Database Query Results : , , NRF2

NRF2, nuclear factor erythroid 2-related factor 2: Click to Expand ⟱
Source: TCGA
Type: Antiapoptotic
Nrf2 is responsible for regulating an extensive panel of antioxidant enzymes involved in the detoxification and elimination of oxidative stress. Thought of as "Master Regulator" of antioxidant response.
-One way to estimate Nrf2 induction is through the expression of NQO1.
NQO1, the most potent inducer:
SFN 0.2 μM,
quercetin (2.5 μM),
curcumin (2.7 μM),
Silymarin (3.6 μM),
tamoxifen (5.9 μM),
genistein (6.2 μM ),
beta-carotene (7.2μM),
lutein (17 μM),
resveratrol (21 μM),
indol-3-carbinol (50 μM),
chlorophyll (250 μM),
alpha-cryptoxanthin (1.8 mM),
and zeaxanthin (2.2 mM)

1. Raising Nrf2 enhances the cell's antioxidant defenses and ↓ROS. This strategy is used to decrease chemo-radio side effects.
2. Downregulating Nrf2 lowers antioxidant defenses and ↑ROS. In cancer cells this leads to DNA damage, and cell death.
3. However there are some cases where increasing Nrf2 paradoxically causes an increase in ROS (cancer cells). Such as cases of Mitochondial overload, signal crosstalk, reductive stress

-In some cases, Nrf2 is overexpressed in cancer cells, which can lead to the activation of genes involved in cell proliferation, angiogenesis, and metastasis. This can contribute to the development of resistance to chemotherapy and targeted therapies.
-Increased Nrf2 expression: Lung, Breast, Colorectal, Prostrate.
Decreased Nrf2 expression: Skine, Liver, Pancreatic.
-Nrf2 is a cytoprotective transcription factor which demonstrated both a negative effect as well as a positive effect on cancer
- "promotes Nrf2 translocation from the cytoplasm to the nucleus," means facilitates the movement of Nrf2 into the nucleus, thereby enhancing the cell's antioxidant and cytoprotective responses. -Major regulator of Nrf2 activity in cells is the cytosolic inhibitor Keap1.

Nrf2 Inhibitors and Activators
Nrf2 Inhibitors: Brusatol, Luteolin, Trigonelline, VitC, Retinoic acid, Chrysin
Nrf2 Activators: SFN, OPZ EGCG, Resveratrol, DATS, CUR, CDDO, Api
- potent Nrf2 inducers from plants include sulforaphane, curcumin, EGCG, resveratrol, caffeic acid phenethyl ester, wasabi, cafestol and kahweol (coffee), cinnamon, ginger, garlic, lycopene, rosemany

Nrf2 plays dual roles in that it can protect normal tissues against oxidative damage and can act as an oncogenic protein in tumor tissue.
– In healthy tissues, NRF2 activation helps protect cells from oxidative damage and maintains cellular homeostasis.
– In many cancers, constitutive activation of NRF2 (often through mutations in NRF2 itself or loss-of-function mutations in KEAP1) leads to an enhanced antioxidant capacity.
– This upregulation can promote tumor cell survival by enabling cancer cells to thrive under oxidative stress, resist chemotherapeutic agents, and sustain metabolic reprogramming.
– Elevated NRF2 levels have been implicated in promoting tumor growth, metastasis, and resistance to therapy in various malignancies.
– High or sustained NRF2 activity is frequently associated with aggressive tumor phenotypes, poorer prognosis, and decreased overall survival in several cancer types.
– While its activation is essential for protecting normal cells from oxidative stress, aberrant or sustained NRF2 activation in tumor cells can lead to enhanced survival, therapeutic resistance, and tumor progression.

NRF2 inhibitors: (to decrease antioxidant defenses and increase cell death from ROS).
-Brusatol: most cited natural inhibitors of Nrf2.
