK2↓, CDK6↓, IGF-1↓, CK2↓, CSCs↓, FAK↓, Gli↓, GLUT1↓,
2631- Api,    Apigenin Induces Autophagy and Cell Death by Targeting EZH2 under Hypoxia Conditions in Gastric Cancer Cells
- in-vivo, GC, NA - in-vitro, GC, AGS
ER Stress↑, Hif1a↓, EZH2↓, HDAC↓, TumAuto↑, p‑mTOR↓, AMPKα↑, GRP78/BiP↑, ROS↑, MMP↓, Ca+2↑, ATF4↑, CHOP↑,
2317- Api,    Apigenin intervenes in liver fibrosis by regulating PKM2-HIF-1α mediated oxidative stress
- in-vivo, Nor, NA
*hepatoP↑, *PKM2↓, *Hif1a↓, *MDA↓, *Catalase↓, *GSH↑, *SOD↑, *GPx↑, *TAC↑, *α-SMA↓, *Vim↓, *ROS↓,
2299- Api,    Flavonoids Targeting HIF-1: Implications on Cancer Metabolism
- Review, Var, NA
TumCP↓, angioG↓, Hif1a↓, VEGF↓, GLUT1↓, PKM2↓, Glycolysis↓,
2318- Api,    Apigenin as a multifaceted antifibrotic agent: Therapeutic potential across organ systems
- Review, Nor, NA
*ROS↓, *PKM2↓, *Hif1a↓, *TGF-β↓, *AMPK↑, *Inflam↓, *PI3K↓, *Akt↑, *NRF2↑, *NF-kB↓,
2319- Api,    Apigenin sensitizes radiotherapy of mouse subcutaneous glioma through attenuations of cell stemness and DNA damage repair by inhibiting NF-κB/HIF-1α-mediated glycolysis
- in-vitro, GBM, NA
Glycolysis↓, NF-kB↓, p65↓, Hif1a↓, GLUT1↓, GLUT3↓, PKM2↓, RadioS↑, TumVol↓, TumW↓,
1537- Api,    Apigenin as Tumor Suppressor in Cancers: Biotherapeutic Activity, Nanodelivery, and Mechanisms With Emphasis on Pancreatic Cancer
- Review, PC, NA
TumCP↓, TumCCA↑, Apoptosis↑, MMPs↓, Akt↓, *BioAv↑, *BioAv↓, Half-Life∅, Hif1a↓, GLUT1↓, VEGF↓, ChemoSen↑, ROS↑, Bcl-2↓, Bcl-xL↓, BAX↑, BIM↑,
1545- Api,    The Potential Role of Apigenin in Cancer Prevention and Treatment
- Review, NA, NA
TNF-α↓, IL6↓, IL1α↓, P53↑, Bcl-xL↓, Bcl-2↓, BAX↑, Hif1a↓, VEGF↓, TumCCA↑, DNAdam↑, Apoptosis↑, CycB↓, cycA1↓, CDK1↓, PI3K↓, Akt↓, mTOR↓, IKKα↓, ERK↓, p‑Akt↓, p‑P70S6K↓, p‑S6↓, p‑ERK↓, p‑P90RSK↑, STAT3↓, MMP2↓, MMP9↓, TumCP↓, TumCMig↓, TumCI↓, Wnt/(β-catenin)↓,
1547- Api,    Apigenin: Molecular Mechanisms and Therapeutic Potential against Cancer Spreading
- Review, NA, NA
angioG↓, EMT↓, CSCs↓, TumCCA↑, Dose∅, ROS↑, MMP↓, Catalase↓, GSH↓, PI3K↓, Akt↓, NF-kB↓, OCT4↓, Nanog↓, SIRT3↓, SIRT6↓, eff↑, eff↑, Cyt‑c↑, Bax:Bcl2↑, p‑GSK‐3β↓, FOXO3↑, p‑STAT3↓, MMP2↓, MMP9↓, COX2↓, MMPs↓, NRF2↓, HDAC↓, Telomerase↓, eff↑, eff↑, eff↑, eff↑, eff↑, XIAP↓, survivin↓, CK2↓, HSP90↓, Hif1a↓, FAK↓, EMT↓,
1548- Api,    A comprehensive view on the apigenin impact on colorectal cancer: Focusing on cellular and molecular mechanisms
- Review, Colon, NA
*BioAv↓, *Half-Life∅, selectivity↑, *toxicity↓, Wnt/(β-catenin)↓, P53↑, P21↑, PI3K↓, Akt↓, mTOR↓, TumCCA↑, TumCI↓, TumCMig↓, STAT3↓, PKM2↓, EMT↓, cl‑PARP↑, Casp3↑, Bax:Bcl2↑, VEGF↓, Hif1a↓, Dose∅, GLUT1↓, GlucoseCon↓,
1553- Api,    Role of Apigenin in Cancer Prevention via the Induction of Apoptosis and Autophagy
- Review, NA, NA
Dose∅, TumVol↓, Dose∅, COX2↓, Hif1a↓, TumCCA↑, P53↑, P21↑, Casp3↑, DNAdam↑, TumAuto↝,
3383- ART/DHA,    Dihydroartemisinin: A Potential Natural Anticancer Drug
- Review, Var, NA
TumCP↓, Apoptosis↑, TumMeta↓, angioG↓, TumAuto↑, ER Stress↑, ROS↑, Ca+2↑, p38↑, HSP70/HSPA5↓, PPARγ↑, GLUT1↓, Glycolysis↓, PI3K↓, Akt↓, Hif1a↓, PKM2↓, lactateProd↓, GlucoseCon↓, EMT↓, Slug↓, Zeb1↓, ZEB2↓, Twist↓, Snail?, CAFs/TAFs↓, TGF-β↓, p‑STAT3↓, M2 MC↓, uPA↓, HH↓, AXL↓, VEGFR2↓, JNK↑, Beclin-1↑, GRP78/BiP↑, eff↑, eff↑, eff↑, eff↑, eff↑, eff↑, IL4↓, DR5↑, Cyt‑c↑, Fas↑, FADD↑, cl‑PARP↑, cycE↓, CDK2↓, CDK4↓, Mcl-1↓, Ki-67↓, Bcl-2↓, CDK6↓, VEGF↓, COX2↓, MMP9↓,
957- ART/DHA,    Artemisinin inhibits the development of esophageal cancer by targeting HIF-1α to reduce glycolysis levels
- in-vitro, ESCC, KYSE150 - in-vitro, ESCC, KYSE170
TumCP↓, TumMeta↓, Glycolysis↓, N-cadherin↓, PKM2↓, Hif1a↓,
985- ART/DHA,    Artemisinin suppresses aerobic glycolysis in thyroid cancer cells by downregulating HIF-1a, which is increased by the XIST/miR-93/HIF-1a pathway
- in-vitro, Thyroid, TPC-1 - Human, NA, NA
XIST↓, Hif1a↓, Glycolysis↓, TumCCA↑, TumMeta↓,
556- ART/DHA,    Artemisinins as a novel anti-cancer therapy: Targeting a global cancer pandemic through drug repurposing
- Review, NA, NA
IL6↓, IL1↓, TNF-α↓, TGF-β↓, NF-kB↓, MIP2↓, PGE2↓, NO↓, Hif1a↓, KDR/FLK-1↓, VEGF↓, MMP2↓, TIMP2↑, ITGB1↑, NCAM↑, p‑ATM↑, p‑ATR↑, p‑CHK1↑, p‑Chk2↑, Wnt/(β-catenin)↓, PI3K↓, Akt↓, ERK↓, cMyc↓, mTOR↓, survivin↓, cMET↓, EGFR↓, cycD1↓, cycE1↓, CDK4/6↓, p16↑, p27↑, Apoptosis↑, TumAuto↑, Ferroptosis↑, oncosis↑, TumCCA↑, ROS↑, DNAdam↑, RAD51↓, HR↓,
2324- ART/DHA,    Research Progress of Warburg Effect in Hepatocellular Carcinoma
- Review, Var, NA
PKM2↓, GLUT1↓, Glycolysis↓, Akt↓, mTOR↓, Hif1a↓, HK2↓, LDH↓, NF-kB↓,
1358- Ash,    Withaferin A: A Dietary Supplement with Promising Potential as an Anti-Tumor Therapeutic for Cancer Treatment - Pharmacology and Mechanisms
- Review, Var, NA
TumCCA↑, Apoptosis↑, TumAuto↑, Ferroptosis↑, TumCP↓, CSCs↓, TumMeta↓, EMT↓, angioG↓, Vim↓, HSP90↓, annexin II↓, m-FAM72A↓, BCR-ABL↓, Mortalin↓, NRF2↓, cMYB↓, ROS↑, ChemoSen↑, eff↑, ChemoSen↑, ChemoSen↑, eff↑, *BioAv↓, ROCK1↓, TumCI↓, Sp1/3/4↓, VEGF↓, Hif1a↓, EGFR↓,
1180- Ash,    Withaferin A Inhibits Liver Cancer Tumorigenesis by Suppressing Aerobic Glycolysis through the p53/IDH1/HIF-1α Signaling Axis
- in-vitro, Liver, HepG2
IDH1↑, Glycolysis↓, P53↑, Hif1a↓,
3177- Ash,    Emerging Role of Hypoxia-Inducible Factors (HIFs) in Modulating Autophagy: Perspectives on Cancer Therapy
- Review, Var, NA
Hif1a↓, ROS↑, ER Stress↑,
996- Ba,  Tam,    Baicalein resensitizes tamoxifen‐resistant breast cancer cells by reducing aerobic glycolysis and reversing mitochondrial dysfunction via inhibition of hypoxia‐inducible factor‐1α
Hif1a↓, Glycolysis↓, GlucoseCon↓, lactateProd↓, lact/pyru↓, ROS↑, Apoptosis↑,
2626- Ba,    Molecular targets and therapeutic potential of baicalein: a review
- Review, Var, NA - Review, AD, NA - Review, Stroke, NA
AntiCan↓, *neuroP↑, *cardioP↑, *hepatoP↑, *RenoP↑, TumCCA↑, CDK4↓, cycD1↓, cycE↑, BAX↑, Bcl-2↓, VEGF↓, Hif1a↓, cMyc↓, NF-kB↓, ROS↑, BNIP3↑, *neuroP↑, *cognitive↑, *NO↓, *iNOS↓, *COX2↓, *PGE2↓, *NRF2↑, *p‑AMPK↑, *Ferroptosis↓, *lipid-P↓, *ALAT↓, *AST↓, *Fas↓, *BAX↓, *Apoptosis↓,
2620- Ba,    Natural compounds targeting glycolysis as promising therapeutics for gastric cancer: A review
- Review, GC, NA
Hif1a↓, HK2↓, LDHA↓, PDK1↓, p‑Akt↓, PTEN↑, GlucoseCon↓, lactateProd↓, Glycolysis↓,
2617- Ba,    Potential of baicalein in the prevention and treatment of cancer: A scientometric analyses based review
- Review, Var, NA
Ca+2↑, MMP2↓, MMP9↓, Vim↓, Snail↓, E-cadherin↑, Wnt↓, β-catenin/ZEB1↓, p‑Akt↓, p‑mTOR↓, NF-kB↓, i-ROS↑, Bcl-2↓, BAX↑, Cyt‑c↑, Casp3↑, Casp9↑, STAT3↓, IL6↓, MMP2↓, MMP9↓, NOTCH↓, PPARγ↓, p‑NRF2↓, HK2↓, LDHA↓, PDK1↓, Glycolysis↓, PTEN↑, Akt↓, Hif1a↓, MMP↓, VEGF↓, VEGFR2↓, TOP2↓, uPA↓, TIMP1↓, TIMP2↓, cMyc↓, TrxR↓, ASK1↑, Vim↓, ZO-1↑, E-cadherin↑, SOX2↓, OCT4↓, Shh↓, Smo↓, Gli1↓, N-cadherin↓, XIAP↓,
2615- Ba,    The Multifaceted Role of Baicalein in Cancer Management through Modulation of Cell Signalling Pathways
- Review, Var, NA
*AntiCan↓, *Inflam↓, TumCP↓, NF-kB↓, PPARγ↑, TumCCA↑, JAK2↓, STAT3↓, TumCMig↓, Glycolysis↓, MMP2↓, MMP9↓, selectivity↑, VEGF↓, Hif1a↓, cMyc↓, ChemoSen↑, ROS↑, p‑mTOR↓, PTEN↑,
2295- Ba,  5-FU,    Baicalein reverses hypoxia-induced 5-FU resistance in gastric cancer AGS cells through suppression of glycolysis and the PTEN/Akt/HIF-1α signaling pathway
- in-vitro, GC, AGS
ChemoSen↑, HK2↓, LDHA↓, PDK1↓, Akt↓, PTEN↑, Hif1a↓, Glycolysis↓, ROS↑, CHOP↑,
2289- Ba,  Rad,    Baicalein Inhibits the Progression and Promotes Radiosensitivity of Esophageal Squamous Cell Carcinoma by Targeting HIF-1A
- in-vitro, ESCC, KYSE150
TumCP↓, TumCMig↓, Glycolysis↓, cycD1↓, CDK4↓, ECAR↓, TumCCA↑, HK1↓, ALDH↓, ALDOA↓, PKM2↓, Hif1a↓,
2290- Ba,    Research Progress of Scutellaria baicalensis in the Treatment of Gastrointestinal Cancer
- Review, GI, NA
p‑mTOR↓, p‑Akt↓, p‑IKKα↓, NF-kB↓, PI3K↓, Akt↓, ROCK1↓, GSK‐3β↓, CycB↓, cycD1↓, cycA1↑, CDK4↓, P53↑, P21↑, TumCCA↑, MMP2↓, MMP9↓, EMT↓, Hif1a↓, Shh↓, PD-L1↓, STAT3↓, IL1β↓, IL2↓, IL6↓, PKM2↓, HDAC10↓, P-gp↓, Bcl-xL↓, eff↓, BioAv↓, BioAv↑,
2291- Ba,  BA,    Baicalein and Baicalin Promote Melanoma Apoptosis and Senescence via Metabolic Inhibition
- in-vitro, Melanoma, SK-MEL-28 - in-vitro, Melanoma, A375
LDHA↓, ENO1↓, PKM2↓, GLUT1↓, GLUT3↓, HK2↓, PFK1↓, GPI↓, TPI↓, GlucoseCon↓, TumCG↓, TumCP↓, mTORC1↓, Hif1a↓, Ki-67↓,
