condition found tbRes List
mTOR, mammalian target of rapamycin: Click to Expand ⟱
Source: HalifaxProj (inhibit)
Type:
mTOR (mechanistic target of rapamycin) is a central regulator of cell growth, proliferation, metabolism, and survival. It is a serine/threonine kinase that integrates signals from nutrients, growth factors, and cellular energy status.
mTOR promotes protein synthesis and cell growth by activating downstream targets such as S6 kinase and 4E-BP1. In cancer, this pathway can become hyperactivated, leading to uncontrolled cell proliferation.

mTor Inhibitors:
-rapamycin (Sirolimus): classic natural product mTOR inhibitor
-Curcumin
-Resveratrol
-Epigallocatechin Gallate (EGCG)
-Honokiol


Scientific Papers found: Click to Expand⟱
250- AL,    Allicin Induces p53-Mediated Autophagy in Hep G2 Human Liver Cancer Cells
- in-vitro, Liver, HepG2
P53↓, allicin decreased the level of cytoplasmic p53, the PI3K/mTOR signaling pathway
PI3K↓, decreased the levels of PI3K/mTOR, p-Bcl-2, Bcl-xL, and cytoplasmic p53 in Hep G2 cells.
mTOR↓,
Bcl-2↓,
AMPK↑,
TSC2↑,
Beclin-1↑, llicin increased the levels of Beclin-1, Bad, p-AMPK, TSC2, and Atg7
TumAuto↑, Allicin induced autophagy and increased the formation of autophagosomes and autophagolysosomes in Hep G2 cells.
tumCV↓, Allicin treatment at 35 uM decreased the viability of Hep G2 cells after 12 and 24 h significantly.
ATG7↑,
MMP↓, allicin treatment caused a decrease of MMP of Hep G2 cells and degradation of mitochondria

1069- AL,    Allicin promotes autophagy and ferroptosis in esophageal squamous cell carcinoma by activating AMPK/mTOR signaling
- vitro+vivo, ESCC, TE1 - vitro+vivo, ESCC, KYSE-510 - in-vitro, Nor, Het-1A
TumCP↓,
LC3‑Ⅱ/LC3‑Ⅰ↑,
p62↓,
p‑AMPK↑,
mTOR↓,
TumAuto↑,
NCOA4↑,
MDA↑,
Iron↑, elevated malondialdehyde and Fe2+ production levels
TumW↓,
TumVol↓,
ATG5↑,
ATG7↑,
TfR1/CD71↓,
FTH1↓, suppressed the expression of ferritin heavy chain 1 (the major intracellular iron-storage protein)
ROS↑,
Iron↑,
Ferroptosis↑,
*toxicity↓, 80 μg/mL allicin for 24 h did not change the viability of Het-1A cells. A slight reduction in cell viability was observed when Het-1A cells were treated with 160 μg/mL allicin for 24 h

297- ALA,    Insights on the Use of α-Lipoic Acid for Therapeutic Purposes
- Review, BC, SkBr3 - Review, neuroblastoma, SK-N-SH - Review, AD, NA
PDH↑, ALA is capable of activating pyruvate dehydrogenase in tumor cells.
TumCG↓, ALA also significantly inhibited tumor growth in mouse xenograft model using BCPAP and FTC-133 cells
ROS↑, ALA is able to generate ROS, which promote ALA-dependent cell death in lung cancer [75], breast cancer [76] and colon cancer
AMPK↑,
EGR4↓,
Half-Life↓, Data suggests that ALA has a short half-life and bioavailability (about 30%)
BioAv↝,
*GSH↑, Moreover, it is able to increase the glutathione levels inside the cells, that chelate and excrete a wide variety of toxins, especially toxic metals from the body
*IronCh↑, The existence of thiol groups in ALA is responsible for its metal chelating abilities [14,35].
*ROS↓, ALA exerts a direct impact in oxidative stress reduction
*antiOx↑, ALA is being referred as the universal antioxidant
*neuroP↑, ALA has neuroprotective effects on Aβ-mediated cytotoxicity
*Ach↑, ALA show anti-dementia or anti-AD properties by increasing acetylcholine (ACh) production through activation of choline acetyltransferase, which increases glucose absorption
*lipid-P↓, ALA has multiple and complex effects in this way, namely scavenging ROS, transition metal ions, increasing the levels of reduced glutathione [59,63], scavenging of lipid peroxidation products
*IL1β↓, ALA downregulated the levels of the inflammatory cytokines IL-1B and IL-6 in SK-N-BE human neuroblastoma cells
*IL6↓,
TumCP↓, ALA inhibited cell proliferation, [18F]-FDG uptake and lactate formation and increased apoptosis in neuroblastoma cell lines Kelly, SK-N-SH, Neuro-2a and in the breast cancer cell line SkBr3.
FDG↓,
Apoptosis↑,
AMPK↑, ALA suppressed thyroid cancer cell proliferation and growth through activation of AMPK and subsequent down-regulation of mTOR-S6 signaling pathway in BCPAP, HTH-83, CAL-62 and FTC-133 cells lines.
mTOR↓,
EGFR↓, ALA inhibited cell proliferation through Grb2-mediated EGFR down-regulation
TumCI↓, ALA inhibited metastatic breast cancer cells migration and invasion, partly through ERK1/2 and AKT signaling
TumCMig↓,
*memory↑, Alzheimer’s Disease: ALA led to a marked improvement in learning and memory retention
*BioAv↑, Since ALA is poorly soluble, lecithin has been used as an amphiphilic matrix to enhance its bioavailability.
*BioAv↝, ALA were found to be considerably higher in adults with mean age greater than 75 years as compared to young adults between the ages of 18 and 45 years.
*other↓, ALA treatment has been recently studied by some clinical trials to explain its efficacy in preventing miscarriage
*other↝, 1800 mg of ALA or placebo were administrated orally every day, except during the period 2 days before to 4 days after administration of each dose of platinum to avoid potential interference with platinum’s antitumor effects
*Half-Life↓, Data shows a short half-life and bioavailability of about 30% of ALA due to mechanisms involving hepatic degradation, reduced ALA solubility as well as instability in the stomach.
*BioAv↑, ALA bioavailability is greatly reduced after food intake and it has been recommended that ALA should be admitted at least 2 h after eating or if taken before; meal should be taken at least 30 min after ALA administration
*ChAT↑, ALA show anti-dementia or anti-AD properties by increasing acetylcholine (ACh) production through activation of choline acetyltransferase, which increases glucose absorption
*GlucoseCon↑,