-Luteolin: luteolin can reduce Nrf2 activity in specific cancer models and may enhance cell sensitivity to chemotherapy. However, luteolin is also known as an antioxidant, and its influence on Nrf2 can sometimes be context dependent.
-Apigenin: certain studies to down‑regulate Nrf2 in cancer cells: Dose and context dependent .
-Oridonin:
-Wogonin: although its effects might be cell‑ and dose‑specific.
- Withaferin A

Scientific Papers found: Click to Expand⟱
256- AL,  doxoR,    Allicin Overcomes Doxorubicin Resistance of Breast Cancer Cells by Targeting the Nrf2 Pathway
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
NRF2↓, HO-1↓, p‑Akt↓,
267- ALA,    α-Lipoic Acid Targeting PDK1/NRF2 Axis Contributes to the Apoptosis Effect of Lung Cancer Cells
- vitro+vivo, Lung, A549 - vitro+vivo, Lung, PC9
Apoptosis↑, ROS↑, PDK1↓, NRF2↓, PDK1↓, Bcl-2↓, Casp9↑, Dose∅,
265- ALA,    Alpha-Lipoic Acid Reduces Cell Growth, Inhibits Autophagy, and Counteracts Prostate Cancer Cell Migration and Invasion: Evidence from In Vitro Studies
- in-vitro, Pca, LNCaP - in-vitro, Pca, DU145
ROS↓, SOD↓, GSTP1/GSTπ↓, NRF2↓, p62↓, p62↑, SOD↑, p‑mTOR↑, Beclin-1↓, ROS↑, SOD1↑,
2586- Api,  doxoR,    Apigenin sensitizes doxorubicin-resistant hepatocellular carcinoma BEL-7402/ADM cells to doxorubicin via inhibiting PI3K/Akt/Nrf2 pathway
- in-vitro, HCC, Bel-7402
NRF2↓, ChemoSen↑,
2593- Api,    Apigenin promotes apoptosis of 4T1 cells through PI3K/AKT/Nrf2 pathway and improves tumor immune microenvironment in vivo
- in-vivo, BC, 4T1
TumCP↓, TumCMig↓, TumCI↓, Apoptosis↑, MMP↑, ROS↑, p‑PI3K↓, PI3K↓, Akt↓, NRF2↓, AntiTum↑, OS↑,
2594- Api,  docx,    Targeted hyaluronic acid-based lipid nanoparticle for apigenin delivery to induce Nrf2-dependent apoptosis in lung cancer cells
- in-vitro, Lung, A549
NRF2↓, ChemoSen↑,
2596- Api,  LT,    Natural Nrf2 Inhibitors: A Review of Their Potential for Cancer Treatment
- Review, Var, NA
NRF2↓, chemoP↑,
2639- Api,    Plant flavone apigenin: An emerging anticancer agent
- Review, Var, NA
*antiOx↑, *Inflam↓, AntiCan↑, ChemoSen↑, BioEnh↑, chemoP↑, IL6↓, STAT3↓, NF-kB↓, IL8↓, eff↝, Akt↓, PI3K↓, HER2/EBBR2↓, cycD1↓, CycD3↓, p27↑, FOXO3↑, STAT3↓, MMP2↓, MMP9↓, VEGF↓, Twist↓, MMP↓, ROS↑, NADPH↑, NRF2↓, SOD↓, COX2↓, p38↑, Telomerase↓, HDAC↓, HDAC1↓, HDAC3↓, Hif1a↓, angioG↓, uPA↓, Ca+2↑, Bax:Bcl2↑, Cyt‑c↑, Casp9↑, Casp12↑, Casp3↑, cl‑PARP↑, E-cadherin↑, β-catenin/ZEB1↓, cMyc↓, CDK4↓, CDK2↓, CDK6↓, IGF-1↓, CK2↓, CSCs↓, FAK↓, Gli↓, GLUT1↓,
1547- Api,    Apigenin: Molecular Mechanisms and Therapeutic Potential against Cancer Spreading
- Review, NA, NA
angioG↓, EMT↓, CSCs↓, TumCCA↑, Dose∅, ROS↑, MMP↓, Catalase↓, GSH↓, PI3K↓, Akt↓, NF-kB↓, OCT4↓, Nanog↓, SIRT3↓, SIRT6↓, eff↑, eff↑, Cyt‑c↑, Bax:Bcl2↑, p‑GSK‐3β↓, FOXO3↑, p‑STAT3↓, MMP2↓, MMP9↓, COX2↓, MMPs↓, NRF2↓, HDAC↓, Telomerase↓, eff↑, eff↑, eff↑, eff↑, eff↑, XIAP↓, survivin↓, CK2↓, HSP90↓, Hif1a↓, FAK↓, EMT↓,
1358- Ash,    Withaferin A: A Dietary Supplement with Promising Potential as an Anti-Tumor Therapeutic for Cancer Treatment - Pharmacology and Mechanisms
- Review, Var, NA
TumCCA↑, Apoptosis↑, TumAuto↑, Ferroptosis↑, TumCP↓, CSCs↓, TumMeta↓, EMT↓, angioG↓, Vim↓, HSP90↓, annexin II↓, m-FAM72A↓, BCR-ABL↓, Mortalin↓, NRF2↓, cMYB↓, ROS↑, ChemoSen↑, eff↑, ChemoSen↑, ChemoSen↑, eff↑, *BioAv↓, ROCK1↓, TumCI↓, Sp1/3/4↓, VEGF↓, Hif1a↓, EGFR↓,
3172- Ash,    Implications of Withaferin A for the metastatic potential and drug resistance in hepatocellular carcinoma cells via Nrf2-mediated EMT and ferroptosis
- in-vitro, HCC, HepG2 - in-vitro, Nor, HL7702
Keap1↑, NRF2↓, EMT↓, TumCP↓, TumCI↓, selectivity↑, *toxicity↓, ROS↑, MDA↑, GSH↓, Ferroptosis↑,