2293- Ba,    Baicalein suppresses inflammation and attenuates acute lung injury by inhibiting glycolysis via HIF‑1α signaling
- in-vitro, Nor, MH-S - in-vivo, NA, NA
*Hif1a↓, *Glycolysis↓, *Inflam↓, *HK2↓, *PFK1↓, *PKM2↓,
2298- Ba,    Flavonoids Targeting HIF-1: Implications on Cancer Metabolism
- Review, Var, NA
TumCG↓, TumCP↓, Hif1a↓, VEGF↓, ChemoSen↑, Glycolysis↓, HK2↓, PDK1↓, LDHA↓, p‑Akt↓, PTEN↑,
2297- Ba,    Significance of flavonoids targeting PI3K/Akt/HIF-1α signaling pathway in therapy-resistant cancer cells – A potential contribution to the predictive, preventive, and personalized medicine
- Review, Var, NA
Glycolysis↓, Hif1a↓, PKM2↓, RadioS↑,
2391- Ba,    Scutellaria baicalensis and its flavonoids in the treatment of digestive system tumors
- Review, GC, NA
Hif1a↓, PKM2↓, RadioS↑, Glycolysis↓, PAK↓,
2474- Ba,    Anticancer properties of baicalein: a review
- Review, Var, NA - in-vitro, Nor, BV2
ROS⇅, ROS↑, ER Stress↑, Ca+2↑, Apoptosis↑, eff↑, DR5↑, 12LOX↓, Cyt‑c↑, Casp7↑, Casp9↑, Casp3↑, cl‑PARP↑, TumCCA↑, cycE↑, CDK4↓, cycD1↓, VEGF↓, cMyc↓, Hif1a↓, NF-kB↓, BioEnh↑, BioEnh↑, P450↓, *Hif1a↓, *iNOS↓, *COX2↓, *VEGF↓, *ROS↓, *PI3K↓, *Akt↓,
1392- BBR,    Based on network pharmacology and experimental validation, berberine can inhibit the progression of gastric cancer by modulating oxidative stress
- in-vitro, GC, AGS - in-vitro, GC, MKN45
TumCG↓, TumCMig↓, ROS↑, MDA↑, SOD↓, NRF2↓, HO-1↓, Hif1a↓, EMT↓, Snail↓, Vim↓,
1399- BBR,  Rad,    Radiotherapy Enhancing and Radioprotective Properties of Berberine: A Systematic Review
- Review, NA, NA
*ROS↓, *MDA↓, *TNF-α↓, *TGF-β↓, *IL10↑, ROS↑, DNAdam↑, mtDam↑, MMP↓, Apoptosis↑, TumCCA↑, Hif1a↓, VEGF↓, RadioS↑,
956- BBR,    Berberine inhibits HIF-1alpha expression via enhanced proteolysis
- in-vitro, Nor, HUVECs - in-vitro, GC, SCM1
Hif1a↓, angioG↓,
2708- BBR,    Berberine decelerates glucose metabolism via suppression of mTOR‑dependent HIF‑1α protein synthesis in colon cancer cells
- in-vitro, CRC, HCT116
TumCG↓, GlucoseCon↓, GLUT1↓, LDHA↓, HK2↓, Hif1a↓, mTOR↓, Glycolysis↓,
2709- BBR,    Berberine inhibits the glycolysis and proliferation of hepatocellular carcinoma cells by down-regulating HIF-1α
- in-vitro, HCC, HepG2
TumCP↓, TumCMig↓, TumCI↓, Apoptosis↑, Glycolysis↓, Hif1a↓, GLUT1↓, HK2↓, PKM2↓, LDHA↓,
2686- BBR,    Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs
- Review, Nor, NA
Inflam↓, IL6↓, MCP1↓, COX2↓, PGE2↓, MMP2↓, MMP9↓, DNAdam↑, eff↝, Telomerase↓, Bcl-2↓, AMPK↑, ROS↑, MMP↓, ATP↓, p‑mTORC1↓, p‑S6K↓, ERK↓, PI3K↓, PTEN↑, Akt↓, Raf↓, MEK↓, Dose↓, Dose↑, selectivity↑, TumCCA↑, eff↑, EGFR↓, Glycolysis↓, Dose?, p27↑, CDK2↓, CDK4↓, cycD1↓, cycE↓, Bax:Bcl2↑, Casp3↑, Casp9↑, VEGFR2↓, ChemoSen↑, eff↑, eff↑, PGE2↓, JAK2↓, STAT3↓, CXCR4↓, CCR7↓, uPA↓, CSCs↓, EMT↓, Diff↓, CD133↓, Nestin↓, n-MYC↓, NOTCH↓, SOX2↓, Hif1a↓, VEGF↓, RadioS↑,
2695- BBR,    The effects of Berberis vulgaris consumption on plasma levels of IGF-1, IGFBPs, PPAR-γ and the expression of angiogenic genes in women with benign breast disease: a randomized controlled clinical trial
- Trial, BC, NA
IGF-1↓, PPARγ↓, VEGF↓, Hif1a↓, angioG↓,
2766- BetA,    Role of natural secondary metabolites as HIF-1 inhibitors in cancer therapy
- Review, Var, NA
Hif1a↓, VEGF↓, GLUT1↓,
2729- BetA,    Betulinic acid in the treatment of tumour diseases: Application and research progress
- Review, Var, NA
ChemoSen↑, mt-ROS↑, STAT3↓, NF-kB↓, selectivity↑, *toxicity↓, eff↑, GRP78/BiP↑, MMP2↓, P90RSK↓, TumCI↓, EMT↓, MALAT1↓, Glycolysis↓, AMPK↑, Sp1/3/4↓, Hif1a↓, angioG↓, NF-kB↑, NF-kB↓, MMP↓, Cyt‑c↑, Casp9↑, Casp3↑, RadioS↑, PERK↑, CHOP↑, *toxicity↓,
2738- BetA,    Betulinic Acid Suppresses Breast Cancer Metastasis by Targeting GRP78-Mediated Glycolysis and ER Stress Apoptotic Pathway
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, BT549 - in-vivo, NA, NA
TumCI↓, TumCMig↓, Glycolysis↓, lactateProd↓, GRP78/BiP↑, ER Stress↑, PERK↑, p‑eIF2α↑, β-catenin/ZEB1↓, cMyc↓, ROS↑, angioG↓, Sp1/3/4↓, DNAdam↑, TOP1↓, TumMeta↓, MMP2↓, MMP9↓, N-cadherin↓, Vim↓, E-cadherin↑, EMT↓, LDHA↓, p‑PDK1↓, PDK1↓, ECAR↓, OCR↓, Hif1a↓, STAT3↓,
2731- BetA,    Betulinic Acid for Glioblastoma Treatment: Reality, Challenges and Perspectives
- Review, GBM, NA - Review, Park, NA - Review, AD, NA
BBB↑, *GSH↑, *Catalase↑, *motorD↑, *neuroP↑, *cognitive↑, *ROS↓, *antiOx↑, *Inflam↓, MMP↓, STAT3↓, NF-kB↓, Sp1/3/4↓, TOP1↓, EMT↓, Hif1a↓, VEGF↓, ChemoSen↑, RadioS↑, BioAv↓,
3522- Bor,    The Boron Advantage: The Evolution and Diversification of Boron’s Applications in Medicinal Chemistry
- Review, Var, NA
Hif1a↓, HDAC↓, *CXCR2↑, ROS↑,
715- Bor,    Boron-containing phenoxyacetanilide derivatives as hypoxia-inducible factor (HIF)-1alpha inhibitors
- in-vitro, Pca, HeLa
Hif1a↓,
1652- CA,    Caffeic Acid and Diseases—Mechanisms of Action
- Review, Var, NA
Dose∅, ROS⇅, NF-kB↓, STAT3↓, VEGF↓, MMP9↓, HSP70/HSPA5↑, AST↝, ALAT↝, ALP↝, Hif1a↓, IL6↓, IGF-1R↓, P21↑, iNOS↓, ERK↓, Snail↓, BID↑, BAX↑, Casp3↑, Casp7↑, Casp9↑, cycD1↓, Vim↓, β-catenin/ZEB1↓, COX2↓, ROS↑,
1640- CA,  MET,    Caffeic Acid Targets AMPK Signaling and Regulates Tricarboxylic Acid Cycle Anaplerosis while Metformin Downregulates HIF-1α-Induced Glycolytic Enzymes in Human Cervical Squamous Cell Carcinoma Lines
- in-vitro, Cerv, SiHa
GLS↓, NADPH↓, ROS↑, TumCD↑, AMPK↑, Hif1a↓, GLUT1↓, GLUT3↓, HK2↓, PFK↓, PKM2↓, LDH↓, cMyc↓, BAX↓, cycD1↓, PDH↓, ROS↑, Apoptosis↑, eff↑, ACLY↓, FASN↓, Bcl-2↓, Glycolysis↓,
1259- CAP,    Capsaicin inhibits HIF-1α accumulation through suppression of mitochondrial respiration in lung cancer cells
- in-vitro, Lung, H1299 - in-vitro, Lung, A549 - in-vitro, Lung, H23 - in-vitro, Lung, H2009
Hif1a↓, PDK1↓, GLUT1↓, ROS↑, mitResp↓, ATP↓,
1103- CBD,    Cannabidiol inhibits invasion and metastasis in colorectal cancer cells by reversing epithelial-mesenchymal transition through the Wnt/β-catenin signaling pathway
- vitro+vivo, NA, NA
Apoptosis↑, TumCP↓, TumCMig↓, TumMeta↓, EMT↓, E-cadherin↑, N-cadherin↓, Snail↓, Vim↓, Hif1a↓, Wnt/(β-catenin)↓, AXIN1↑, TumVol↓, TumW↓,
955- CEL,    Celecoxib Down-Regulates the Hypoxia-Induced Expression of HIF-1α and VEGF Through the PI3K/AKT Pathway in Retinal Pigment Epithelial Cells
- in-vitro, RPE, D407
TumCP↓, VEGF↓, Hif1a↓,
954- CGA,    Chlorogenic acid inhibits hypoxia-induced angiogenesis via down-regulation of the HIF-1α/AKT pathway
- in-vitro, Lung, A549 - in-vitro, Nor, HUVECs
Hif1a↓, VEGF↓, angioG↓, Akt↓,
953- CHr,    Inhibition of Hypoxia-Inducible Factor-1α and Vascular Endothelial Growth Factor by Chrysin in a Rat Model of Choroidal Neovascularization
- in-vivo, NA, NA
Hif1a↓, VEGF↓,
2802- CHr,    Chrysin inhibits expression of hypoxia-inducible factor-1alpha through reducing hypoxia-inducible factor-1alpha stability and inhibiting its protein synthesis
- in-vitro, Pca, DU145 - in-vivo, Pca, NA
Hif1a↓, VEGF↓, angioG↓,
2785- CHr,    Emerging cellular and molecular mechanisms underlying anticancer indications of chrysin
- Review, Var, NA
*NF-kB↓, *COX2↓, *iNOS↓, angioG↓, TOP1↓, HDAC↓, TNF-α↓, IL1β↓, cardioP↑, RenoP↑, neuroP↑, LDL↓, BioAv↑, eff↑, cycD1↓, hTERT↓, MMP-10↓, Akt↓, STAT3↓, VEGF↓, EGFR↓, Snail↓, Slug↓, Vim↓, E-cadherin↑, eff↑, TET1↑, ROS↑, mTOR↓, PPARα↓, ER Stress↑, Ca+2↑, ERK↓, MMP↑, Cyt‑c↑, Casp3↑, HK2↓, NRF2↓, HO-1↓, MMP2↓, MMP9↓, Fibronectin↓, GRP78/BiP↑, XBP-1↓, p‑eIF2α↑, *AST↓, ALAT↓, ALP↓, LDH↓, COX2↑, Bcl-xL↓, IL6↓, PGE2↓, iNOS↓, DNAdam↑, UPR↑, Hif1a↓, EMT↓, Twist↓, lipid-P↑, CLDN1↓, PDK1↓, IL10↓, TLR4↓, NOTCH1↑, PARP↑, Mcl-1↓, XIAP↓,
2786- CHr,    Chemopreventive and therapeutic potential of chrysin in cancer: mechanistic perspectives
- Review, Var, NA
Apoptosis↑, TumCCA↑, angioG↓, TumCI↓, TumMeta↑, *toxicity↓, selectivity↑, chemoP↑, *GSTs↑, *NADPH↑, *GSH↑, HDAC8↓, Hif1a↓, *ROS↓, *NF-kB↓, SCF↓, cl‑PARP↑, survivin↓, XIAP↓, Casp3↑, Casp9↑, GSH↓, ChemoSen↑, Fenton↑, P21↑, P53↑, cycD1↓, CDK2↓, STAT3↓, VEGF↓, Akt↓, NRF2↓,
2788- CHr,    Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action
- Review, Var, NA
*neuroP↑, *Inflam↓, *ROS↓, NF-kB↓, *PCNA↓, *COX2↓, ChemoSen↑, Hif1a↓, angioG↓, *chemoP↑, PDGF↓, *memory↑, *RenoP↑, *PPARα↑, *lipidLev↓, *hepatoP↑, *cardioP⇅, *BioAv↓,
1568- Cin,    Can Cinnamon be the Silver Bullet for Cancer?