2627- Ba,  Cisplatin,    Baicalein, a Bioflavonoid, Prevents Cisplatin-Induced Acute Kidney Injury by Up-Regulating Antioxidant Defenses and Down-Regulating the MAPKs and NF-κB Pathways
RenoP↑, *iNOS↑, *TNF-α↓, *IL6↓, *NF-kB↓, *MAPK↓, *ERK↓, *JNK↓, *antiOx↑, *NRF2↓, *HO-1↑, *Cyt‑c∅, *Casp3∅, *Casp9∅, *PARP∅,
2617- Ba,    Potential of baicalein in the prevention and treatment of cancer: A scientometric analyses based review
- Review, Var, NA
Ca+2↑, MMP2↓, MMP9↓, Vim↓, Snail↓, E-cadherin↑, Wnt↓, β-catenin/ZEB1↓, p‑Akt↓, p‑mTOR↓, NF-kB↓, i-ROS↑, Bcl-2↓, BAX↑, Cyt‑c↑, Casp3↑, Casp9↑, STAT3↓, IL6↓, MMP2↓, MMP9↓, NOTCH↓, PPARγ↓, p‑NRF2↓, HK2↓, LDHA↓, PDK1↓, Glycolysis↓, PTEN↑, Akt↓, Hif1a↓, MMP↓, VEGF↓, VEGFR2↓, TOP2↓, uPA↓, TIMP1↓, TIMP2↓, cMyc↓, TrxR↓, ASK1↑, Vim↓, ZO-1↑, E-cadherin↑, SOX2↓, OCT4↓, Shh↓, Smo↓, Gli1↓, N-cadherin↓, XIAP↓,
2296- Ba,    The most recent progress of baicalein in its anti-neoplastic effects and mechanisms
- Review, Var, NA
CDK1↓, Cyc↓, p27↑, P21↑, P53↑, TumCCA↑, TumCI↓, MMP2↓, MMP9↓, E-cadherin↑, N-cadherin↓, Vim↓, LC3A↑, p62↓, p‑mTOR↓, PD-L1↓, CAFs/TAFs↓, VEGF↓, ROCK1↓, Bcl-2↓, Bcl-xL↓, BAX↑, ROS↑, cl‑PARP↑, Casp3↑, Casp9↑, PTEN↑, MMP↓, Cyt‑c↑, Ca+2↑, PERK↑, IRE1↑, CHOP↑, Copper↑, Snail↓, Vim↓, Twist↓, GSH↓, NRF2↓, HO-1↓, GPx4↓, XIAP↓, survivin↓, DR5↑,
2021- BBR,    Berberine: An Important Emphasis on Its Anticancer Effects through Modulation of Various Cell Signaling Pathways
- Review, NA, NA
*antiOx?, *Inflam↓, Apoptosis↑, TumCCA↑, BAX↑, eff↑, VEGF↓, PI3K↓, Akt↓, mTOR↓, Telomerase↓, β-catenin/ZEB1↓, Wnt↓, EGFR↓, AP-1↓, NF-kB↓, COX2↑, NRF2↓, RadioS↑, STAT3↓, ERK↓, AR↓, ROS↑, eff↑, selectivity↑, selectivity↑, BioAv↓, DNMT1↓, cMyc↓,
1392- BBR,    Based on network pharmacology and experimental validation, berberine can inhibit the progression of gastric cancer by modulating oxidative stress
- in-vitro, GC, AGS - in-vitro, GC, MKN45
TumCG↓, TumCMig↓, ROS↑, MDA↑, SOD↓, NRF2↓, HO-1↓, Hif1a↓, EMT↓, Snail↓, Vim↓,
1389- BBR,  Lap,    Berberine reverses lapatinib resistance of HER2-positive breast cancer cells by increasing the level of ROS
- in-vitro, BC, BT474 - in-vitro, BC, AU-565
ChemoSen↑, Apoptosis↑, ROS↑, NRF2↓,
2756- BetA,    Betulinic acid inhibits growth of hepatoma cells through activating the NCOA4-mediated ferritinophagy pathway
- in-vitro, HCC, HUH7 - in-vitro, HCC, H1299
TumCP↓, ROS↓, antiOx↓, TumCG↓, TumCMig↓, NRF2↓, GPx4↓, HO-1↓, NCOA4↑, FTH1↓, Ferritin↑, Ferroptosis↑, GSH↓, MDA↓,
738- Bor,    Borax induces ferroptosis of glioblastoma by targeting HSPA5/NRF2/GPx4/GSH pathways
- in-vitro, GBM, U251 - in-vitro, GBM, A172 - in-vitro, Nor, SVGp12
TumCP↓, GPx4↓, GSH↓, HSP70/HSPA5↓, NRF2↓, MDA↑, Casp3↑, Casp7↑, Ferroptosis↑, selectivity↑,
2591- CHr,  doxoR,    Chrysin enhances sensitivity of BEL-7402/ADM cells to doxorubicin by suppressing PI3K/Akt/Nrf2 and ERK/Nrf2 pathway
- in-vitro, HCC, Bel-7402
NRF2↓, ChemoSen↑, HO-1↓,
2590- CHr,    Chrysin suppresses proliferation, migration, and invasion in glioblastoma cell lines via mediating the ERK/Nrf2 signaling pathway
- in-vitro, GBM, T98G - in-vitro, GBM, U251 - in-vitro, GBM, U87MG
TumCP↓, TumCMig↓, TumCI↓, NRF2↓, HO-1↓, NADPH↓, ERK↓,
2781- CHr,  PBG,    Chrysin a promising anticancer agent: recent perspectives
- Review, Var, NA
PI3K↓, Akt↓, mTOR↓, MMP9↑, uPA↓, VEGF↓, AR↓, Casp↑, TumMeta↓, TumCCA↑, angioG↓, BioAv↓, *hepatoP↑, *neuroP↑, *SOD↑, *GPx↑, *ROS↓, *Inflam↓, *Catalase↑, *MDA↓, ROS↓, BBB↑, Half-Life↓, BioAv↑, ROS↑, eff↑, ROS↑, ROS↑, lipid-P↑, ER Stress↑, NOTCH1↑, NRF2↓, p‑FAK↓, Rho↓, PCNA↓, COX2↓, NF-kB↓, PDK1↓, PDK3↑, GLUT1↓, Glycolysis↓, mt-ATP↓, Ki-67↓, cMyc↓, ROCK1↓, TOP1↓, TNF-α↓, IL1β↓, CycB↓, CDK2↓, EMT↓, STAT3↓, PD-L1↓, IL2↑,
2782- CHr,    Broad-Spectrum Preclinical Antitumor Activity of Chrysin: Current Trends and Future Perspectives
- Review, Var, NA - Review, Stroke, NA - Review, Park, NA
*antiOx↑, *Inflam↓, *hepatoP↑, *neuroP↑, *BioAv↓, *cardioP↑, *lipidLev↓, *RenoP↑, *TNF-α↓, *IL2↓, *PI3K↓, *Akt↓, *ROS↓, *cognitive↑, eff↑, cycD1↓, hTERT↓, VEGF↓, p‑STAT3↓, TumMeta↓, TumCP↓, eff↑, eff↑, IL1β↓, IL6↓, NF-kB↓, ROS↑, MMP↓, Cyt‑c↑, Apoptosis↑, ER Stress↑, Ca+2↑, TET1↑, Let-7↑, Twist↓, EMT↓, TumCCA↑, Casp3↑, Casp9↑, BAX↑, HK2↓, GlucoseCon↓, lactateProd↓, Glycolysis↓, SHP1↑, N-cadherin↓, E-cadherin↑, UPR↑, PERK↑, ATF4↑, eIF2α↑, RadioS↑, NOTCH1↑, NRF2↓, BioAv↑, eff↑,
2785- CHr,    Emerging cellular and molecular mechanisms underlying anticancer indications of chrysin
- Review, Var, NA
*NF-kB↓, *COX2↓, *iNOS↓, angioG↓, TOP1↓, HDAC↓, TNF-α↓, IL1β↓, cardioP↑, RenoP↑, neuroP↑, LDL↓, BioAv↑, eff↑, cycD1↓, hTERT↓, MMP-10↓, Akt↓, STAT3↓, VEGF↓, EGFR↓, Snail↓, Slug↓, Vim↓, E-cadherin↑, eff↑, TET1↑, ROS↑, mTOR↓, PPARα↓, ER Stress↑, Ca+2↑, ERK↓, MMP↑, Cyt‑c↑, Casp3↑, HK2↓, NRF2↓, HO-1↓, MMP2↓, MMP9↓, Fibronectin↓, GRP78/BiP↑, XBP-1↓, p‑eIF2α↑, *AST↓, ALAT↓, ALP↓, LDH↓, COX2↑, Bcl-xL↓, IL6↓, PGE2↓, iNOS↓, DNAdam↑, UPR↑, Hif1a↓, EMT↓, Twist↓, lipid-P↑, CLDN1↓, PDK1↓, IL10↓, TLR4↓, NOTCH1↑, PARP↑, Mcl-1↓, XIAP↓,
2786- CHr,    Chemopreventive and therapeutic potential of chrysin in cancer: mechanistic perspectives
- Review, Var, NA
Apoptosis↑, TumCCA↑, angioG↓, TumCI↓, TumMeta↑, *toxicity↓, selectivity↑, chemoP↑, *GSTs↑, *NADPH↑, *GSH↑, HDAC8↓, Hif1a↓, *ROS↓, *NF-kB↓, SCF↓, cl‑PARP↑, survivin↓, XIAP↓, Casp3↑, Casp9↑, GSH↓, ChemoSen↑, Fenton↑, P21↑, P53↑, cycD1↓, CDK2↓, STAT3↓, VEGF↓, Akt↓, NRF2↓,
1410- CUR,    Curcumin induces ferroptosis and apoptosis in osteosarcoma cells by regulating Nrf2/GPX4 signaling pathway
- vitro+vivo, OS, MG63
tumCV↓, Apoptosis↑, TumCG↓, NRF2↓, GPx4↓, HO-1↓, xCT↓, ROS↑, MDA↑, GSH↓,
1844- dietFMD,    Unlocking the Potential: Caloric Restriction, Caloric Restriction Mimetics, and Their Impact on Cancer Prevention and Treatment
- Review, NA, NA
Risk↓, AMPK↑, Akt↓, mTOR↓, SIRT1↑, Hif1a↓, NRF2↓, SOD↑, ROS↑, IGF-1↓, p‑Akt↓, PI3K↑, GutMicro↑, OS↑, eff↝, ROS↑, TumCCA↑, *DNArepair↑, DNAdam↑,
3214- EGCG,    EGCG-induced selective death of cancer cells through autophagy-dependent regulation of the p62-mediated antioxidant survival pathway
- in-vitro, Nor, MRC-5 - in-vitro, Cerv, HeLa - in-vitro, Nor, HEK293 - in-vitro, BC, MDA-MB-231 - in-vitro, CRC, HCT116
mTOR↓, AMPK↑, selectivity↑, ROS↑, selectivity↑, HO-1↓, *NRF2↑, NRF2↓, *HO-1↑,
2845- FIS,    Fisetin: A bioactive phytochemical with potential for cancer prevention and pharmacotherapy
- Review, Var, NA
PI3K↓, Akt↓, mTOR↓, p38↓, *antiOx↑, *neuroP↑, Casp3↑, Bcl-2↓, Mcl-1↓, BAX↑, BIM↑, BAD↑, AMPK↑, ACC↑, DNAdam↑, MMP↓, eff↑, ROS↑, cl‑PARP↑, Cyt‑c↑, Diablo↑, P53↑, p65↓, Myc↓, HSP70/HSPA5↓, HSP27↓, COX2↓, Wnt↓, EGFR↓, NF-kB↓, TumCCA↑, CDK2↓, CDK4↓, cycD1↓, cycA1↓, P21↑, MMP2↓, MMP9↓, TumMeta↓, MMP1↓, MMP3↓, MMP7↓, MET↓, N-cadherin↓, Vim↓, Snail↓, Fibronectin↓, E-cadherin↑, uPA↓, ChemoSen↑, EMT↓, Twist↓, Zeb1↓, cFos↓, cJun↓, EGF↓, angioG↓, VEGF↓, eNOS↓, *NRF2↑, HO-1↑, NRF2↓, GSTs↓, ATF4↓,
2852- FIS,    A comprehensive view on the fisetin impact on colorectal cancer in animal models: Focusing on cellular and molecular mechanisms
- Review, CRC, NA
Risk↓, P53↑, MDM2↓, COX2↓, Wnt↓, NF-kB↓, CDK2↓, CDK4↓, p‑RB1↓, cycE↓, P21↑, NRF2↓, ROS↑, Casp8↑, Fas↑, TRAIL↑, DR5↑, MMP↓, Cyt‑c↑, selectivity↑, P450↝, GSTs↝, RadioS↑, Inflam↓, β-catenin/ZEB1↓, EGFR↓, TumCCA↑, ChemoSen↑,
2838- FIS,    Fisetin induces apoptosis in colorectal cancer cells by suppressing autophagy and down-regulating nuclear factor erythroid 2-related factor 2 (Nrf2)