- Review, NA, NA
VEGF↓, Hif1a↓,
952- Cin,    Cinnamon Extract Reduces VEGF Expression Via Suppressing HIF-1α Gene Expression and Inhibits Tumor Growth in Mice
- in-vitro, BC, MDA-MB-231 - in-vitro, GBM, U251 - in-vivo, Ovarian, SKOV3
VEGF↓, Hif1a↓, p‑STAT3↓, p‑Akt↓, angioG↓, TumCG↓, TumW↓, ascitic↓,
3892- Cin,    Cinnamon from the selection of traditional applications to its novel effects on the inhibition of angiogenesis in cancer cells and prevention of Alzheimer's disease, and a series of functions such as antioxidant, anticholesterol, antidiabetes, antibacterial, antifungal, nematicidal, acaracidal, and repellent activities
- Review, AD, NA - Review, Var, NA
*antiOx↑, *Inflam↓, *cardioP↑, angioG↓, VEGF↓, *LDL↓, COX2↓, Hif1a↓, *Aβ↓, *tau↓, *toxicity↓,
1576- Citrate,    Targeting citrate as a novel therapeutic strategy in cancer treatment
- Review, Var, NA
TCA↓, T-Cell↝, Glycolysis↓, PKM2↓, PFK2?, SDH↓, PDH↓, β-oxidation↓, CPT1A↓, FASN↑, Casp3↑, Casp2↑, Casp8↑, Casp9↑, cl‑PARP↑, Hif1a↓, GLUT1↓, angioG↓, Ca+2↓, ROS↓, eff↓, Dose↓, eff↑, Mcl-1↓, HK2↓, IGF-1R↓, PTEN↑, citrate↓, Dose∅, eff↑, eff↑, eff↑, eff↑,
1585- Citrate,    Sodium citrate targeting Ca2+/CAMKK2 pathway exhibits anti-tumor activity through inducing apoptosis and ferroptosis in ovarian cancer
- in-vitro, Ovarian, SKOV3 - in-vitro, Ovarian, A2780S - in-vitro, Nor, HEK293
Apoptosis↑, Ferroptosis↑, Ca+2↓, CaMKII ↓, Akt↓, mTOR↓, Hif1a↓, ROS↑, ChemoSen↑, Casp3↑, Casp9↑, BAX↑, Bcl-2↓, Cyt‑c↑, GlucoseCon↓, lactateProd↓, Pyruv↓, GLUT1↓, HK2↓, PFKP↓, Glycolysis↓, Hif1a↓, p‑Akt↓, p‑mTOR↓, Iron↑, lipid-P↑, MDA↑, ROS↑, H2O2↑, mtDam↑, GSH↓, GPx↓, GPx4↓, NADPH/NADP+↓, eff↓, FTH1↓, LC3‑Ⅱ/LC3‑Ⅰ↑, NCOA4↑, eff↓, TumCG↓,
2315- Citrate,    Why and how citrate may sensitize malignant tumors to immunotherapy
- Review, Var, NA
Bcl-2↓, Mcl-1↓, survivin↓, Casp3↑, Casp9↑, Ferroptosis↑, lipid-P↑, Ca+2↓, Akt↓, mTOR↓, Hif1a↓, MCU↓, ATP↓, ROS↑, eff↑,
466- CUR,    Curcumin circumvent lactate-induced chemoresistance in hepatic cancer cells through modulation of hydroxycarboxylic acid receptor-1
- in-vitro, Liver, HepG2 - in-vitro, Liver, HuT78
GlucoseCon↓, lactateProd↓, pH↑, NO↑, LAR↓, Hif1a↓, LDHA↓, MCT1↓, MDR1↓, STAT3↓, HCAR1↓,
2304- CUR,    Curcumin decreases Warburg effect in cancer cells by down-regulating pyruvate kinase M2 via mTOR-HIF1α inhibition
- in-vitro, Lung, H1299 - in-vitro, BC, MCF-7 - in-vitro, Cerv, HeLa - in-vitro, Pca, PC3 - in-vitro, Nor, HEK293
Glycolysis↓, GlucoseCon↓, lactateProd↓, PKM2↓, mTOR↓, Hif1a↓, selectivity↑, Dose↝, tumCV↓,
2307- CUR,    Cell-Type Specific Metabolic Response of Cancer Cells to Curcumin
- in-vitro, Colon, HT29 - in-vitro, Laryn, FaDu
PKM2↓, Warburg↓, mTOR↓, Hif1a↓, Glycolysis↓,
2688- CUR,    Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs
- Review, Var, NA - Review, AD, NA
*ROS↓, *SOD↑, p16↑, JAK2↓, STAT3↓, CXCL12↓, IL6↓, MMP2↓, MMP9↓, TGF-β↓, α-SMA↓, LAMs↓, DNAdam↑, *memory↑, *cognitive↑, *Inflam↓, *antiOx↑, *NO↑, *MDA↓, *ROS↓, DNMT1↓, ROS↑, Casp3↑, Apoptosis↑, miR-21↓, LC3II↓, ChemoSen↑, NF-kB↓, CSCs↓, Nanog↓, OCT4↓, SOX2↓, eff↑, Sp1/3/4↓, miR-27a-3p↓, ZBTB10↑, SOX9?, ChemoSen↑, VEGF↓, XIAP↓, Bcl-2↓, cycD1↓, BioAv↑, Hif1a↓, EMT↓, BioAv↓, PTEN↑, VEGF↓, Akt↑, EZH2↓, NOTCH1↓, TP53↑, NQO1↑, HO-1↑,
1874- DCA,    Dichloroacetate induces apoptosis of epithelial ovarian cancer cells through a mechanism involving modulation of oxidative stress
- in-vitro, Ovarian, SKOV3 - in-vitro, Ovarian, MDAH-2774
Apoptosis↑, MPO↓, iNOS↓, Hif1a↓, SOD↑, Casp3↑,
1866- DCA,  MET,  BTZ,    Targeting metabolic pathways alleviates bortezomib-induced neuropathic pain without compromising anticancer efficacy in a sex-specific manner
- in-vivo, NA, NA
eff↑, TumCG↓, Hif1a↓, PDH↑, lactateProd↓, TumVol↓, TumW↓, Glycolysis↑, neuroP↑,
1444- Deg,    Deguelin promotes apoptosis and inhibits angiogenesis of gastric cancer
- in-vitro, GC, MKN-28
Casp9↑, Casp3↑, Hif1a↓, VEGF↓, TumCCA↑, TumCG↓, DNAdam↑, p‑Akt↓,
1442- Deg,    Deguelin, a novel anti-tumorigenic agent targeting apoptosis, cell cycle arrest and anti-angiogenesis for cancer chemoprevention
- Review, Var, NA
PI3K/Akt↓, IKKα↓, AMP↓, mTOR↓, survivin↓, NF-kB↓, Apoptosis↑, TumCCA↑, toxicity↓, HSP90↓, Casp↑, TumCG↓, p27↑, cycE↓, angioG↓, Hif1a↓, VEGF↓, *toxicity↑,
1446- Deg,    Efficacy and mechanism of action of Deguelin in suppressing metastasis of 4T1 cells
- in-vitro, BC, 4T1
cMET↓, p‑ERK↓, p‑Akt↓, TumCMig↓, TumCG↓, Weight∅, *toxicity∅, Hif1a↓, TumMeta↓,
951- DHA,    Docosahexaenoic Acid Attenuates Breast Cancer Cell Metabolism and the Warburg Phenotype by Targeting Bioenergetic Function
- in-vitro, BC, BT474 - in-vitro, BC, MDA-MB-231 - in-vitro, Nor, MCF10
Hif1a↓, GLUT1↓, LDH↓, GlucoseCon↓, lactateProd↓, ATP↓, p‑AMPK↑, ECAR↓, OCR↓, *toxicity↓,
1844- dietFMD,    Unlocking the Potential: Caloric Restriction, Caloric Restriction Mimetics, and Their Impact on Cancer Prevention and Treatment
- Review, NA, NA
Risk↓, AMPK↑, Akt↓, mTOR↓, SIRT1↑, Hif1a↓, NRF2↓, SOD↑, ROS↑, IGF-1↓, p‑Akt↓, PI3K↑, GutMicro↑, OS↑, eff↝, ROS↑, TumCCA↑, *DNArepair↑, DNAdam↑,
1621- EA,    The multifaceted mechanisms of ellagic acid in the treatment of tumors: State-of-the-art
- Review, Var, NA
AntiCan↑, Apoptosis↑, TumCP↓, TumMeta↓, TumCI↓, TumAuto↑, VEGFR2↓, MAPK↓, PI3K↓, Akt↓, PD-1↓, NOTCH↓, PCNA↓, Ki-67↓, cycD1↓, CDK2↑, CDK6↓, Bcl-2↓, cl‑PARP↑, BAX↑, Casp3↑, DR4↑, DR5↑, Snail↓, MMP2↓, MMP9↓, TGF-β↑, PKCδ↓, β-catenin/ZEB1↓, SIRT1↓, HO-1↓, ROS↑, CHOP↑, Cyt‑c↑, MMP↓, OCR↓, AMPK↑, Hif1a↓, NF-kB↓, E-cadherin↑, Vim↓, EMT↓, LC3II↑, CIP2A↓, GLUT1↓, PDH↝, MAD↓, LDH↓, GSTs↑, NOTCH↓, survivin↓, XIAP↓, ER Stress↑, ChemoSideEff↓, ChemoSen↑,
1613- EA,    Ellagitannins in Cancer Chemoprevention and Therapy
- Review, Var, NA
ROS↑, angioG↓, ChemoSen↑, BAX↑, Bak↑, Bcl-2↓, Bcl-xL↓, CDK2↓, CDK4↓, CDK6↓, cycD1↓, cycE1↓, TumCG↓, VEGF↓, Hif1a↓, eff↑, COX2↓, TumCCA↑, selectivity↑, Wnt/(β-catenin)↓, *toxicity∅,
1605- EA,    Ellagic Acid and Cancer Hallmarks: Insights from Experimental Evidence
- Review, Var, NA
*BioAv↓, antiOx↓, Inflam↓, TumCP↓, TumCCA↑, cycD1↓, cycE↓, P53↑, P21↑, COX2↓, NF-kB↓, Akt↑, NOTCH↓, CDK2↓, CDK6↓, JAK↓, STAT3↓, EGFR↓, p‑ERK↓, p‑Akt↓, p‑STAT3↓, TGF-β↓, SMAD3↓, CDK6↓, Wnt/(β-catenin)↓, Myc↓, survivin↓, CDK8↓, PKCδ↓, tumCV↓, RadioS↑, eff↑, MDM2↓, XIAP↓, p‑RB1↓, PTEN↑, p‑FAK↓, Bax:Bcl2↑, Bcl-xL↓, Mcl-1↓, PUMA↑, NOXA↑, MMP↓, Cyt‑c↑, ROS↑, Ca+2↝, Endoglin↑, Diablo↑, AIF↑, iNOS↓, Casp9↑, Casp3↑, cl‑PARP↑, RadioS↑, Hif1a↓, HO-1↓, HO-2↓, SIRT1↓, selectivity↑, Dose∅, NHE1↓, Glycolysis↓, GlucoseCon↓, lactateProd↓, PDK1?, PDK1?, ECAR↝, COX1↓, Snail↓, Twist↓, cMyc↓, Telomerase↓, angioG↓, MMP2↓, MMP9↓, VEGF↓, Dose↝, PD-L1↓, eff↑, SIRT6↑, DNAdam↓,
1056- EGCG,    EGCG, a major green tea catechin suppresses breast tumor angiogenesis and growth via inhibiting the activation of HIF-1α and NFκB, and VEGF expression
- vitro+vivo, BC, E0771
TumW↓, VEGF↓, Weight∅, Hif1a↓, NF-kB↓,
20- EGCG,    Potential Therapeutic Targets of Epigallocatechin Gallate (EGCG), the Most Abundant Catechin in Green Tea, and Its Role in the Therapy of Various Types of Cancer
- in-vivo, Liver, NA - in-vivo, Tong, NA
HH↓, Gli1↓, Smo↓, TNF-α↓, COX2↓, *antiOx↑, Hif1a↓, NF-kB↓, VEGF↓, STAT3↓, Bcl-2↓, P53↑, Akt↓, p‑Akt↓, p‑mTOR↓, EGFR↓, AP-1↓, BAX↑, ROS↑, Casp3↑, Apoptosis↑, NRF2↑, *H2O2↓, *NO↓, *SOD↑, *Catalase↑, *GPx↑, *ROS↓,
692- EGCG,    EGCG: The antioxidant powerhouse in lung cancer management and chemotherapy enhancement
- Review, NA, NA
ROS↑, Apoptosis↑, DNAdam↑, CTR1↑, JWA↑, β-catenin/ZEB1↓, P53↑, Vim↓, VEGF↓, p‑Akt↓, Hif1a↓, COX2↓, ERK↓, NF-kB↓, Akt↓, Bcl-xL↓, miR-210↓,
681- EGCG,    Suppressing glucose metabolism with epigallocatechin-3-gallate (EGCG) reduces breast cancer cell growth in preclinical models
- vitro+vivo, BC, NA
Casp3↑, Casp8↑, Casp9↑, TumAuto↑, Beclin-1↝, ATG5↝, GlucoseCon↓, lactateProd↓, ATP↝, HK2↓, LDHA↓, Hif1a↓, GLUT1↓, TumVol↓, VEGF↓,
670- EGCG,    Epigallocatechin-3-gallate and its nanoformulation in cervical cancer therapy: the role of genes, MicroRNA and DNA methylation patterns
- Review, NA, NA
TumCCA↑, P53↑, ERK↓, EGFR↓, p‑ERK↑, VEGF↓, Hif1a↓, miR-203↓, miR-210↑,
668- EGCG,    The Potential Role of Epigallocatechin-3-Gallate (EGCG) in Breast Cancer Treatment
- Review, BC, MCF-7 - Review, BC, MDA-MB-231
HER2/EBBR2↓, EGFR↓, mtDam↑, ROS↑, PI3K/Akt↓, P53↑, P21↑, Casp3↑, Casp9↑, BAX↑, PTEN↑, Bcl-2↓, hTERT↓, STAT3↓, TumCCA↑, Hif1a↓,
1516- EGCG,    Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential
- Review, NA, NA
*Dose∅, Half-Life∅, BioAv∅, BBB↑, toxicity∅, eff↓, Apoptosis↑, Casp3↑, Cyt‑c↑, cl‑PARP↑, DNMTs↓, Telomerase↓, angioG↓, Hif1a↓, NF-kB↓, MMPs↓, BAX↑, Bak↑, Bcl-2↓, Bcl-xL↓, P53↑, PTEN↑, IGF-1↓, H3↓, HDAC1↓, *LDH↓, *ROS↓,
3201- EGCG,    Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential
- Review, NA, NA
*AntiCan↑, *cardioP↑, *neuroP↑, *BioAv↝, *BioAv↓, *BioAv↓, *Dose↝, *Half-Life↝, *BioAv↑, *BBB↑, *hepatoP↓, *other↓, *Inflam↓, *NF-kB↓, *AP-1↓, *iNOS↓, *COX2↓, *ROS↓, *RNS↓, *IL8↓, *JAK↓, *PDGFR-BB↓, *IGF-1R↓, *MMP2↓, *P53↓, *NRF2↑, *TNF-α↓, *IL6↓, *E2Fs↑, *SOD1↑, *SOD2↑, Casp3↑, Cyt‑c↑, PARP↑, DNMTs↓, Telomerase↓, Hif1a↓, MMPs↓, BAX↑, Bak↑, Bcl-2↓, Bcl-xL↓, P53↑, PTEN↑, TumCP↓, MAPK↓, HGF/c-Met↓, TIMP1↑, HDAC↓, MMP9↓, uPA↓, GlutMet↓, ChemoSen↑, chemoP↑,
3238- EGCG,    Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications
- Review, Var, NA
Telomerase↓, DNMTs↓, cycD1↓, cycE↓, CDK2↓, CDK4↓, CDK6↓, HATs↓, HDAC↓, selectivity↑, uPA↓, NF-kB↓, TNF-α↓, *ROS↓, *antiOx↑, Hif1a↓, VEGF↓, MMP2↓, MMP9↓, FAK↓, TIMP2↑, Mcl-1↓, survivin↓, XIAP↓, PCNA↓, p16↑, P21↑, p27↑, pRB↑, P53↑, MDM2↑, ROS↑, Casp3↑, Casp8↑, Casp9↑, Cyt‑c↑, Diablo↑, BAX⇅, cl‑PPARα↓, PDGF↓, EGFR↓, FOXO↑, AP-1↓, JNK↓, COX2↓, angioG↓,
2302- EGCG,    Flavonoids Targeting HIF-1: Implications on Cancer Metabolism
- Review, Var, NA
TumCP↓, Hif1a↓, LDHA↓, PFK↓, cardioP↑, Glycolysis↓, PKM2↓,