cl‑Casp3↑, cl‑PARP↑, MMP↓, Cyt‑c↑, ROS↑, NRF2↓,
2916- LT,    Antioxidative and Anticancer Potential of Luteolin: A Comprehensive Approach Against Wide Range of Human Malignancies
- Review, Var, NA - Review, AD, NA - Review, Park, NA
proCasp9↓, CDC2↓, CycB↓, Casp9↑, Casp3↑, Cyt‑c↑, cycA1↑, CDK2↓, APAF1↑, TumCCA↑, P53↑, BAX↑, VEGF↓, Bcl-2↓, Apoptosis↑, p‑Akt↓, p‑EGFR↓, p‑ERK↓, p‑STAT3↓, cardioP↑, Catalase↓, SOD↓, *BioAv↓, *antiOx↑, *ROS↓, *NO↓, *GSTs↑, *GSR↑, *SOD↑, *Catalase↑, *lipid-P↓, PI3K↓, Akt↓, CDK2↓, BNIP3↑, hTERT↓, DR5↑, Beclin-1↑, TNF-α↓, NF-kB↓, IL1↓, IL6↓, EMT↓, FAK↓, E-cadherin↑, MDM2↓, NOTCH↓, MAPK↑, Vim↓, N-cadherin↓, Snail↓, MMP2↓, Twist↓, MMP9↓, ROS↑, MMP↓, *AChE↓, *MMP↑, *Aβ↓, *neuroP↑, Trx1↑, ROS↓, *NRF2↑, NRF2↓, *BBB↑, ChemoSen↑, GutMicro↑,
2919- LT,    Luteolin as a potential therapeutic candidate for lung cancer: Emerging preclinical evidence
- Review, Var, NA
RadioS↑, ChemoSen↑, chemoP↑, *lipid-P↓, *Catalase↑, *SOD↑, *GPx↑, *GSTs↑, *GSH↑, *TNF-α↓, *IL1β↓, *Casp3↓, *IL10↑, NRF2↓, HO-1↓, NQO1↓, GSH↓, MET↓, p‑MET↓, p‑Akt↓, HGF/c-Met↓, NF-kB↓, Bcl-2↓, SOD2↓, Casp8↑, Casp3↑, PARP↑, MAPK↓, NLRP3↓, ASC↓, Casp1↓, IL6↓, IKKα↓, p‑p65↓, p‑p38↑, MMP2↓, ICAM-1↓, EGFR↑, p‑PI3K↓, E-cadherin↓, ZO-1↑, N-cadherin↓, CLDN1↓, β-catenin/ZEB1↓, Snail↓, Vim↑, ITGB1↓, FAK↓, p‑Src↓, Rac1↓, Cdc42↓, Rho↓, PCNA↓, Tyro3↓, AXL↓, CEA↓, NSE↓, SOD↓, Catalase↓, GPx↓, GSR↓, GSTs↓, GSH↓, VitE↓, VitC↓, CYP1A1↓, cFos↑, AR↓, AIF↑, p‑STAT6↓, p‑MDM2↓, NOTCH1↓, VEGF↓, H3↓, H4↓, HDAC↓, SIRT1↓, ROS↑, DR5↑, Cyt‑c↑, p‑JNK↑, PTEN↓, mTOR↓, CD34↓, FasL↑, Fas↑, XIAP↓, p‑eIF2α↑, CHOP↑, LC3II↑, PD-1↓, STAT3↓, IL2↑, EMT↓, cachexia↓, BioAv↑, *Half-Life↝, *eff↑,
2930- LT,    Luteolin confers renoprotection against ischemia–reperfusion injury via involving Nrf2 pathway and regulating miR320
- in-vitro, Nor, NA
*RenoP↑, *ROS↓, *antiOx↑, *NRF2↓,
2914- LT,    Therapeutic Potential of Luteolin on Cancer
- Review, Var, NA
*antiOx↑, *IronCh↑, *toxicity↓, *BioAv↓, *BioAv↑, DNAdam↑, TumCP↓, DR5↑, P53↑, JNK↑, BAX↑, cl‑Casp3↑, cl‑Casp8↑, cl‑Casp9↑, cl‑PARP↑, survivin↓, cycD1↓, CycB↓, CDC2↓, P21↑, angioG↓, MMP2↓, AEG1↓, VEGF↓, VEGFR2↓, MMP9↓, CXCR4↓, PI3K↓, Akt↓, ERK↓, TumAuto↑, LC3B-II↑, EMT↓, E-cadherin↑, N-cadherin↓, Wnt↓, ROS↑, NICD↓, p‑GSK‐3β↓, iNOS↓, COX2↓, NRF2↑, Ca+2↑, ChemoSen↑, ChemoSen↓, IFN-γ↓, RadioS↑, MDM2↓, NOTCH1↓, AR↓, TIMP1↑, TIMP2↑, ER Stress↑, CDK2↓, Telomerase↓, p‑NF-kB↑, p‑cMyc↑, hTERT↓, RAS↓, YAP/TEAD↓, TAZ↓, NF-kB↓, NRF2↓, HO-1↓, MDR1↓,
2595- LT,    Regulation of Nrf2/ARE Pathway by Dietary Flavonoids: A Friend or Foe for Cancer Management?
- Review, Var, NA
*NRF2↑, NRF2↓, NRF2⇅,
2589- LT,  Chemo,    Luteolin Inhibits Breast Cancer Stemness and Enhances Chemosensitivity through the Nrf2-Mediated Pathway
- in-vitro, BC, MDA-MB-231
NRF2↓, HO-1↓, ChemoSen↑, CSCs↓, SIRT1↓,
2588- LT,  Chemo,    Luteolin sensitizes two oxaliplatin-resistant colorectal cancer cell lines to chemotherapeutic drugs via inhibition of the Nrf2 pathway
- in-vitro, CRC, HCT116
NRF2↓, NQO1↓, HO-1↓, GSH↓, ChemoSen↑,
2587- LT,    Luteolin inhibits Nrf2 leading to negative regulation of the Nrf2/ARE pathway and sensitization of human lung carcinoma A549 cells to therapeutic drugs
- in-vitro, Lung, A549
NRF2↓, GSH↓, ChemoSen↑, HO-1↓,
3828- Lyco,    Lycopene alleviates oxidative stress via the PI3K/Akt/Nrf2pathway in a cell model of Alzheimer's disease
- in-vitro, AD, M146L
*ROS↓, *PI3K↑, *Akt↑, *NRF2↓, *antiOx↑, *BACE↓, *MDA↓,
1204- MET,    Metformin induces ferroptosis through the Nrf2/HO-1 signaling in lung cancer
- in-vitro, Lung, A549 - in-vitro, Lung, H1299