2422- EMD,    Anti-Cancer Effects of Emodin on HepG2 Cells as Revealed by 1H NMR Based Metabolic Profiling
- in-vitro, HCC, HepG2
HK2↓, PKM2↓, LDHA↓, Glycolysis↓, TumCCA↑, ROS↓, glut↓, Hif1a↓,
948- F,    Low Molecular Weight Fucoidan Inhibits Tumor Angiogenesis through Downregulation of HIF-1/VEGF Signaling under Hypoxia
- vitro+vivo, Bladder, T24 - in-vitro, Nor, HUVECs
p‑PI3k/Akt/mTOR↓, p‑p70S6↓, p‑4E-BP1↓, angioG↓, Hif1a↓, VEGF↑, TumCG↓, TumVol↓, TumW↓, Iron∅, ROS↓,
2498- Fenb,    Unexpected Antitumorigenic Effect of Fenbendazole when Combined with Supplementary Vitamins
- in-vivo, lymphoma, NA
eff↓, eff↑, TumVol↓, antiOx↑, Hif1a↓,
949- FIS,  ATAGJ,  Cisplatin,    Ai-Tong-An-Gao-Ji and Fisetin Inhibit Tumor Cell Growth in Rat CIBP Models by Inhibiting the AKT/HIF-1α Signaling Pathway
- in-vivo, BC, Walker256 - in-vitro, BC, Walker256
Akt↓, Hif1a↓, p‑Akt↓,
2313- Flav,    Flavonoids against the Warburg phenotype—concepts of predictive, preventive and personalised medicine to cut the Gordian knot of cancer cell metabolism
- Review, Var, NA
Warburg↓, antiOx↑, angioG↓, Glycolysis↓, PKM2↓, PKM2:PKM1↓, β-catenin/ZEB1↓, cMyc↓, HK2↓, Akt↓, mTOR↓, GLUT1↓, Hif1a↓,
947- GA,    Gallic acid, a phenolic compound, exerts anti-angiogenic effects via the PTEN/AKT/HIF-1α/VEGF signaling pathway in ovarian cancer cells
- in-vitro, Ovarian, OVCAR-3 - in-vitro, Melanoma, A2780S - in-vitro, Nor, IOSE364 - Human, NA, NA
TumCG↓, VEGF↓, angioG↓, p‑Akt↓, Hif1a↓, PTEN↑, BioAv↑, *toxicity↓,
811- GAR,    Garcinol exhibits anti-proliferative activities by targeting microsomal prostaglandin E synthase-1 in human colon cancer cells
- in-vitro, CRC, HT-29
mPGES-1↓, Hif1a↓, VEGF↓, CXCR4↓, MMP2↓, MMP9↓, Casp3↑, TumCP↓, PGE2↓,
2998- GEN,    Cellular and Molecular Mechanisms Modulated by Genistein in Cancer
- Review, Var, NA
Hif1a↓, VEGF↓, PDGF↓, uPA↓, MMP2↓, MMP9↓, chemoP↑, TumCI↓, TumMeta↓, NF-kB↓, AP-1↓, IKKα↓, PI3K↓, Akt↓, EMT↓, CSCs↓,
836- Gra,    Graviola: A Novel Promising Natural-Derived Drug That Inhibits Tumorigenicity and Metastasis of Pancreatic Cancer Cells In Vitro and In Vivo Through Altering Cell Metabolism
- vitro+vivo, PC, NA
Hif1a↓, NF-kB↓, GLUT1↓, GLUT4↓, HK2↓, LDHA↓, TumCCA↑, TumMeta↓, GlucoseCon↓, ATP↓, necrosis↑, Casp∅, p‑FAK↓, MMP9↓, MUC4↓,
834- Gra,    Anticancer Properties of Graviola (Annona muricata): A Comprehensive Mechanistic Review
- Review, NA, NA
EGFR↓, PI3K/Akt↓, NF-kB↓, JAK↓, STAT↓, Hif1a↓, GLUT1↓, GLUT4↓, ROS↑, Catalase↑, SOD↑, HO-1↑,
1232- Gra,    Graviola: A Systematic Review on Its Anticancer Properties
- Review, NA, NA
EGFR↓, cycD1↓, Bcl-2↓, TumCCA↑, Apoptosis↑, ROS↑, MMP↓, BAX↑, Cyt‑c↑, Hif1a↓, NF-kB↓, GLUT1↓, GLUT4↓, HK2↓, LDHA↓, ATP↓,
2438- Gra,    Emerging therapeutic potential of graviola and its constituents in cancers
- Review, Var, NA
Hif1a↓, GLUT1↓, GLUT4↓, HK2↓, LDHA↓, MUC4↓, TumCCA↑, MMP↓, NF-kB↓, ROS↓, Bax:Bcl2↑, ER(estro)↓, cycD1↓, chemoP↑, hepatoP↑,
2519- H2,    Hydrogen: an advanced and safest gas option for cancer treatment
- Review, Var, NA
antiOx↑, neuroP↓, BBB↑, toxicity∅, TumCP↓, Apoptosis↓, ROS↑, Hif1a↓, NF-kB↓, P53?, OS↑, chemoP↑,
2512- H2,    Hydrogen Attenuates Allergic Inflammation by Reversing Energy Metabolic Pathway Switch
- in-vivo, asthmatic, NA
selectivity↑, lactateProd↓, ATP↑, HK2↓, PFK↓, Hif1a↓, PGC-1α↑, Glycolysis↓, OXPHOS↑, Dose↝,
1633- HCA,    Hydroxycitric Acid Alleviated Lung Ischemia-Reperfusion Injury by Inhibiting Oxidative Stress and Ferroptosis through the Hif-1α Pathway
- in-vivo, NA, NA - in-vitro, Nor, HUVECs
*other↓, *Inflam↓, *MDA↓, *ROS↓, *Iron↓, *SOD↓, *Hif1a↓, *HO-1↓,
960- HNK,    Honokiol Inhibits HIF-1α-Mediated Glycolysis to Halt Breast Cancer Growth
- vitro+vivo, BC, MCF-7 - vitro+vivo, BC, MDA-MB-231
OCR↑, ECAR↓, GlucoseCon↓, lactateProd↓, ATP↓, Glycolysis↓, Hif1a↓, GLUT1↓, HK2↓, PDK1↓, Apoptosis↑, LDHA↓,
2082- HNK,    Revealing the role of honokiol in human glioma cells by RNA-seq analysis
- in-vitro, GBM, U87MG - in-vitro, GBM, U251
AntiCan↑, TumCP↑, TumAuto↑, Apoptosis↑, *BioAv↑, *neuroP↑, *NF-kB↑, MAPK↑, GPx4↑, Tf↑, BAX↑, Bcl-2↓, antiOx↑, Hif1a↓, Ferroptosis↑,
2894- HNK,    Pharmacological features, health benefits and clinical implications of honokiol
- Review, Var, NA - Review, AD, NA
*BioAv↓, *neuroP↑, *BBB↑, *ROS↓, *Keap1↑, *NRF2↑, *Casp3↓, *SIRT3↑, *Rho↓, *ERK↓, *NF-kB↓, angioG↓, RAS↓, PI3K↓, Akt↓, mTOR↓, *memory↑, *Aβ↓, *PPARγ↑, *PGC-1α↑, NF-kB↓, Hif1a↓, VEGF↓, HO-1↓, Foxm1↓, p27↑, P21↑, CDK2↓, CDK4↓, CDK6↓, cycD1↓, Twist↓, MMP2↓, Rho↑, ROCK1↑, TumCMig↓, cFLIP↓, BMPs↑, OCR↑, ECAR↓, *AntiAg↑, *cardioP↑, *antiOx↑, *ROS↓, P-gp↓,
2892- HNK,    Honokiol Induces Apoptosis, G1 Arrest, and Autophagy in KRAS Mutant Lung Cancer Cells
- in-vitro, Lung, A549 - in-vitro, Lung, H460 - in-vitro, Lung, H385 - in-vitro, Nor, BEAS-2B
TumCCA↑, Apoptosis↑, SIRT3↑, Hif1a↓, selectivity↑, p‑mTOR↓, p70S6↓,
2896- HNK,    Honokiol inhibits hypoxia-inducible factor-1 pathway
- in-vivo, Colon, CT26
Hif1a↓, RadioS↑,
2900- HNK,    The Role and Therapeutic Perspectives of Sirtuin 3 in Cancer Metabolism Reprogramming, Metastasis, and Chemoresistance
- Review, Var, NA
SIRT3↑, Hif1a↓, ChemoSen↑, chemoP↑,
2864- HNK,    Honokiol: A Review of Its Anticancer Potential and Mechanisms
- Review, Var, NA
TumCCA↑, CDK2↓, EMT↓, MMPs↓, AMPK↑, TumCI↓, TumCMig↓, TumMeta↓, VEGFR2↓, *antiOx↑, *Inflam↓, *BBB↑, *neuroP↑, *ROS↓, Dose↝, selectivity↑, Casp3↑, Casp9↑, NOTCH1↓, cycD1↓, cMyc↓, P21?, DR5↑, cl‑PARP↑, P53↑, Mcl-1↑, p65↓, NF-kB↓, ROS↑, JNK↑, NRF2↑, cJun↑, EF-1α↓, MAPK↓, PI3K↓, mTORC1↓, CSCs↓, OCT4↓, Nanog↓, SOX4↓, STAT3↓, CDK4↓, p‑RB1↓, PGE2↓, COX2↓, β-catenin/ZEB1↑, IKKα↓, HDAC↓, HATs↑, H3↑, H4↑, LC3II↑, c-Raf↓, SIRT3↑, Hif1a↓, ER Stress↑, GRP78/BiP↑, cl‑CHOP↑, MMP↓, PCNA↓, Zeb1↓, NOTCH3↓, CD133↓, Nestin↓, ATG5↑, ATG7↑, survivin↓, ChemoSen↑, SOX2↓, OS↑, P-gp↓, Half-Life↓, Half-Life↝, eff↑, BioAv↓,
1166- IVM,    The importin α/β-specific inhibitor Ivermectin affects HIF-dependent hypoxia response pathways
- in-vitro, NA, NA
importin α/β↓, Hif1a↓,
974- JG,    Juglone down-regulates the Akt-HIF-1α and VEGF signaling pathways and inhibits angiogenesis in MIA Paca-2 pancreatic cancer in vitro
- in-vitro, PC, MIA PaCa-2
Hif1a↓, VEGF↓, p‑Akt↓, TumCP↓, TumCI↓,
1243- LA,    Lactobacilli Modulate Hypoxia-Inducible Factor (HIF)-1 Regulatory Pathway in Triple Negative Breast Cancer Cell Line
- in-vitro, BC, MDA-MB-231
Hif1a↓, HSP90↓, GLUT1↓, VHL↓, SHARP↑,
2906- LT,    Luteolin, a flavonoid with potentials for cancer prevention and therapy
- Review, Var, NA
*Inflam↓, AntiCan↑, antiOx⇅, Apoptosis↑, TumCP↓, TumMeta↓, angioG↓, PI3K↓, Akt↓, NF-kB↓, XIAP↓, P53↑, *ROS↓, *GSTA1↑, *GSR↑, *SOD↑, *Catalase↑, *other↓, ROS↑, Dose↝, chemoP↑, NF-kB↓, JNK↑, p27↑, P21↑, DR5↑, Casp↑, Fas↑, BAX↑, MAPK↓, CDK2↓, IGF-1↓, PDGF↓, EGFR↓, PKCδ↓, TOP1↓, TOP2↓, Bcl-xL↓, FASN↓, VEGF↓, VEGFR2↓, MMP9↓, Hif1a↓, FAK↓, MMP1↓, Twist↓, ERK↓, P450↓, CYP1A1↓, CYP1A2↓, TumCCA↑,
2912- LT,    Luteolin: a flavonoid with a multifaceted anticancer potential
- Review, Var, NA
ROS↑, TumCCA↑, TumCP↓, angioG↓, ER Stress↑, mtDam↑, PERK↑, ATF4↑, eIF2α↑, cl‑Casp12↑, EMT↓, E-cadherin↑, N-cadherin↓, Vim↓, *neuroP↑, NF-kB↓, PI3K↓, Akt↑, XIAP↓, MMP↓, Ca+2↑, BAX↑, Casp3↑, Casp9↑, Bcl-2↓, Cyt‑c↑, IronCh↑, SOD↓, *ROS↓, *LDHA↑, *SOD↑, *GSH↑, *BioAv↓, Telomerase↓, cMyc↓, hTERT↓, DR5↑, Fas↑, FADD↑, BAD↑, BOK↑, BID↑, NAIP↓, Mcl-1↓, CDK2↓, CDK4↓, MAPK↓, AKT1↓, Akt2↓, *Beclin-1↓, Hif1a↓, LC3II↑, Beclin-1↑,
3276- Lyco,    Lycopene modulates cellular proliferation, glycolysis and hepatic ultrastructure during hepatocellular carcinoma
- in-vivo, HCC, NA
G6PD↓, PCNA↓, cycD1↓, P21↑, Hif1a↓, Glycolysis↓,
1708- Lyco,    The Anti-Cancer Activity of Lycopene: A Systematic Review of Human and Animal Studies
- Review, Var, NA
OS↑, ChemoSen↑, QoL↑, PSA∅, eff↑, AntiCan↑, AntiCan↑, angioG↓, VEGF↓, Hif1a↓, SOD↑, Catalase↑, GPx↑, GSH↑, GPx↑, GR↑, MDA↓, NRF2↑, HO-1↑, COX2↓, PGE2↓, NF-kB↓, IL4↑, IL10↑, IL6↓, TNF-α↓, PPARγ↑, TumCCA↑, FOXO3↓, Casp3↑, IGF-1↓, p27↑, STAT3↓, CDK2↓, CDK4↓, P21↑, PCNA↓, MMP7↓, MMP9↓,
972- MAG,    Magnolol suppresses hypoxia-induced angiogenesis via inhibition of HIF-1α/VEGF signaling pathway in human bladder cancer cells
- vitro+vivo, Bladder, T24
angioG↓, VEGF↓, H2O2↓, Hif1a↓, VEGFR2↓, Akt↓, mTOR↓, P70S6K↓, 4E-BP1↓, TumCG↓, CD31↓, CA↓,
2500- meben,    Antiparasitic mebendazole shows survival benefit in 2 preclinical models of glioblastoma multiforme
- in-vitro, GBM, U87MG - in-vivo, GBM, NA
α-tubulin↓, AntiCan↑, TumCG↓, OS↑, VEGF↓, Hif1a↓,
1782- MEL,    Melatonin in Cancer Treatment: Current Knowledge and Future Opportunities
- Review, Var, NA
AntiCan↑, Apoptosis↑, TumCP↓, TumCG↑, TumMeta↑, ChemoSideEff↓, radioP↑, ChemoSen↑, *ROS↓, *SOD↑, *GSH↑, *GPx↑, *Catalase↑, Dose∅, VEGF↓, eff↑, Hif1a↓, GLUT1↑, GLUT3↑, CAIX↑, P21↑, p27↑, PTEN↑, Warburg↓, PI3K↓, Akt↓, NF-kB↓, cycD1↓, CDK4↓, CycB↓, CDK4↓, MAPK↑, IGF-1R↓, STAT3↓, MMP9↓, MMP2↓, MMP13↓, E-cadherin↑, Vim↓, RANKL↓, JNK↑, Bcl-2↓, P53↑, Casp3↑, Casp9↑, BAX↑, DNArepair↑, COX2↓, IL6↓, IL8↓, NO↓, T-Cell↑, NK cell↑, Treg lymp↓, FOXP3↓, CD4+↑, TNF-α↑, Th1 response↑, BioAv↝, RadioS↑, OS↑,
971- MEL,    Melatonin down-regulates HIF-1 alpha expression through inhibition of protein translation in prostate cancer cells
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3 - in-vitro, Pca, LNCaP
Hif1a↓, VEGF↓, p‑p70S6↓,
1066- MET,    Metformin increases PDH and suppresses HIF-1α under hypoxic conditions and induces cell death in oral squamous cell carcinoma
- in-vitro, SCC, NA
PDH↑, Hif1a↓, TumCMig↓, Casp3↑, P53∅,
970- MET,    Metformin suppresses HIF-1α expression in cancer-associated fibroblasts to prevent tumor-stromal cross talk in breast cancer
CAFs/TAFs↝, p‑AMPK↑, PHDs↑, Hif1a↓, TumCI↓,
2371- MET,    The role of pyruvate kinase M2 in anticancer therapeutic treatments
- Review, Var, NA
ChemoSen↑, PKM2↓, Hif1a↓, EMT↓,
2386- MET,    Mechanisms of metformin inhibiting cancer invasion and migration
- Review, Var, NA
OS↑, AMPK↑, EMT↓, TGF-β↓, mTOR↓, P70S6K↓, PKM2↓, Hif1a↓, ChemoSen↑,
2378- MET,    Metformin inhibits epithelial-mesenchymal transition of oral squamous cell carcinoma via the mTOR/HIF-1α/PKM2/STAT3 pathway
- in-vitro, SCC, CAL27 - in-vivo, NA, NA
TumCP↓, TumCMig↓, TumCI↓, EMT↓, mTOR↓, Hif1a↓, PKM2↓, STAT3↓, E-cadherin↑, Vim↓, Snail↓, STAT3↓,
2376- MET,    Metformin Inhibits Epithelial-to-Mesenchymal Transition of Keloid Fibroblasts via the HIF-1α/PKM2 Signaling Pathway
- in-vitro, Nor, NA
*Hif1a↓, *EMT↓, *p‑P70S6K↓, *PKM2↓,
2375- MET,    Metformin inhibits gastric cancer via the inhibition of HIF1α/PKM2 signaling
- in-vitro, GC, SGC-7901
tumCV↓, TumCI↓, TumCMig↓, Apoptosis↑, PARP↓, PI3K↓, Akt↓, Hif1a↓, PKM2↓, COX2↓,
2487- metroC,    Metronomic Chemotherapy: Possible Clinical Application in Advanced Hepatocellular Carcinoma
- Review, HCC, NA
toxicity↓, toxicity↓, eff↝, angioG↓, CSCs↓, TSP-1↑, Hif1a↓, VEGF↓, eff↑,
2245- MF,    Quantum based effects of therapeutic nuclear magnetic resonance persistently reduce glycolysis
- in-vitro, Nor, NIH-3T3
Warburg↓, Hif1a↓, *Hif1a∅, Glycolysis↓, *lactateProd↓, *ADP:ATP↓, Pyruv↓, ADP:ATP↓, *PPP↓, *mt-ROS↑, *ROS↓, RPM↑, *ECAR↓,
1203- MSM,    Methylsulfonylmethane Suppresses Breast Cancer Growth by Down-Regulating STAT3 and STAT5b Pathways
- vitro+vivo, BC, MDA-MB-231
tumCV↓, STAT3↓, STAT5↓, IGF-1↓, Hif1a↓, VEGF↓, Brk/PTK6↓, IGF-1R↓,
1270- NCL,  Rad,    Niclosamide enhances the antitumor effects of radiation by inhibiting the hypoxia-inducible factor-1α/vascular endothelial growth factor signaling pathway in human lung cancer cells
- in-vivo, Lung, NA
Hif1a↓, VEGF↓,
968- OA,    Oroxylin A inhibits glycolysis-dependent proliferation of human breast cancer via promoting SIRT3-mediated SOD2 transcription and HIF1α destabilization
- vitro+vivo, BC, MDA-MB-231 - in-vitro, BC, MBT-2
Hif1a↓, SIRT3↑, SOD2↑, GlucoseCon↓, Glycolysis↓, TumCG↓,
1813- Oxy,    Advances in hyperbaric oxygen to promote immunotherapy through modulation of the tumor microenvironment
- Review, Var, NA
ChemoSen↑, RadioS↑, PD-L1↓, Hif1a↓, ROS↑,
2396- PACs,    PKM2 is the target of proanthocyanidin B2 during the inhibition of hepatocellular carcinoma
- in-vitro, HCC, HCCLM3 - in-vitro, HCC, SMMC-7721 cell - in-vitro, HCC, Bel-7402 - in-vitro, HCC, HUH7 - in-vitro, HCC, HepG2 - in-vitro, Nor, L02
TumCP↓, TumCCA↓, Apoptosis↑, GlucoseCon↓, lactateProd↓, PKM2↓, Glycolysis↓, HK2↓, PFK↓, OXPHOS↑, ChemoSen↑, HSP90↓, Hif1a↓,
959- PACs,    Grape seed extract inhibits VEGF expression via reducing HIF-1α protein expression
- in-vitro, GBM, U251 - in-vitro, BC, MDA-MB-231
Hif1a↓, p‑Akt↓, p‑S6K↓, p‑S6↓, VEGF↓,
2380- PBG,    Potential Strategies for Overcoming Drug Resistance Pathways Using Propolis and Its Polyphenolic/Flavonoid Compounds in Combination with Chemotherapy and Radiotherapy
- Review, Var, NA
Hif1a↓, Glycolysis↓, PKM2↓, LDHA↓, GLUT2↓, HK2↓, PFK1↓, PDK1↓, chemoP↓, radioP↑,
1666- PBG,    Molecular and Cellular Mechanisms of Propolis and Its Polyphenolic Compounds against Cancer
- Review, Var, NA
ChemoSen↑, TumCCA↑, TumCP↓, Apoptosis↑, antiOx↓, ROS↑, COX2↑, ER(estro)↓, cycA1↓, CycB↓, CDK2↓, P21↑, p27↑, hTERT↓, HDAC↓, ROS⇅, Dose?, ROS↓, ROS↑, DNAdam↑, ChemoSen↑, LOX1↓, lipid-P↓, NO↑, Igs↑, NK cell↑, MMPs↓, VEGF↓, Hif1a↓, GLUT1↓, HK2↓, selectivity↑, RadioS↑, GlucoseCon↓, lactateProd↓, eff↓, *BioAv↓,
1668- PBG,    Propolis: A Detailed Insight of Its Anticancer Molecular Mechanisms
- Review, Var, NA
antiOx↑, Inflam↓, AntiCan↑, TumCP↓, Apoptosis↑, eff↝, MMPs↓, TNF-α↓, iNOS↓, COX2↓, IL1β↑, *BioAv↓, BAX↑, Casp3↑, Cyt‑c↑, Bcl-2↓, eff↑, selectivity↑, P53↑, ROS↑, Casp↑, eff↑, ERK↓, Dose∅, TRAIL↑, NF-kB↑, ROS↑, Dose↑, MMP↓, DNAdam↑, TumAuto↑, LC3II↑, p62↓, EGF↓, Hif1a↓, VEGF↓, TLR4↓, GSK‐3β↓, NF-kB↓, Telomerase↓, ChemoSen↑, ChemoSideEff↓,
1662- PBG,    The immunomodulatory and anticancer properties of propolis
- Review, Var, NA
IL6↓, IL12↓, IL10↑, CSCs↓, PAK1↓, VEGF↓, MMP2↓, MMP9↓, NF-kB↓, Hif1a↓, ChemoSen↑, RadioS↑,
3259- PBG,    Propolis and its therapeutic effects on renal diseases: A review
- Review, Nor, NA
*Inflam↓, *COX2↓, *ROS↓, *NO↓, *NF-kB↓, TumCP↓, angioG↓, VEGF↓, STAT↓, Hif1a↓, RenoP↑, TLR4↓, *MDA↓, *GSH↑, *SOD↑, *Catalase↑, *toxicity∅,
2953- PL,    Piperlongumine Acts as an Immunosuppressant by Exerting Prooxidative Effects in Human T Cells Resulting in Diminished TH17 but Enhanced Treg Differentiation
- in-vitro, Nor, NA
*ROS↑, *GSTA1↓, eff↝, *toxicity↓, ROS↑, *Hif1a↓,
2999- PL,    Piperlongumine alleviates corneal allograft rejection via suppressing angiogenesis and inflammation
- in-vivo, Nor, HUVECs
*Inflam↓, *angioG↓, *Hif1a↓, *VEGF↓, *ICAM-1↓, *VCAM-1↓, *neuroP↑,
2300- QC,    Flavonoids Targeting HIF-1: Implications on Cancer Metabolism
- Review, Var, NA
AntiTum↑, Hif1a↓, *Hif1a↑, Glycolysis↓, HK2↓, PDK3↓, PFKP?,
2303- QC,  doxoR,    Quercetin greatly improved therapeutic index of doxorubicin against 4T1 breast cancer by its opposing effects on HIF-1α in tumor and normal cells
- in-vitro, BC, 4T1 - in-vivo, NA, NA
cardioP↑, hepatoP↑, TumCG↓, OS↑, ChemoSen↑, chemoP↑, Hif1a↓, *Hif1a↑, selectivity↑, TumVol↓, OS↑,
3353- QC,    Quercetin triggers cell apoptosis-associated ROS-mediated cell death and induces S and G2/M-phase cell cycle arrest in KON oral cancer cells
- in-vitro, Oral, KON - in-vitro, Nor, MRC-5
tumCV↓, selectivity↑, TumCCA↑, TumCMig↓, TumCI↓, Apoptosis↑, TumMeta↓, Bcl-2↓, BAX↑, TIMP1↑, MMP2↓, MMP9↓, *Inflam↓, *neuroP↑, *cardioP↑, p38↓, MAPK↓, Twist↓, P21↓, cycD1↓, Casp3↑, Casp9↑, p‑Akt↓, p‑ERK↓, CD44↓, CD24↓, ChemoSen↑, MMP↓, Cyt‑c↑, AIF↑, ROS↑, Ca+2↑, Hif1a↓, VEGF↓,
3368- QC,    The potential anti-cancer effects of quercetin on blood, prostate and lung cancers: An update
- Review, Var, NA
*Inflam↓, *antiOx↑, *AntiCan↑, Casp3↓, p‑Akt↓, p‑mTOR↓, p‑ERK↓, β-catenin/ZEB1↓, Hif1a↓, AntiAg↓, VEGFR2↓, EMT↓, EGFR↓, MMP2↓, MMP↓, TumMeta↓, MMPs↓, Akt↓, Snail↓, N-cadherin↓, Vim↓, E-cadherin↑, STAT3↓, TGF-β↓, ROS↓, P53↑, BAX↑, PKCδ↓, PI3K↓, COX2↓, cFLIP↓, cycD1↓, cMyc↓, IL6↓, IL10↓, Cyt‑c↑, TumCCA↑, DNMTs↓, HDAC↓, ac‑H3↑, ac‑H4↑, Diablo↑, Casp3↑, Casp9↑, PARP1↑, eff↑, PTEN↑, VEGF↓, NO↓, iNOS↓, ChemoSen↑, eff↑, eff↑, eff↑, uPA↓, CXCR4↓, CXCL12↓, CLDN2↓, CDK6↓, MMP9↓, TSP-1↑, Ki-67↓, PCNA↓, ROS↑, ER Stress↑,
910- QC,    The Anti-Cancer Effect of Quercetin: Molecular Implications in Cancer Metabolism
tumCV↓, Apoptosis↑, PI3k/Akt/mTOR↓, Wnt/(β-catenin)↓, MAPK↝, ERK↝, TumCCA↑, H2O2↑, ROS↑, TumAuto↑, MMPs↓, P53↑, Casp3↑, Hif1a↓, cFLIP↓, IL6↓, IL10↓, lactateProd↓, Glycolysis↓, PKM2↓, GLUT1↓, COX2↓, VEGF↓, OCR↓, ECAR↓, STAT3↓, MMP2↓, MMP9:TIMP1↓, mTOR↓,
967- RES,    Resveratrol binds and inhibits transcription factor HIF-1α in pancreatic cancer
- Analysis, PC, NA
Hif1a↓,
2332- RES,    Resveratrol’s Anti-Cancer Effects through the Modulation of Tumor Glucose Metabolism
- Review, Var, NA
Glycolysis↓, GLUT1↓, PFK1↓, Hif1a↓, ROS↑, PDH↑, AMPK↑, TumCG↓, TumCI↓, TumCP↓, p‑NF-kB↓, SIRT1↑, SIRT3↑, LDH↓, PI3K↓, mTOR↓, PKM2↓, R5P↝, G6PD↓, TKT↝, talin↓, HK2↓, GRP78/BiP↑, GlucoseCon↓, ER Stress↑, Warburg↓, PFK↓,
2471- RES,    Resveratrol Regulates Glucose and Lipid Metabolism in Diabetic Rats by Inhibition of PDK1/AKT Phosphorylation and HIF-1α Expression
- in-vivo, Diabetic, NA
*p‑PDK1↓, *p‑Akt↓, *Hif1a↓, *GLUT1↓,
3080- RES,    Resveratrol: A miraculous natural compound for diseases treatment
- Review, Var, NA
SIRT1↑, ROCK1↓, AMPK↑, *lipid-P↓, Aβ↓, COX2↓, angioG↓, Hif1a↓, VEGF↓,
3071- RES,    Resveratrol and Its Anticancer Effects
- Review, Var, NA
chemoP↑, SIRT1↑, Hif1a↓, VEGF↓, STAT3↓, NF-kB↓, COX2↓, PI3K↓, mTOR↓, NRF2↑, NLRP3↓, H2O2↑, ROS↑, P53↑, PUMA↑, BAX↑,
3076- RES,    Resveratrol for targeting the tumor microenvironment and its interactions with cancer cells
- Review, Var, NA
IL6↓, MMPs↓, MMP2↓, MMP9↓, BioAv↓, Half-Life↑, BioAv↑, Dose↝, angioG↓, IL10↓, VEGF↓, NF-kB↓, COX2↓, SIRT1↑, Wnt↓, cMyc↓, STAT3↓, PTEN↑, ROS↑, RadioS↑, Hif1a↓, E-cadherin↓, Vim↓, angioG↓,
3064- RES,    Resveratrol Suppresses Cancer Cell Glucose Uptake by Targeting Reactive Oxygen Species–Mediated Hypoxia-Inducible Factor-1α Activation
- in-vitro, CRC, HT-29 - in-vitro, BC, T47D - in-vitro, Lung, LLC1
FDG↓, ROS↓, Hif1a↓, GLUT1↓, lactateProd↓,
3055- RES,    Resveratrol and Tumor Microenvironment: Mechanistic Basis and Therapeutic Targets
- Review, Var, NA
BioAv↓, BioAv↓, Dose↑, eff↑, eff↑, Dose↑, BioAv↑, ROS↑, MMP↓, P21↑, p27↑, TumCCA↑, ChemoSen↑, COX2↓, 5LO↓, VEGF↓, IL1↓, IL6↓, IL8↓, AR↓, PSA↓, MAPK↓, Hif1a↓, Glycolysis↓, miR-21↓, PTEN↑, Half-Life↝, *IGF-1↓, *IGFBP3↑, Half-Life↓,
3082- RES,    Resveratrol Ameliorates the Malignant Progression of Pancreatic Cancer by Inhibiting Hypoxia-induced Pancreatic Stellate Cell Activation
- in-vitro, PC, PANC1 - in-vitro, PC, MIA PaCa-2 - in-vivo, NA, NA
VEGF↓, CXCL12↓, IL6↓, α-SMA↓, Hif1a↓, TumCI↓, EMT↓,
3092- RES,    Resveratrol in breast cancer treatment: from cellular effects to molecular mechanisms of action
- Review, BC, MDA-MB-231 - Review, BC, MCF-7
TumCP↓, tumCV↓, TumCI↓, TumMeta↓, *antiOx↑, *cardioP↑, *Inflam↓, *neuroP↑, *Keap1↓, *NRF2↑, *ROS↓, p62↓, IL1β↓, CRP↓, VEGF↓, Bcl-2↓, MMP2↓, MMP9↓, FOXO4↓, POLD1↓, CK2↓, MMP↓, ROS↑, Apoptosis↑, TumCCA↑, Beclin-1↓, Ki-67↓, ATP↓, GlutMet↓, PFK↓, TGF-β↓, SMAD2↓, SMAD3↓, Vim?, Snail↓, Slug↓, E-cadherin↑, EMT↓, Zeb1↓, Fibronectin↓, IGF-1↓, PI3K↓, Akt↓, HO-1↑, eff↑, PD-1↓, CD8+↑, Th1 response↑, CSCs↓, RadioS↑, SIRT1↑, Hif1a↓, mTOR↓,
3089- RES,    The Role of Resveratrol in Cancer Therapy
- Review, Var, NA
angioG↓, VEGF↓, EGFR↓, FGF↑, TumCMig↓, TumCI↓, TIMP1↑, MMP2↓, MMP9↓, NF-kB↓, Hif1a↓, PI3K↓, Akt↓, MAPK↓, EMT↓, AR↓,
3081- RES,    Resveratrol and p53: How are they involved in CRC plasticity and apoptosis?