MDA↑, ROS↑, Iron↑, GSH↓, T-SOD↓, Catalase↓, GPx4↓, xCT↓, NRF2↓, HO-1↓,
3812- mushLions,    Structural characterization of polysaccharide purified from Hericium erinaceus fermented mycelium and its pharmacological basis for application in Alzheimer's disease: Oxidative stress related calcium homeostasis
- in-vitro, AD, NA
*cognitive↑, *Aβ↓, *p‑tau↓, *ROS↓, *NRF2↓, *Ca+2↝,
1273- Myr,    Myricetin Induces Ferroptosis and Inhibits Gastric Cancer Progression by Targeting NOX4
- vitro+vivo, GC, NA
Ferroptosis↑, MDA↑, Iron↑, GSH↓, NOX4↑, NRF2↓, GPx4↓,
3251- PBG,    The Antioxidant and Anti-Inflammatory Effects of Flavonoids from Propolis via Nrf2 and NF-κB Pathways
- Review, AD, NA - Review, Diabetic, NA - Review, Var, NA - in-vitro, Nor, H9c2
*antiOx↑, *Inflam↓, *ROS↓, *SOD↑, *Catalase↑, *HO-1↑, *NO↓, *NOS2↓, *NF-kB↓, *NRF2↑, *hepatoP↑, *MDA↓, *mtDam↓, *GSH↑, *p65↓, *TNF-α↓, *IL1β↓, *NRF2↑, *NRF2↓, *ROS⇅, *BioAv↓, *BioAv↑,
2961- PL,    Piperlongumine inhibits esophageal squamous cell carcinoma in vitro and in vivo by triggering NRF2/ROS/TXNIP/NLRP3-dependent pyroptosis
- in-vitro, ESCC, KYSE-30
Pyro↑, TumCP↓, TumCMig↓, TumCI↓, ASC↑, cl‑Casp1↑, NLRP3↑, GSDMD↑, ROS↑, NRF2↓, TXNIP↑,
3054- RES,    Resveratrol induced reactive oxygen species and endoplasmic reticulum stress-mediated apoptosis, and cell cycle arrest in the A375SM malignant melanoma cell line
- in-vitro, Melanoma, A375
TumCG↓, P21↑, p27↑, CycB↓, ROS↑, ER Stress↑, p‑p38↑, P53↑, p‑eIF2α↑, EP4↑, CHOP↑, Bcl-2↓, BAX↓, TumCCA↑, NRF2↓, ChemoSen↑, GSH↓,
1688- Se,    Potential Role of Selenium in the Treatment of Cancer and Viral Infections
- Review, Var, NA
IL2↑, INF-γ↑, Th1 response↑, Th2↑, Dose↑, AntiCan∅, Risk↑, chemoP↑, Hif1a↓, VEGF↓, selectivity↑, *GADD45A↑, NRF2↓, *NRF2↑, ChemoSen↑, angioG↓, PrxI↓, ChemoSideEff↓, eff↑,
1280- SK,    Shikonin Induces Apoptotic Cell Death via Regulation of p53 and Nrf2 in AGS Human Stomach Carcinoma Cells
- in-vitro, GC, AGS
ROS↑, Casp3↑, P53↑, NRF2↓,
1346- SK,    An Oxidative Stress Mechanism of Shikonin in Human Glioma Cells
- in-vitro, GBM, U87MG - in-vitro, GBM, Hs683
NRF2↓, ROS↑, Apoptosis↑, Cyt‑c↑, GSH↓, MMP↓, P53↑, HO-1⇅,
2201- SK,    Shikonin promotes ferroptosis in HaCaT cells through Nrf2 and alleviates imiquimod-induced psoriasis in mice
- in-vitro, PSA, HaCaT - in-vivo, NA, NA
*eff↑, *IL6↓, *IL17↓, *TNF-α↓, *lipid-P↑, *NRF2↓, *HO-1↝, *NCOA4↝, *GPx4↓, *Ferroptosis↓, *Inflam↓, *ROS↓, *Iron↓,
2198- SK,    Shikonin suppresses proliferation of osteosarcoma cells by inducing ferroptosis through promoting Nrf2 ubiquitination and inhibiting the xCT/GPX4 regulatory axis
- in-vitro, OS, MG63 - in-vitro, OS, 143B
TumCP↓, TumCCA↑, Ferroptosis↑, Iron↑, ROS↑, lipid-P↑, MDA↑, mtDam↑, NRF2↓, xCT↓, GPx4↓, GSH/GSSG↓, Keap1↑,
2197- SK,    Shikonin derivatives for cancer prevention and therapy
- Review, Var, NA
ROS↑, Ca+2↑, BAX↑, Bcl-2↓, MMP9↓, NF-kB↓, PKM2↓, Hif1a↓, NRF2↓, P53↑, DNMT1↓, MDR1↓, COX2↓, VEGF↓, EMT↓, MMP7↓, MMP13↓, uPA↓, RIP1↑, RIP3↑, Casp3↑, Casp7↑, Casp9↑, P21↓, DFF45↓, TRAIL↑, PTEN↑, mTOR↓, AR↓, FAK↓, Src↓, Myc↓, RadioS↑,
365- SNP,    Silver nanoparticles affect glucose metabolism in hepatoma cells through production of reactive oxygen species
- in-vitro, Hepat, HepG2
ROS↑, GlucoseCon↓, TumCD↑, NRF2↓,
3415- TQ,    The anti-neoplastic impact of thymoquinone from Nigella sativa on small cell lung cancer: In vitro and in vivo investigations
- in-vitro, Lung, H446
tumCV↓, TumCCA↑, ROS↓, CycB↑, CycD3↑, cycA1↓, cycE↓, cDC2↓, antiOx↑, PARP↓, NRF2↓, ARE/EpRE↑, eff↑,
2132- TQ,    Thymoquinone treatment modulates the Nrf2/HO-1 signaling pathway and abrogates the inflammatory response in an animal model of lung fibrosis
- in-vivo, Nor, NA
*Weight∅, *antiOx↑, *lipid-P↓, *MMP7↓, *Casp3↓, *BAX↓, *TGF-β↓, *Diff↑, *NRF2↓, *HO-1↓, *NF-kB↓, *IκB↑,
2454- Trip,    Natural product triptolide induces GSDME-mediated pyroptosis in head and neck cancer through suppressing mitochondrial hexokinase-ΙΙ
- in-vitro, HNSCC, HaCaT - in-vivo, NA, NA
GSDME-N↑, Pyro↑, cMyc↓, HK2↓, BAD↑, BAX↑, Casp3↑, NRF2↓, xCT↓, ROS↑, eff↑, Glycolysis↓, GlucoseCon↓, lactateProd↓, ATP↓, xCT↓, eff↑,
3108- VitC,  QC,    The role of quercetin and vitamin C in Nrf2-dependent oxidative stress production in breast cancer cells
- in-vitro, BC, MDA-MB-231 - in-vitro, Lung, A549
NRF2↓, HO-1↓, ROS↑, NRF2⇅,
2592- VitC,    Ascorbic acid restores sensitivity to imatinib via suppression of Nrf2-dependent gene expression in the imatinib-resistant cell line
- in-vitro, CLL, NA
NRF2↓, GSH↓,
114- VitC,  QC,    Chemoprevention of prostate cancer cells by vitamin C plus quercetin: role of Nrf2 in inducing oxidative stress
- in-vitro, Pca, PC3 - in-vitro, NA, DU145
GPx↓, GSR↓, NQO1↓, NRF2↓, ROS↑,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 59

Results for Effect on Cancer/Diseased Cells:
ACC↑,1,   AEG1↓,1,   AIF↑,1,   Akt↓,12,   p‑Akt↓,5,   ALAT↓,1,   ALP↓,1,   AMPK↑,3,   angioG↓,9,   annexin II↓,1,   AntiCan↑,1,   AntiCan∅,1,   antiOx↓,1,   antiOx↑,1,   AntiTum↑,1,   AP-1↓,1,   APAF1↑,1,   Apoptosis↑,10,   AR↓,5,   ARE/EpRE↑,1,   ASC↓,1,   ASC↑,1,   ASK1↑,1,   ATF4↓,1,   ATF4↑,1,   ATP↓,1,   mt-ATP↓,1,   AXL↓,1,   BAD↑,2,   BAX↓,1,   BAX↑,9,   Bax:Bcl2↑,2,   BBB↑,1,   Bcl-2↓,8,   Bcl-xL↓,2,   BCR-ABL↓,1,   Beclin-1↓,1,   Beclin-1↑,1,   BIM↑,1,   BioAv↓,2,   BioAv↑,4,   BioEnh↑,1,   BNIP3↑,1,   Ca+2↑,7,   cachexia↓,1,   CAFs/TAFs↓,1,   cardioP↑,2,   Casp↑,1,   Casp1↓,1,   cl‑Casp1↑,1,   Casp12↑,1,   Casp3↑,13,   cl‑Casp3↑,2,   Casp7↑,2,   Casp8↑,2,   cl‑Casp8↑,1,   Casp9↑,8,   cl‑Casp9↑,1,   proCasp9↓,1,   Catalase↓,4,   CD34↓,1,   cDC2↓,1,   CDC2↓,2,   Cdc42↓,1,   CDK1↓,1,   CDK2↓,8,   CDK4↓,3,   CDK6↓,1,   CEA↓,1,   cFos↓,1,   cFos↑,1,   chemoP↑,5,   ChemoSen↓,1,   ChemoSen↑,19,   ChemoSideEff↓,1,   CHOP↑,3,   cJun↓,1,   CK2↓,2,   CLDN1↓,2,   cMYB↓,1,   cMyc↓,5,   p‑cMyc↑,1,   Copper↑,1,   COX2↓,7,   COX2↑,2,   CSCs↓,4,   CXCR4↓,1,   Cyc↓,1,   cycA1↓,2,   cycA1↑,1,   CycB↓,4,   CycB↑,1,   cycD1↓,6,   CycD3↓,1,   CycD3↑,1,   cycE↓,2,   CYP1A1↓,1,   Cyt‑c↑,12,   DFF45↓,1,   Diablo↑,1,   DNAdam↑,4,   DNMT1↓,2,   Dose↑,1,   Dose∅,2,   DR5↑,5,   E-cadherin↓,1,   E-cadherin↑,9,   eff↑,23,   eff↝,2,   EGF↓,1,   EGFR↓,5,   EGFR↑,1,   p‑EGFR↓,1,   eIF2α↑,1,   p‑eIF2α↑,3,   EMT↓,13,   eNOS↓,1,   EP4↑,1,   ER Stress↑,5,   ERK↓,4,   p‑ERK↓,1,   FAK↓,5,   p‑FAK↓,1,   m-FAM72A↓,1,   Fas↑,2,   FasL↑,1,   Fenton↑,1,   Ferritin↑,1,   Ferroptosis↑,6,   Fibronectin↓,2,   FOXO3↑,2,   FTH1↓,1,   Gli↓,1,   Gli1↓,1,   GlucoseCon↓,3,   GLUT1↓,2,   Glycolysis↓,4,   GPx↓,2,   GPx4↓,7,   GRP78/BiP↑,1,   GSDMD↑,1,   GSDME-N↑,1,   GSH↓,16,   GSH/GSSG↓,1,   p‑GSK‐3β↓,2,   GSR↓,2,   GSTP1/GSTπ↓,1,   GSTs↓,2,   GSTs↝,1,   GutMicro↑,2,   H3↓,1,   H4↓,1,   Half-Life↓,1,   HDAC↓,4,   HDAC1↓,1,   HDAC3↓,1,   HDAC8↓,1,   HER2/EBBR2↓,1,   HGF/c-Met↓,1,   Hif1a↓,10,   HK2↓,4,   HO-1↓,16,   HO-1↑,1,   HO-1⇅,1,   HSP27↓,1,   HSP70/HSPA5↓,2,   HSP90↓,2,   hTERT↓,4,   ICAM-1↓,1,   IFN-γ↓,1,   IGF-1↓,2,   IKKα↓,1,   IL1↓,1,   IL10↓,1,   IL1β↓,3,   IL2↑,3,   IL6↓,6,   IL8↓,1,   INF-γ↑,1,   Inflam↓,1,   iNOS↓,2,   IRE1↑,1,   Iron↑,3,   ITGB1↓,1,   JNK↑,1,   p‑JNK↑,1,   Keap1↑,2,   Ki-67↓,1,   lactateProd↓,2,   LC3A↑,1,   LC3B-II↑,1,   LC3II↑,1,   LDH↓,1,   LDHA↓,1,   LDL↓,1,   Let-7↑,1,   lipid-P↑,3,   MAPK↓,1,   MAPK↑,1,   Mcl-1↓,2,   