- Review, CRC, NA
NF-kB↓, FAK↓, Ki-67↓, MMP9↓, CSCs↓, CD44↓, CD133↓, ALDH1A1↓, EMT↓, ChemoSen↑, Hif1a↓, ITGB1↓, Inflam↓,
2687- RES,    Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs
- Review, NA, NA - Review, AD, NA
NF-kB↓, P450↓, COX2↓, Hif1a↓, VEGF↓, *SIRT1↑, SIRT1↓, SIRT2↓, ChemoSen⇅, cardioP↑, *memory↑, *angioG↑, *neuroP↑, STAT3↓, CSCs↓, RadioS↑, Nestin↓, Nanog↓, TP53↑, P21↑, CXCR4↓, *BioAv↓, EMT↓, Vim↓, Slug↓, E-cadherin↑, AMPK↑, MDR1↓, DNAdam↑, TOP2↓, PTEN↑, Akt↓, Wnt↓, β-catenin/ZEB1↓, cMyc↓, MMP7↓, MALAT1↓, TCF↓, ALDH↓, CD44↓, Shh↓, IL6↓, VEGF↓, eff↑, HK2↓, ROS↑, MMP↓,
1748- RosA,    The Role of Rosmarinic Acid in Cancer Prevention and Therapy: Mechanisms of Antioxidant and Anticancer Activity
- Review, Var, NA
AntiCan↑, *BioAv↝, *CardioT↓, *Iron↓, *ROS↓, *SOD↑, *Catalase↑, *GPx↑, *NRF2↑, MARK4↓, MMP9↓, TumCCA↑, Bcl-2↓, BAX↑, Apoptosis↑, E-cadherin↑, N-cadherin↓, Vim↓, Gli1↓, HDAC2↓, Warburg↓, Hif1a↓, miR-155↓, p‑PI3K↑, ROS↑, *IronCh↑,
3022- RosA,    Rosmarinic acid against cognitive impairment via RACK1/HIF-1α regulated microglial polarization in sepsis-surviving mice
- in-vitro, Sepsis, NA
*cognitive↑, *neuroP↑, *GlucoseCon↑, *Hif1a↓,
3001- RosA,    Therapeutic Potential of Rosmarinic Acid: A Comprehensive Review
- Review, Var, NA
TumCP↓, Apoptosis↑, TumMeta↓, Inflam↓, *antiOx↑, *AntiAge↑, *ROS↓, BioAv↑, Dose↝, NRF2↑, P-gp↑, ATP↑, MMPs↓, cl‑PARP↓, Hif1a↓, GlucoseCon↓, lactateProd↓, Warburg↓, TNF-α↓, COX2↓, IL6↓, HDAC2↓, GSH↑, ROS↓, ChemoSen↑, *BG↓, *IL1β↓, *TNF-α↓, *IL6↓, *p‑JNK↓, *p38↓, *Catalase↑, *SOD↑, *GSTs↑, *VitC↑, *VitE↑, *GSH↑, *GutMicro↑, *cardioP↑, *ROS↓, *MMP↓, *lipid-P↓, *NRF2↑, *hepatoP↑, *neuroP↑, *P450↑, *HO-1↑, *AntiAge↑, *motorD↓,
3036- RosA,    Anti-Warburg effect of rosmarinic acid via miR-155 in colorectal carcinoma cells
- in-vitro, CRC, HCT8 - in-vitro, CRC, HCT116 - in-vitro, CRC, LS174T
GlucoseCon↓, lactateProd↓, Hif1a↓, Inflam↓, miR-155↓, STAT3↓, Glycolysis↓, IL6↓, Warburg↓,
966- RT,    Antioxidant Mechanism of Rutin on Hypoxia-Induced Pulmonary Arterial Cell Proliferation
- vitro+vivo, Nor, NA
*ROS↓, *NOX4↓, *Hif1a↓, *α-tubulin↓,
1210- SANG,    Sanguinarine combats hypoxia-induced activation of EphB4 and HIF-1α pathways in breast cancer
- in-vitro, BC, NA
EphB4↓, Hif1a↓, STAT3↓, MAPK↓, ERK↓,
1134- SANG,    Sanguinarine inhibits epithelial–mesenchymal transition via targeting HIF-1α/TGF-β feed-forward loop in hepatocellular carcinoma
- in-vitro, HCC, HepG2 - in-vitro, HCC, Hep3B - in-vitro, HCC, HUH7
Hif1a↓, EMT↓, Snail↓, PI3K↓, Akt↓, SMAD2↓, SMAD3↓,
1688- Se,    Potential Role of Selenium in the Treatment of Cancer and Viral Infections
- Review, Var, NA
IL2↑, INF-γ↑, Th1 response↑, Th2↑, Dose↑, AntiCan∅, Risk↑, chemoP↑, Hif1a↓, VEGF↓, selectivity↑, *GADD45A↑, NRF2↓, *NRF2↑, ChemoSen↑, angioG↓, PrxI↓, ChemoSideEff↓, eff↑,
1725- SFN,    Anticancer Activity of Sulforaphane: The Epigenetic Mechanisms and the Nrf2 Signaling Pathway
- Review, Var, NA
*toxicity∅, AntiCan↑, antiOx↑, NRF2↑, DNMTs↓, HDAC↓, Hif1a↓, VEGF↓, P21↑, TumCCA↑, ac‑H3↑, ac‑H4↑, DNAdam↑, Dose↝,
1732- SFN,    Sulforaphane, a Dietary Component of Broccoli/Broccoli Sprouts, Inhibits Breast Cancer Stem Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, SUM159 - in-vivo, NA, NA
TumCD↑, CSCs↓, Wnt↓, β-catenin/ZEB1↓, *BioAv↑, angioG↓, VEGF↓, Hif1a↓, MMP2↓, MMP9↓, Casp3↑, *Half-Life∅,
1734- SFN,    Sulforaphane Inhibits Nonmuscle Invasive Bladder Cancer Cells Proliferation through Suppression of HIF-1α-Mediated Glycolysis in Hypoxia
- in-vitro, Bladder, RT112
selectivity↑, TumCP↓, Glycolysis↓, Hif1a↓,
1726- SFN,    Sulforaphane: A Broccoli Bioactive Phytocompound with Cancer Preventive Potential
- Review, Var, NA
Dose↝, eff↝, IL1β↓, IL6↓, IL12↓, TNF-α↓, COX2↓, CXCR4↓, MPO↓, HSP70/HSPA5↓, HSP90↓, VCAM-1↓, IKKα↓, NF-kB↓, HO-1↑, Casp3↑, Casp7↑, Casp8↑, Casp9↑, cl‑PARP↑, Cyt‑c↑, Diablo↑, CHOP↑, survivin↓, XIAP↓, p38↑, Fas↑, PUMA↑, VEGF↓, Hif1a↓, Twist↓, Zeb1↓, Vim↓, MMP2↓, MMP9↓, E-cadherin↑, N-cadherin↓, Snail↓, CD44↓, cycD1↓, cycA1↓, CycB↓, cycE↓, CDK4↓, CDK6↓, p50↓, P53↑, P21↑, GSH↑, SOD↑, GSTs↑, mTOR↓, Akt↓, PI3K↓, β-catenin/ZEB1↓, IGF-1↓, cMyc↓,
1484- SFN,    Sulforaphane’s Multifaceted Potential: From Neuroprotection to Anticancer Action
- Review, Var, NA - Review, AD, NA
neuroP↑, AntiCan↑, NRF2↑, HDAC↓, eff↑, *ROS↓, neuroP↑, HDAC↓, *toxicity∅, BioAv↑, eff↓, cycD1↓, CDK4↓, p‑RB1↓, Glycolysis↓, miR-30a-5p↑, TumCCA↑, TumCG↓, TumMeta↓, eff↑, ChemoSen↑, RadioS↑, CardioT↓, angioG↓, Hif1a↓, VEGF↓, *BioAv?, *Half-Life∅,
1452- SFN,    Sulforaphane Suppresses the Nicotine-Induced Expression of the Matrix Metalloproteinase-9 via Inhibiting ROS-Mediated AP-1 and NF-κB Signaling in Human Gastric Cancer Cells
- in-vitro, GC, AGS
MMP9↓, p38↓, ERK↓, AP-1↓, ROS↓, NF-kB↓, TumCI↓, MMP9↓, HDAC↓, Glycolysis↓, Hif1a↓, *memory↑, *cognitive↑,
1434- SFN,  GEM,    Sulforaphane Potentiates Gemcitabine-Mediated Anti-Cancer Effects against Intrahepatic Cholangiocarcinoma by Inhibiting HDAC Activity
- in-vitro, CCA, HuCCT1 - in-vitro, CCA, HuH28 - in-vivo, NA, NA
HDAC↓, ac‑H3↑, ChemoSen↑, tumCV↓, TumCP↓, TumCCA↑, Apoptosis↑, cl‑Casp3↑, TumCI↓, VEGF↓, VEGFR2↓, Hif1a↓, eNOS↓, EMT?, TumCG↓, Ki-67↓, TUNEL↑, P21↑, p‑Chk2↑, CDC25↓, BAX↑, *ROS↓, NQO1?,
1508- SFN,    Nrf2 targeting by sulforaphane: A potential therapy for cancer treatment
- Review, Var, NA
*BioAv↑, HDAC↓, TumCCA↓, eff↓, Wnt↓, β-catenin/ZEB1↓, Casp12?, Bcl-2↓, cl‑PARP↑, Bax:Bcl2↑, IAP1↓, Casp3↑, Casp9↑, Telomerase↓, hTERT↓, ROS?, DNMTs↓, angioG↓, VEGF↓, Hif1a↓, cMYB↓, MMP1↓, MMP2↓, MMP9↓, ERK↑, E-cadherin↑, CD44↓, MMP2↓, eff↑, IL2↑, IFN-γ↑, IL1β↓, IL6↓, TNF-α↓, NF-kB↓, ERK↓, NRF2↑, RadioS↑, ChemoSideEff↓,
1509- SFN,    Combination therapy in combating cancer
- Review, NA, NA
NRF2↑, ChemoSideEff↓, eff↑, TumCP↓, Apoptosis↑, TumCCA↑, eff↑, PSA↓, P53↑, Hif1a↓, CAIX↓, chemoR↓, 5HT↓,
2556- SFN,    The role of Sulforaphane in cancer chemoprevention and health benefits: a mini-review
- Review, Var, NA
chemoP↑, HDAC↓, Hif1a↓, angioG↓, CYP1A1↓, eff↑, BioAv↑,
2448- SFN,    Sulforaphane and bladder cancer: a potential novel antitumor compound
- Review, Bladder, NA
Apoptosis↑, TumCG↓, TumCI↓, TumMeta↓, glucoNG↓, ChemoSen↑, TumCCA↑, Casp3↑, Casp7↑, cl‑PARP↑, survivin↓, EGFR↓, HER2/EBBR2↓, ATP↓, Glycolysis↓, mt-OXPHOS↓, AKT1↓, HK2↓, Hif1a↓, ROS↑, NRF2↑, EMT↓, COX2↓, MMP2↓, MMP9↓, Zeb1↓, Snail↓, HDAC↓, HATs↓, MMP↓, Cyt‑c↓, Shh↓, Smo↓, Gli1↓, BioAv↝, BioAv↝, Dose↝,
2446- SFN,  CAP,    The Molecular Effects of Sulforaphane and Capsaicin on Metabolism upon Androgen and Tip60 Activation of Androgen Receptor
- in-vitro, Pca, LNCaP
AR↓, Bcl-xL↓, TumCP↓, Glycolysis↓, HK2↓, PKA↓, Hif1a↓, PSA↓, ECAR↓, BioAv↑, BioAv↓, *toxicity↓,
2406- SFN,    Sulforaphane and Its Protective Role in Prostate Cancer: A Mechanistic Approach
- Review, Pca, NA
HK2↓, PKM2↓, LDHA↓, Glycolysis↓, LAMP2↑, Hif1a↓, DNAdam↓, DNArepair↓, Dose↝,
963- SFN,    Sulforaphane inhibits hypoxia-induced HIF-1α and VEGF expression and migration of human colon cancer cells
- in-vitro, CRC, HCT116 - in-vitro, GC, AGS
Hif1a↓, VEGF↓, angioG↓, Akt∅, ERK∅,
3301- SIL,    Critical review of therapeutic potential of silymarin in cancer: A bioactive polyphenolic flavonoid
- Review, Var, NA
Inflam↓, TumCCA↑, Apoptosis↓, TumMeta↓, TumCG↓, angioG↓, chemoP↑, radioP↑, p‑ERK↓, p‑p38↓, p‑JNK↓, P53↑, Bcl-2↓, Bcl-xL↓, TGF-β↓, MMP2↓, MMP9↓, E-cadherin↑, Wnt↓, Vim↓, VEGF↓, IL6↓, STAT3↓, *ROS↓, IL1β↓, PGE2↓, CDK1↓, CycB↓, survivin↓, Mcl-1↓, Casp3↑, Casp9↑, cMyc↓, COX2↓, Hif1a↓, CXCR4↓, CSCs↓, EMT↓, N-cadherin↓, PCNA↓, cycD1↓, ROS↑, eff↑, eff↑, eff↑, HER2/EBBR2↓,
3282- SIL,    Role of Silymarin in Cancer Treatment: Facts, Hypotheses, and Questions
- Review, NA, NA
hepatoP↑, AntiCan↑, TumCMig↓, Hif1a↓, selectivity↑, toxicity∅, *antiOx↑, *Inflam↓, *NA↓, TumCCA↑, P21↑, CDK4↓, NF-kB↓, ERK↓, PSA↓, TumCG↓, p27↑, COX2↓, IL1↓, VEGF↓, IGFBP3↑, AR↓, STAT3↓, Telomerase↓, Cyt‑c↑, Casp↑, eff↝, HDAC↓, HATs↑, Zeb1↓, E-cadherin↑, miR-203↑, NHE1↓, MMP2↓, MMP9↓, PGE2↓, Vim↓, Wnt↓, angioG↓, VEGF↓, *TIMP1↓, EMT↓, TGF-β↓, CD44↓, EGFR↓, PDGF↓, *IL8↓, SREBP1↓, MMP↓, ATP↓, uPA↓, PD-L1↓, NOTCH↓, *SIRT1↑, SIRT1↓, CA↓, Ca+2↑, chemoP↑, cardioP↑, Dose↝, Half-Life↝, BioAv↓, BioAv↓, BioAv↓, toxicity↝, Half-Life↓, ROS↓, FAK↓,
3288- SIL,    Silymarin in cancer therapy: Mechanisms of action, protective roles in chemotherapy-induced toxicity, and nanoformulations
- Review, Var, NA
Inflam↓, lipid-P↓, TumMeta↓, angioG↓, chemoP↑, EMT↓, HDAC↓, HATs↑, MMPs↓, uPA↓, PI3K↓, Akt↓, VEGF↓, CD31↓, Hif1a↓, VEGFR2↓, Raf↓, MEK↓, ERK↓, BIM↓, BAX↑, Bcl-2↓, Bcl-xL↓, Casp↑, MAPK↓, P53↑, LC3II↑, mTOR↓, YAP/TEAD↓, *BioAv↓, MMP↓, Cyt‑c↑, PCNA↓, cMyc↓, cycD1↓, β-catenin/ZEB1↓, survivin↓, APAF1↑, Casp3↑, MDSCs↓, IL10↓, IL2↑, IFN-γ↑, hepatoP↑, cardioP↑, GSH↑, neuroP↑,
3290- SIL,    A review of therapeutic potentials of milk thistle (Silybum marianum L.) and its main constituent, silymarin, on cancer, and their related patents
- Analysis, Var, NA
hepatoP↑, chemoP↑, *lipid-P↓, *antiOx↑, tumCV↓, TumCMig↓, Apoptosis↑, ROS↑, GSH↓, Bcl-2↓, survivin↓, cycD1↓, NOTCH1↓, BAX↑, NF-kB↓, COX2↓, LOX1↓, iNOS↓, TNF-α↓, IL1↓, Inflam↓, *toxicity↓, CXCR4↓, EGFR↓, ERK↓, MMP↓, Cyt‑c↑, TumCCA↑, RB1↑, P53↑, P21↑, p27↑, cycE↓, CDK4↓, p‑pRB↓, Hif1a↓, cMyc↓, IL1β↓, IFN-γ↓, PCNA↓, PSA↓, CYP1A1↓,
3289- SIL,    Silymarin: a promising modulator of apoptosis and survival signaling in cancer