MDA↓,1,   MDA↑,7,   MDM2↓,3,   p‑MDM2↓,1,   MDR1↓,2,   MET↓,2,   p‑MET↓,1,   MMP↓,10,   MMP↑,2,   MMP-10↓,1,   MMP1↓,1,   MMP13↓,1,   MMP2↓,10,   MMP3↓,1,   MMP7↓,2,   MMP9↓,10,   MMP9↑,1,   MMPs↓,1,   Mortalin↓,1,   mtDam↑,1,   mTOR↓,8,   p‑mTOR↓,2,   p‑mTOR↑,1,   Myc↓,2,   N-cadherin↓,7,   NADPH↓,1,   NADPH↑,1,   Nanog↓,1,   NCOA4↑,1,   neuroP↑,1,   NF-kB↓,12,   p‑NF-kB↑,1,   NICD↓,1,   NLRP3↓,1,   NLRP3↑,1,   NOTCH↓,2,   NOTCH1↓,2,   NOTCH1↑,3,   NOX4↑,1,   NQO1↓,3,   NRF2↓,51,   NRF2↑,1,   NRF2⇅,2,   p‑NRF2↓,1,   NSE↓,1,   OCT4↓,2,   OS↑,2,   P21↓,1,   P21↑,6,   p27↑,3,   p38↓,1,   p38↑,1,   p‑p38↑,2,   P450↝,1,   P53↑,10,   p62↓,2,   p62↑,1,   p65↓,1,   p‑p65↓,1,   PARP↓,1,   PARP↑,2,   cl‑PARP↑,6,   PCNA↓,2,   PD-1↓,1,   PD-L1↓,2,   PDK1↓,5,   PDK3↑,1,   PERK↑,2,   PGE2↓,1,   PI3K↓,8,   PI3K↑,1,   p‑PI3K↓,2,   PKM2↓,1,   PPARα↓,1,   PPARγ↓,1,   PrxI↓,1,   PTEN↓,1,   PTEN↑,3,   Pyro↑,2,   Rac1↓,1,   RadioS↑,6,   RAS↓,1,   p‑RB1↓,1,   RenoP↑,2,   Rho↓,2,   RIP1↑,1,   RIP3↑,1,   Risk↓,2,   Risk↑,1,   ROCK1↓,3,   ROS↓,5,   ROS↑,37,   i-ROS↑,1,   SCF↓,1,   selectivity↑,9,   Shh↓,1,   SHP1↑,1,   SIRT1↓,2,   SIRT1↑,1,   SIRT3↓,1,   SIRT6↓,1,   Slug↓,1,   Smo↓,1,   Snail↓,7,   SOD↓,5,   SOD↑,2,   SOD1↑,1,   SOD2↓,1,   SOX2↓,1,   Sp1/3/4↓,1,   Src↓,1,   p‑Src↓,1,   STAT3↓,8,   p‑STAT3↓,3,   p‑STAT6↓,1,   survivin↓,4,   T-SOD↓,1,   TAZ↓,1,   Telomerase↓,4,   TET1↑,2,   Th1 response↑,1,   Th2↑,1,   TIMP1↓,1,   TIMP1↑,1,   TIMP2↓,1,   TIMP2↑,1,   TLR4↓,1,   TNF-α↓,3,   TOP1↓,2,   TOP2↓,1,   TRAIL↑,2,   Trx1↑,1,   TrxR↓,1,   TumAuto↑,2,   TumCCA↑,14,   TumCD↑,1,   TumCG↓,4,   TumCI↓,7,   TumCMig↓,5,   TumCP↓,10,   tumCV↓,2,   TumMeta↓,4,   TumMeta↑,1,   Twist↓,6,   TXNIP↑,1,   Tyro3↓,1,   uPA↓,5,   UPR↑,2,   VEGF↓,15,   VEGFR2↓,2,   Vim↓,9,   Vim↑,1,   VitC↓,1,   VitE↓,1,   Wnt↓,5,   XBP-1↓,1,   xCT↓,5,   XIAP↓,6,   YAP/TEAD↓,1,   Zeb1↓,1,   ZO-1↑,2,   β-catenin/ZEB1↓,5,  
Total Targets: 362

Results for Effect on Normal Cells:
AChE↓,1,   Akt↓,1,   Akt↑,1,   antiOx?,1,   antiOx↑,10,   AST↓,1,   Aβ↓,2,   BACE↓,1,   BAX↓,1,   BBB↑,1,   BioAv↓,5,   BioAv↑,2,   Ca+2↝,1,   cardioP↑,1,   Casp3↓,2,   Casp3∅,1,   Casp9∅,1,   Catalase↑,4,   cognitive↑,2,   COX2↓,1,   Cyt‑c∅,1,   Diff↑,1,   DNArepair↑,1,   eff↑,2,   ERK↓,1,   Ferroptosis↓,1,   GADD45A↑,1,   GPx↑,2,   GPx4↓,1,   GSH↑,3,   GSR↑,1,   GSTs↑,3,   Half-Life↝,1,   hepatoP↑,3,   HO-1↓,1,   HO-1↑,3,   HO-1↝,1,   IL10↑,1,   IL17↓,1,   IL1β↓,2,   IL2↓,1,   IL6↓,2,   Inflam↓,6,   iNOS↓,1,   iNOS↑,1,   Iron↓,1,   IronCh↑,1,   IκB↑,1,   JNK↓,1,   lipid-P↓,3,   lipid-P↑,1,   lipidLev↓,1,   MAPK↓,1,   MDA↓,3,   MMP↑,1,   MMP7↓,1,   mtDam↓,1,   NADPH↑,1,   NCOA4↝,1,   neuroP↑,4,   NF-kB↓,5,   NO↓,2,   NOS2↓,1,   NRF2↓,7,   NRF2↑,7,   p65↓,1,   PARP∅,1,   PI3K↓,1,   PI3K↑,1,   RenoP↑,2,   ROS↓,9,   ROS⇅,1,   SOD↑,4,   p‑tau↓,1,   TGF-β↓,1,   TNF-α↓,5,   toxicity↓,3,   Weight∅,1,  
Total Targets: 78

Scientific Paper Hit Count for: NRF2, nuclear factor erythroid 2-related factor 2
9 Luteolin
6 Apigenin (mainly Parsley)
6 Chrysin
5 Shikonin
3 doxorubicin
3 Baicalein
3 Berberine
3 Fisetin
3 Vitamin C (Ascorbic Acid)
2 Alpha-Lipoic-Acid
2 Ashwagandha
2 Propolis -bee glue
2 Chemotherapy
2 Thymoquinone
2 Quercetin
1 Allicin (mainly Garlic)
1 Docetaxel
1 Cisplatin
1 Lapatinib
1 Betulinic acid
1 Boron
1 Curcumin
1 diet FMD Fasting Mimicking Diet
1 EGCG (Epigallocatechin Gallate)
1 Lycopene
1 Metformin
1 Mushroom Lion’s Mane
1 Myricetin
1 Piperlongumine
1 Resveratrol
1 Selenium
1 Silver-NanoParticles
1 triptolide
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:%  Target#:226  State#:%  Dir#:1
wNotes=0 sortOrder:rid,rpid

 

Home Page