- Review, Var, NA
*BioAv↝, *BioAv↓, Fas↑, FasL↑, FADD↑, pro‑Casp8↑, Apoptosis↑, DR5↑, Bcl-2↑, BAX↑, Casp3↑, PI3K↓, Foxm1↓, p‑mTOR↓, p‑P70S6K↓, Hif1a↓, Akt↑, angioG↓, STAT3↓, NF-kB↓, lipid-P↓, eff↑, CDK1↓, survivin↓, CycB↓, Mcl-1↓, Casp9↑, AP-1↓, BioAv↑,
3329- SIL,    Silymarin regulates the HIF-1 and iNOS expression in the brain and Gills of the hypoxic-reoxygenated rainbow trout (Oncorhynchus mykis)
- in-vivo, Nor, NA
*NO↓, *MDA↓, *TAC↑, *Hif1a↓, *iNOS↓,
3328- SIL,    Modulatory effect of silymarin on inflammatory mediators in experimentally induced benign prostatic hyperplasia: emphasis on PTEN, HIF-1α, and NF-κB
- in-vivo, BPH, NA
*NF-kB↓, *Hif1a↓, *PTEN↑, *Weight↓, *NO↓, *IL6↓, *IL8↓, *COX2↓, *iNOS↓,
3327- SIL,    Effects of silymarin on HIF‑1α and MDR1 expression in HepG‑2 cells under hypoxia
- in-vitro, Liver, HepG2
MDR1↓, Hif1a↓, P-gp↓,
3326- SIL,    Silymarin suppresses proliferation of human hepatocellular carcinoma cells under hypoxia through downregulation of the HIF-1α/VEGF pathway
- in-vitro, Liver, HepG2 - in-vitro, Liver, Hep3B
*hepatoP↑, chemoP↑, ChemoSen↑, TumCP↓, TumCMig↓, TumCI↓, Hif1a↓, VEGF↓, angioG↓,
3325- SIL,    Modulatory effect of silymarin on pulmonary vascular dysfunction through HIF-1α-iNOS following rat lung ischemia-reperfusion injury
- in-vivo, Nor, NA
*Inflam↓, *ROS↓, *Casp3↑, *Casp9↑, *Hif1a↓, *iNOS↓, *SOD↑, *MDA↓,
1001- SIL,    Silibinin down-regulates PD-L1 expression in nasopharyngeal carcinoma by interfering with tumor cell glycolytic metabolism
- in-vitro, NA, NA
TumCG↓, Glycolysis↓, OXPHOS↑, LDHA↓, lactateProd↓, i-citrate↑, Hif1a↓, PD-L1↓,
964- SIL,    Silibinin inhibits hypoxia-induced HIF-1α-mediated signaling, angiogenesis and lipogenesis in prostate cancer cells: In vitro evidence and in vivo functional imaging and metabolomics
- vitro+vivo, Pca, LNCaP - in-vitro, Pca, 22Rv1
TumCP↓, Hif1a↓, NADPH↓, angioG↓, FASN↓, ACC↓,
2370- SK,    The role of pyruvate kinase M2 in anticancer therapeutic treatments
- Review, Var, NA
Glycolysis↓, PKM2↓, EGFR↓, PI3K↓, p‑Akt↓, Hif1a↓,
3041- SK,    Promising Nanomedicines of Shikonin for Cancer Therapy
- Review, Var, NA
Glycolysis↓, TAMS↝, BioAv↓, Half-Life↝, P21↑, ERK↓, ROS↑, GSH↓, MMP↓, TrxR↓, MMP13↓, MMP2↓, MMP9↓, SIRT2↑, Hif1a↓, PKM2↓, TumCP↓, TumMeta↓, TumCI↓,
3051- SK,    Resveratrol mediates its anti-cancer effects by Nrf2 signaling pathway activation
- Review, Var, NA
Nrf1↑, Apoptosis↑, TumCP↓, eff⇅, chemoP↑, eff↑, VCAM-1↓, Hif1a↓,
965- SK,    Shikonin suppresses proliferation and induces cell cycle arrest through the inhibition of hypoxia-inducible factor-1α signaling
- in-vitro, CRC, HCT116 - in-vitro, CRC, SW-620
Hif1a↓, ROS↓, mTOR↓, p70S6↓, 4E-BP1↓, eIF2α↓, TumCCA↑, TumCP↓, Half-Life↝,
2197- SK,    Shikonin derivatives for cancer prevention and therapy
- Review, Var, NA
ROS↑, Ca+2↑, BAX↑, Bcl-2↓, MMP9↓, NF-kB↓, PKM2↓, Hif1a↓, NRF2↓, P53↑, DNMT1↓, MDR1↓, COX2↓, VEGF↓, EMT↓, MMP7↓, MMP13↓, uPA↓, RIP1↑, RIP3↑, Casp3↑, Casp7↑, Casp9↑, P21↓, DFF45↓, TRAIL↑, PTEN↑, mTOR↓, AR↓, FAK↓, Src↓, Myc↓, RadioS↑,
2194- SK,    Efficacy of Shikonin against Esophageal Cancer Cells and its possible mechanisms in vitro and in vivo
- in-vitro, ESCC, Eca109 - in-vitro, ESCC, EC9706 - in-vivo, NA, NA
tumCV↓, TumCCA↑, Apoptosis↑, EGFR↓, PI3K↓, Hif1a↓, PKM2↓, cycD1↓, AntiTum↑,
2193- SK,    Shikonin Suppresses Lymphangiogenesis via NF-κB/HIF-1α Axis Inhibition
- in-vitro, Nor, HMVEC-dLy
*NF-kB↓, *Hif1a↓, other↓,
1192- SM,    Abietane diterpenes from Salvia miltiorrhiza inhibit the activation of hypoxia-inducible factor-1
- in-vitro, GC, AGS - in-vitro, Liver, HepG3
Hif1a↓, VEGF↓,
366- SNP,    Silver nanoparticles inhibit the function of hypoxia-inducible factor-1 and target genes: insight into the cytotoxicity and antiangiogenesis
- in-vitro, BC, MCF-7
HIF-1↓, Hif1a↓, VEGF↓, GLUT1↓,
962- TQ,    Thymoquinone affects hypoxia-inducible factor-1α expression in pancreatic cancer cells via HSP90 and PI3K/AKT/mTOR pathways
- in-vitro, PC, PANC1 - in-vitro, Nor, hTERT-HPNE - in-vitro, PC, AsPC-1 - in-vitro, PC, Bxpc-3
TumCMig↓, TumCI↓, Apoptosis↑, Hif1a↓, PI3k/Akt/mTOR↓, TumCCA↑, *toxicity↓, *TumCI∅, *TumCMig∅,
3431- TQ,    PI3K-AKT Pathway Modulation by Thymoquinone Limits Tumor Growth and Glycolytic Metabolism in Colorectal Cancer
- in-vitro, CRC, HCT116 - in-vitro, CRC, SW48
Glycolysis↓, Warburg↓, HK2↓, ATP↓, NADPH↓, PI3K↓, Akt↓, TumCP↓, E-cadherin↑, N-cadherin↓, Hif1a↓, PKM2↓, GlucoseCon↓, lactateProd↓, EMT↓,
2125- TQ,    Thymoquinone Selectively Kills Hypoxic Renal Cancer Cells by Suppressing HIF-1α-Mediated Glycolysis
- in-vitro, RCC, RCC4 - in-vitro, RCC, Caki-1
Hif1a↓, eff↝, uPAR↓, VEGF↓, CAIX↓, PDK1↓, GLUT1↓, LDHA↓, Glycolysis↓, e-lactateProd↓, i-ATP↓,
3115- VitC,    The NF-κB Transcriptional Network Is a High-Dose Vitamin C-Targetable Vulnerability in Breast Cancer
- in-vitro, BC, NA
NF-kB↓, Hif1a↓, P53↑,
3114- VitC,    Restoration of TET2 Function Blocks Aberrant Self-Renewal and Leukemia Progression
- in-vitro, AML, NA
TET2↑, eff↑, ROS↑, Fenton↑, Hif1a↓,
3107- VitC,    Repurposing Vitamin C for Cancer Treatment: Focus on Targeting the Tumor Microenvironment
- Review, Var, NA
Risk↓, *ROS↓, ROS↑, VEGF↓, COX2↓, ER Stress↑, IRE1↑, JNK↑, CHOP↑, Hif1a↓, eff↑, Glycolysis↓, MMPs↓, TumMeta↓, YAP/TEAD↓, eff↑, TET1↑,
3146- VitC,    Vitamin C protects against hypoxia, inflammation, and ER stress in primary human preadipocytes and adipocytes
- in-vivo, Nor, NA
*Obesity↓, *ER Stress↓, *Inflam↓, Hif1a↓, VEGF↓, GLUT1↓, GRP78/BiP↓,
632- VitC,    High-Dose Vitamin C: Preclinical Evidence for Tailoring Treatment in Cancer Patients
- Review, NA, NA
SVCT-2∅, ROS↑, Hif1a↓, PARP∅, TET2↑,
1067- VitC,    Vitamin C activates pyruvate dehydrogenase (PDH) targeting the mitochondrial tricarboxylic acid (TCA) cycle in hypoxic KRAS mutant colon cancer
- in-vivo, CRC, NA
PDK1↓, Hif1a↓, GLUT1↓, ATP↓, MMP↓,
1219- VitC,    Ascorbic acid and ascorbate-2-phosphate decrease HIF activity and malignant properties of human melanoma cells
- in-vitro, Melanoma, NA
Hif1a↓,
1211- VitK2,    Mechanisms of PKC-Mediated Enhancement of HIF-1α Activity and its Inhibition by Vitamin K2 in Hepatocellular Carcinoma Cells
- in-vitro, HCC, HUH7
Hif1a↓, PKCδ↓,
2621- Wog,    Natural compounds targeting glycolysis as promising therapeutics for gastric cancer: A review
- Review, Var, NA
Hif1a↓, MCT4↓, LDH↓, lactateProd↓, ECAR↓, TumCP↓, Glycolysis↓,
2301- Wog,    Flavonoids Targeting HIF-1: Implications on Cancer Metabolism
- Review, Var, NA
HK2↓, PDK1↓, LDHA↓, Hif1a↓, PI3K↓, Akt↓, Glycolysis↓, P53↑, GLUT1↓,
961- Z,    Zinc Downregulates HIF-1α and Inhibits Its Activity in Tumor Cells In Vitro and In Vivo
- in-vitro, RCC, RCC4 - vitro+vivo, GBM, U373MG - in-vitro, Nor, HUVECs
Hif1a↓, HIF-1↓, VEGF↓, TumCI↓,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 224

Results for Effect on Cancer/Diseased Cells:
12LOX↓,1,   4E-BP1↓,2,   p‑4E-BP1↓,1,   5HT↓,1,   5LO↓,1,   ACC↓,1,   ACLY↓,1,   ADP:ATP↓,1,   AIF↑,2,   Akt↓,39,   Akt↑,4,   Akt∅,1,   p‑Akt↓,21,   AKT1↓,2,   Akt2↓,1,   ALAT↓,1,   ALAT↝,1,   ALDH↓,2,   ALDH1A1↓,1,   ALDOA↓,1,   ALP↓,1,   ALP↝,1,   AMP↓,1,   AMPK↑,10,   p‑AMPK↑,3,   AMPKα↑,1,   angioG↓,50,   annexin II↓,1,   AntiAg↓,1,   AntiAg↑,1,   AntiCan↓,1,   AntiCan↑,14,   AntiCan∅,1,   antiOx↓,2,   antiOx↑,6,   antiOx⇅,1,   AntiTum↑,2,   AP-1↓,5,   APAF1↑,2,   Apoptosis↓,2,   Apoptosis↑,43,   AR↓,6,   ascitic↓,1,   ASK1↑,1,   AST↝,1,   ATF4↑,2,   ATG5↑,1,   ATG5↝,1,   ATG7↑,1,   p‑ATM↑,1,   ATP↓,12,   ATP↑,2,   ATP↝,1,   i-ATP↓,1,   p‑ATR↑,1,   AXIN1↑,1,   AXL↓,1,   Aβ↓,1,   BAD↑,1,   Bak↑,3,   BAX↓,1,   BAX↑,28,   BAX⇅,1,   Bax:Bcl2↑,8,   BBB↑,3,   Bcl-2↓,33,   Bcl-2↑,1,   Bcl-xL↓,14,   BCR-ABL↓,1,   Beclin-1↓,1,   Beclin-1↑,2,   Beclin-1↝,1,   BID↑,2,   BIM↓,1,   BIM↑,1,   BioAv↓,12,   BioAv↑,11,   BioAv↝,3,   BioAv∅,1,   BioEnh↑,3,   BMPs↑,1,   BNIP3↑,1,   BOK↑,1,   Brk/PTK6↓,1,   CA↓,2,   Ca+2↓,3,   Ca+2↑,11,   Ca+2↝,1,   CAFs/TAFs↓,1,   CAFs/TAFs↝,1,   CAIX↓,2,   CAIX↑,1,   cal2↑,1,   CaMKII ↓,1,   cardioP↑,6,   CardioT↓,1,   Casp↑,7,   Casp∅,1,   Casp12?,1,   Casp12↑,2,   cl‑Casp12↑,1,   Casp2↑,1,   Casp3↓,1,   Casp3↑,45,   cl‑Casp3↑,3,   Casp7↑,5,   cl‑Casp7↑,1,   Casp8↑,5,   cl‑Casp8↑,2,   pro‑Casp8↑,1,   Casp9↑,27,   cl‑Casp9↑,1,   Catalase↓,1,   Catalase↑,2,   CCR7↓,1,   CD133↓,3,   CD24↓,1,   CD31↓,2,   CD4+↑,1,   CD44↓,6,   CD8+↑,1,   CDC25↓,1,   CDK1↓,4,   CDK2↓,13,   CDK2↑,1,   CDK4↓,20,   CDK4/6↓,1,   CDK6↓,10,   CDK8↓,1,   cFLIP↓,3,   chemoP↓,1,   chemoP↑,20,   chemoR↓,1,   ChemoSen↑,44,   ChemoSen⇅,1,   ChemoSideEff↓,6,   CHK1↓,1,   p‑CHK1↑,1,   p‑Chk2↑,2,   CHOP↑,6,   cl‑CHOP↑,1,   CIP2A↓,1,   citrate↓,1,   i-citrate↑,1,   cJun↑,1,   CK2↓,5,   CLDN1↓,1,   CLDN2↓,1,   cMET↓,2,   cMYB↓,2,   cMyc↓,19,   COX1↓,1,   COX2↓,34,   COX2↑,2,   CPT1A↓,1,   CRP↓,2,   CSCs↓,14,   CTR1↑,1,   CXCL12↓,3,   CXCR4↓,7,   cycA1↓,3,   cycA1↑,1,   CycB↓,8,   cycD1↓,30,   CycD3↓,1,   cycE↓,7,   cycE↑,2,   cycE1↓,2,   CYP1A1↓,3,   CYP1A2↓,1,   Cyt‑c↓,1,   Cyt‑c↑,26,   DFF45↓,1,   Diablo↑,4,   Diff↓,1,   DNAdam↓,2,   DNAdam↑,15,   DNArepair↓,1,   DNArepair↑,1,   DNMT1↓,2,   DNMTs↓,6,   Dose?,2,   Dose↓,2,   Dose↑,5,   Dose↝,12,   Dose∅,9,   DR4↑,1,   DR5↑,7,   E-cadherin↓,1,   E-cadherin↑,20,   E6↓,1,   E7↓,1,   ECAR↓,8,   ECAR↝,1,   EF-1α↓,1,   eff↓,9,   eff↑,67,   eff⇅,1,   eff↝,9,   EGF↓,1,   EGFR↓,20,   eIF2α↓,1,   eIF2α↑,1,   p‑eIF2α↑,2,   EMT?,1,   EMT↓,35,   Endoglin↑,1,   ENO1↓,1,   eNOS↓,1,   EphB4↓,1,   ER Stress↑,12,   ER(estro)↓,2,   ERK↓,17,   ERK↑,1,   ERK↝,1,   ERK∅,1,   p‑ERK↓,7,   p‑ERK↑,1,   EZH2↓,2,   FADD↑,3,   FAK↓,9,   p‑FAK↓,3,   m-FAM72A↓,1,   Fas↑,6,   FasL↑,1,   FASN↓,5,   FASN↑,1,   FDG↓,1,   Fenton↑,2,   Ferroptosis↑,5,   FGF↑,1,   Fibronectin↓,2,   Foxm1↓,2,   FOXO↑,1,   FOXO3↓,1,   FOXO3↑,2,   FOXO4↓,1,   FOXP3↓,1,   frataxin↑,1,   FTH1↓,1,   G6PD↓,2,   Gli↓,1,   Gli1↓,4,   GLS↓,1,   glucoNG↓,1,   GlucoseCon↓,21,   glut↓,1,   GLUT1↓,34,   GLUT1↑,1,   GLUT2↓,1,   GLUT3↓,3,   GLUT3↑,1,   GLUT4↓,4,   GlutMet↓,2,   Glycolysis↓,56,   Glycolysis↑,1,   GPI↓,1,   GPx↓,1,   GPx↑,2,   GPx4↓,1,   GPx4↑,1,   GR↑,1,   GRP78/BiP↓,1,   GRP78/BiP↑,7,   GSH↓,6,   GSH↑,4,   GSK‐3β↓,3,   p‑GSK‐3β↓,2,   GSTs↑,2,   GutMicro↑,1,   H2O2↓,1,   H2O2↑,3,   H3↓,1,   H3↑,1,   ac‑H3↑,3,   H4↑,1,   ac‑H4↑,2,   Half-Life↓,3,   Half-Life↑,1,   Half-Life↝,5,   Half-Life∅,2,   HATs↓,2,   HATs↑,3,   HCAR1↓,1,   HDAC↓,20,   HDAC1↓,2,   HDAC10↓,1,   HDAC2↓,2,   HDAC3↓,1,   HDAC8↓,1,   hepatoP↑,5,   HER2/EBBR2↓,5,   HGF/c-Met↓,1,   HH↓,2,   HIF-1↓,2,   Hif1a↓,211,   HK1↓,1,   HK2↓,31,   HO-1↓,5,   HO-1↑,5,   HO-2↓,1,   HR↓,1,   HSP70/HSPA5↓,2,   HSP70/HSPA5↑,1,   HSP90↓,6,   HSPs↓,1,   hTERT↓,5,   IAP1↓,1,   cl‑IAP2↑,1,   IDH1↑,1,   IFN-γ↓,2,   IFN-γ↑,2,   IGF-1↓,10,   IGF-1R↓,4,   IGFBP3↑,2,   Igs↑,1,   IKKα↓,5,   p‑IKKα↓,1,   IL1↓,5,   IL10↓,5,   IL10↑,2,   IL12↓,2,   IL1α↓,1,   IL1β↓,8,   IL1β↑,1,   IL2↓,1,   IL2↑,3,   IL4↓,1,   IL4↑,1,   IL6↓,25,   IL8↓,5,   importin α/β↓,1,   INF-γ↑,1,   Inflam↓,10,   iNOS↓,9,   IRE1↑,1,   Iron↑,1,   Iron∅,1,   IronCh↑,1,   ITGB1↓,2,   ITGB1↑,1,   ITGB3↓,1,   ITGB4↓,1,   JAK↓,2,   p‑JAK1↓,1,   JAK2↓,3,   p‑JAK2↓,1,   JNK↓,1,   JNK↑,5,   p‑JNK↓,2,   JWA↑,1,   KDR/FLK-1↓,1,   Ki-67↓,7,   lact/pyru↓,1,   lactateProd↓,22,   e-lactateProd↓,1,   LAMP2↑,1,   LAMs↓,1,   LAR↓,1,   LC3‑Ⅱ/LC3‑Ⅰ↑,1,   LC3II↓,1,   LC3II↑,5,   LDH↓,7,   LDHA↓,21,   LDL↓,1,   lipid-P↓,3,   lipid-P↑,4,   LOX1↓,2,   M2 MC↓,1,   MAD↓,1,   MALAT1↓,2,   MAPK↓,10,   MAPK↑,2,   MAPK↝,1,   MARK4↓,1,   Mcl-1↓,10,   Mcl-1↑,1,   MCP1↓,1,   MCT1↓,1,   MCT4↓,1,   MCU↓,1,   MDA↓,1,   MDA↑,2,   MDM2↓,1,   MDM2↑,1,   MDR1↓,4,   MDSCs↓,1,   MEK↓,2,   MGMT↓,1,   MIP2↓,1,   miR-155↓,2,   miR-203↓,1,   miR-203↑,1,   miR-21↓,2,   miR-210↓,1,   miR-210↑,1,   miR-27a-3p↓,1,   miR-30a-5p↑,1,   mitResp↓,1,   MMP↓,27,   MMP↑,1,   MMP-10↓,1,   MMP1↓,2,   MMP13↓,3,   MMP2↓,37,   MMP7↓,3,   MMP9↓,44,   MMP9:TIMP1↓,1,   MMPs↓,15,   Mortalin↓,1,   mPGES-1↓,1,   MPO↓,3,   MPT↑,1,   mtDam↑,4,   mTOR↓,25,   p‑mTOR↓,9,   mTORC1↓,2,   p‑mTORC1↓,1,   MUC4↓,2,   Myc↓,2,   N-cadherin↓,10,   n-MYC↓,1,   NADPH↓,4,   NADPH↑,1,   NADPH/NADP+↓,1,   NAIP↓,1,   Nanog↓,4,   NCAM↑,1,   NCOA4↑,1,   necrosis↑,1,   Nestin↓,3,   neuroP↓,1,   neuroP↑,5,   NF-kB↓,53,   NF-kB↑,2,   p‑NF-kB↓,1,   NHE1↓,2,   NK cell↑,2,   NLRP3↓,1,   NO↓,4,   NO↑,2,   NOTCH↓,6,   NOTCH1↓,3,   NOTCH1↑,1,   NOTCH3↓,1,   NOXA↑,1,   NQO1?,1,   NQO1↑,1,   Nrf1↑,1,   NRF2↓,9,   NRF2↑,12,   p‑NRF2↓,1,   OCR↓,4,   OCR↑,2,   OCT4↓,4,   oncosis↑,1,   OS↑,9,   other↓,1,   OXPHOS↑,3,   mt-OXPHOS↓,1,   P-gp↓,4,   P-gp↑,1,   p16↑,3,   P21?,1,   P21↓,2,   P21↑,24,   p27↑,13,   p38↓,3,   p38↑,4,   p‑p38↓,1,   P450↓,3,   p50↓,1,   P53?,1,   P53↓,1,   P53↑,33,   P53∅,1,   p62↓,2,   p65↓,2,   p70S6↓,2,   p‑p70S6↓,2,   P70S6K↓,2,   p‑P70S6K↓,2,   P90RSK↓,1,   p‑P90RSK↑,1,   PAK↓,1,   PAK1↓,1,   PARP↓,1,   PARP↑,2,   PARP∅,1,   cl‑PARP↓,1,   cl‑PARP↑,14,   PARP1↑,1,   PCNA↓,9,   PD-1↓,2,   PD-L1↓,5,   PDGF↓,6,   PDH↓,2,   PDH↑,3,   PDH↝,1,   PDK1?,2,   PDK1↓,12,   p‑PDK1↓,1,   PDK3↓,1,   PERK↑,3,   PFK↓,6,   PFK1↓,3,   PFK2?,1,   PFKP?,1,   PFKP↓,1,   PGC-1α↑,1,   PGE2↓,9,   pH↑,1,   PHDs↑,1,   PI3K↓,29,   PI3K↑,1,   p‑PI3K↑,1,   PI3K/Akt↓,3,   PI3k/Akt/mTOR↓,2,   p‑PI3k/Akt/mTOR↓,1,   PKA↓,1,   PKCδ↓,5,   PKM2↓,33,   PKM2:PKM1↓,1,   POLD1↓,1,   PPARα↓,1,   cl‑PPARα↓,1,   PPARγ↓,2,   PPARγ↑,4,   pRB↑,1,   p‑pRB↓,2,   PrxI↓,1,   PSA↓,6,   PSA∅,1,   PTEN↑,19,   PUMA↑,3,   Pyruv↓,2,   QoL↑,1,   R5P↝,1,   RAD51↓,1,   radioP↑,3,   RadioS↑,20,   Raf↓,2,   c-Raf↓,1,   RANKL↓,1,   RAS↓,1,   RB1↑,1,   p‑RB1↓,3,   RenoP↑,2,   Rho↑,1,   RIP1↑,1,   RIP3↑,1,   Risk↓,2,   Risk↑,1,   ROCK1↓,3,   ROCK1↑,1,   ROS?,1,   ROS↓,11,   ROS↑,69,   ROS⇅,4,   i-ROS↑,1,   mt-ROS↑,1,   RPM↑,1,   p‑S6↓,2,   p‑S6K↓,2,   SCF↓,1,   SDH↓,1,   selectivity↑,20,   SHARP↑,1,   Shh↓,4,   SIRT1↓,4,   SIRT1↑,6,   SIRT2↓,1,   SIRT2↑,1,   SIRT3↓,1,   SIRT3↑,5,   SIRT6↓,1,   SIRT6↑,1,   Slug↓,4,   SMAD2↓,2,   SMAD3↓,3,   Smo↓,3,   Snail?,1,   Snail↓,14,   SOD↓,3,   SOD↑,5,   SOD2↑,1,   SOX2↓,4,   SOX4↓,1,   SOX9?,1,   Sp1/3/4↓,5,   Src↓,1,   SREBP1↓,1,   STAT↓,2,   STAT3↓,36,   p‑STAT3↓,5,   STAT5↓,1,   survivin↓,16,   SVCT-2∅,1,   T-Cell↑,1,   T-Cell↝,1,   talin↓,1,   TAMS↝,1,   TCA↓,1,   TCF↓,1,   Telomerase↓,12,   TET1↑,2,   TET2↑,2,   Tf↑,1,   TGF-β↓,9,   TGF-β↑,1,   Th1 response↑,3,   Th2↑,1,   TIMP1↓,1,   TIMP1↑,3,   TIMP2↓,1,   TIMP2↑,2,   TKT↝,1,   TLR4↓,3,   TNF-α↓,13,   TNF-α↑,1,   TOP1↓,4,   TOP2↓,3,   toxicity↓,3,   toxicity↝,1,   toxicity∅,3,   TP53↑,2,   TPI↓,1,   TRAIL↑,2,   Treg lymp↓,1,   TrxR↓,2,   TSP-1↑,2,   TumAuto↑,9,   TumAuto↝,1,   TumCCA↓,2,   TumCCA↑,52,   TumCD↑,2,   TumCG↓,24,   TumCG↑,1,   TumCI↓,27,   TumCMig↓,21,   TumCP↓,42,   TumCP↑,1,   tumCV↓,10,   TumMeta↓,23,   TumMeta↑,2,   TumVol↓,8,   TumW↓,6,   TUNEL↑,1,   Twist↓,9,   uPA↓,11,   uPAR↓,1,   UPR↑,1,   VCAM-1↓,2,   VEGF↓,97,   VEGF↑,1,   VEGFR2↓,12,   VHL↓,1,   Vim?,1,   Vim↓,21,   Warburg↓,9,   Weight∅,2,   Wnt↓,7,   Wnt/(β-catenin)↓,7,   XBP-1↓,1,   XIAP↓,11,   XIST↓,1,   YAP/TEAD↓,2,   ZBTB10↑,1,   Zeb1↓,7,   ZEB2↓,1,   ZO-1↑,1,   α-SMA↓,2,   α-tubulin↓,1,   β-catenin/ZEB1↓,14,   β-catenin/ZEB1↑,1,   β-oxidation↓,1,  
Total Targets: 676

Results for Effect on Normal Cells:
ADP:ATP↓,1,   Akt↓,2,   Akt↑,1,   p‑Akt↓,1,   ALAT↓,2,   AMPK↑,1,   p‑AMPK↑,1,   angioG↓,1,   angioG↑,1,   AntiAg↑,1,   AntiAge↑,2,   AntiCan↓,1,   AntiCan↑,2,   antiOx↑,16,   AP-1↓,1,   Apoptosis↓,1,   AST↓,3,   Aβ↓,2,   BAX↓,1,   BBB↑,4,   Beclin-1↓,1,   BG↓,1,   BioAv?,1,   BioAv↓,15,   BioAv↑,5,   BioAv↝,3,   BP↓,1,   cardioP↑,8,   cardioP⇅,1,   CardioT↓,1,   Casp3↓,1,   Casp3↑,1,   Casp9↑,1,   Catalase↓,1,   Catalase↑,7,   chemoP↑,1,   cognitive↑,6,   COX2↓,8,   creat↓,1,   CXCR2↑,1,   DNArepair↑,1,   Dose↝,1,   Dose∅,1,   E2Fs↑,1,   ECAR↓,1,   eff↑,1,   EMT↓,1,   ER Stress↓,1,   ERK↓,1,   Fas↓,1,   Ferroptosis↓,1,   GADD45A↑,1,   GlucoseCon↑,1,   GLUT1↓,1,   Glycolysis↓,1,   GPx↑,4,   GSH↑,8,   GSR↑,1,   GSTA1↓,1,   GSTA1↑,1,   GSTs↑,3,   GutMicro↑,2,   H2O2↓,1,   H2S↑,1,   Half-Life↝,2,   Half-Life∅,3,   hepatoP↓,1,   hepatoP↑,6,   Hif1a↓,15,   Hif1a↑,2,   Hif1a∅,1,   HK2↓,1,   HO-1↓,1,   HO-1↑,1,   ICAM-1↓,1,   IGF-1↓,1,   IGF-1R↓,1,   IGFBP3↑,1,   IL10↑,1,   IL1β↓,1,   IL6↓,4,   IL8↓,3,   Inflam↓,22,   iNOS↓,8,   Iron↓,2,   IronCh↑,1,   JAK↓,1,   p‑JNK↓,1,   Keap1↓,2,   Keap1↑,1,   lactateProd↓,1,   LDH↓,3,   LDHA↑,1,   LDL↓,1,   lipid-P↓,5,   lipidLev↓,1,   MAPK↓,1,   MDA↓,8,   memory↑,6,   MMP↓,1,   MMP2↓,1,   motorD↓,1,   motorD↑,1,   MPO↓,1,   NA↓,1,   NADPH↑,1,   neuroP↑,17,   NF-kB↓,9,   NF-kB↑,1,   NO↓,6,   NO↑,1,   NOX4↓,1,   NRF2↑,9,   Obesity↓,1,   other↓,3,   other↑,1,   p38↓,1,   P450↑,1,   P53↓,1,   p‑P70S6K↓,1,   PCNA↓,1,   PDGFR-BB↓,1,   p‑PDK1↓,1,   PFK1↓,1,   PGC-1α↑,1,   PGE2↓,2,   PI3K↓,3,   PKCδ↓,1,   PKM2↓,4,   PPARα↑,1,   PPARγ↑,1,   PPP↓,1,   PTEN↑,1,   RenoP↑,2,   Rho↓,1,   RNS↓,1,   ROS↓,35,   ROS↑,1,   mt-ROS↑,1,   SIRT1↑,2,   SIRT3↑,1,   SOD↓,1,   SOD↑,11,   SOD1↑,1,   SOD2↑,1,   TAC↑,2,   tau↓,1,   TBARS↓,1,   TGF-β↓,2,   TIMP1↓,1,   TNF-α↓,4,   toxicity↓,11,   toxicity↑,1,   toxicity∅,5,   TumCI∅,1,   TumCMig∅,1,   VCAM-1↓,1,   VEGF↓,2,   Vim↓,1,   VitC↑,1,   VitE↑,1,   Weight↓,1,   α-SMA↓,1,   α-tubulin↓,1,  
Total Targets: 164

Scientific Paper Hit Count for: Hif1a, HIF1α/HIF1a
14 Apigenin (mainly Parsley)
14 Baicalein
14 Sulforaphane (mainly Broccoli)
13 Resveratrol
12 Silymarin (Milk Thistle) silibinin
10 EGCG (Epigallocatechin Gallate)
9 Metformin
7 Berberine
7 Honokiol
7 Shikonin
7 Vitamin C (Ascorbic Acid)
5 Artemisinin
5 Chrysin
5 Propolis -bee glue
5 Quercetin
4 Betulinic acid
4 Curcumin
4 Graviola
4 Rosmarinic acid
3 Ashwagandha
3 Radiotherapy/Radiation
3 Cinnamon
3 Citric Acid
3 Deguelin
3 Ellagic acid
3 Thymoquinone
2 Boron
2 Caffeic acid
2 Capsaicin
2 Dichloroacetate
2 Hydrogen Gas
2 Luteolin
2 Lycopene
2 Melatonin
2 Proanthocyanidins
2 Piperlongumine
2 Sanguinarine
2 Wogonin
1 Allicin (mainly Garlic)
1 Alpha-Lipoic-Acid
1 alpha Linolenic acid
1 Andrographis
1 tamoxifen
1 5-fluorouracil
1 Baicalin
1 Cannabidiol
1 Celecoxib
1 Chlorogenic acid
1 Bortezomib
1 Docosahexaenoic Acid
1 diet FMD Fasting Mimicking Diet
1 Emodin
1 Fucoidan
1 Fenbendazole
1 Fisetin
1 Ai-Tong-An-Gao-Ji
1 Cisplatin
1 flavonoids
1 Gallic acid
1 Garcinol
1 Genistein
1 HydroxyCitric Acid
1 Ivermectin
1 Juglone
1 Lactobacillus
1 Magnolol
1 mebendazole
1 metronomic chemo
1 Magnetic Fields
1 Methylsulfonylmethane
1 Niclosamide (Niclocide)
1 Oroxylin-A
1 Oxygen, Hyperbaric
1 doxorubicin
1 Rutin
1 Selenium
1 Gemcitabine (Gemzar)
1 Salvia miltiorrhiza
1 Silver-NanoParticles
1 Vitamin K2
1 Zinc
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:%  Target#:143  State#:%  Dir#:1
wNotes=0 sortOrder:rid,rpid

 

Home Page