280- ALA,    Alpha‐lipoic acid inhibits lung cancer growth via mTOR‐mediated autophagy inhibition
- in-vivo, Lung, A549
p‑mTOR↑, significantly increased mTOR phosphorylation level by 76.9%
TumCG↓, LA suppressed lung cancer growth in mice.
NA↑,
TumAuto↓, (note this research paper takes the approach of wanting to reduce autophagy)
p‑P70S6K↑, phosphorylation level of p70S6K, a downstream target of mTOR, was increased by 83.2% when compared with controls

265- ALA,    Alpha-Lipoic Acid Reduces Cell Growth, Inhibits Autophagy, and Counteracts Prostate Cancer Cell Migration and Invasion: Evidence from In Vitro Studies
- in-vitro, Pca, LNCaP - in-vitro, Pca, DU145
ROS↓, ALA decreased ROS production, SOD1 and GSTP1 protein expression
SOD↓, SOD1, DU145
GSTP1/GSTπ↓,
NRF2↓, significantly reduced the cytosolic and nuclear content of the transcription factor Nrf2
p62↓, du145
p62↑, LNCaP
SOD↑, LNCaP
p‑mTOR↑, revealed that in both cancer cells, ALA, by upregulating pmTOR expression, reduced the protein content of two autophagy initiation markers, Beclin-1 and MAPLC3.
Beclin-1↓,
ROS↑, Interestingly, in LNCaP cells, we observed an almost significant increase in ROS content (p = 0.06) after ALA compared to the control, concomitantly with a significant upregulation of the antioxidant enzyme SOD1 after 48 h.
SOD1↑,

262- ALA,    Lipoic acid decreases breast cancer cell proliferation by inhibiting IGF-1R via furin downregulation
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
TumCP↓,
Akt↓,
ERK↓,
IGF-1R↓,
Furin↓,
Ki-67↓,
AMPK↑,
mTOR↓,

1124- ALA,    Alpha lipoic acid inhibits proliferation and epithelial mesenchymal transition of thyroid cancer cells
- in-vitro, Thyroid, BCPAP - in-vitro, Thyroid, HTH-83 - in-vitro, Thyroid, CAL-62 - in-vitro, Thyroid, FTC-133 - in-vivo, NA, NA
TumCP↓,
AMPK↑,
mTOR↓,
TumCMig↓,
TumCI↓,
EMT↓,
E-cadherin↑,
β-catenin/ZEB1↓,
Vim↓,
Snail↓,
Twist↓,
TGF-β↓,
p‑SMAD2↓,
TumCG↓, mouse model

3434- ALA,    Alpha lipoic acid modulates metabolic reprogramming in breast cancer stem cells enriched 3D spheroids by targeting phosphoinositide 3-kinase: In silico and in vitro insights
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
tumCV↓, significant dose-dependent reduction in cell viability, with the half-maximal inhibitory concentration (IC50) of LA to be 3.2 mM for MCF-7 cells and 2.9 mM for MDA-MB-231 cells
PI3K↓, LA significantly inhibited PI3K, p-AKT, p-p70S6K and p-mTOR levels
p‑Akt↓,
p‑P70S6K↓,
mTOR↓,
ATP↓, LA markedly reduced both ATP levels and glucose uptake (Fig. 4A and 4B). LA also induced ROS generation in both MCF-7 and MDA-MB231 spheroids
GlucoseCon↓,
ROS↑,
PKM2↓, LA downregulated the expression of PKM2 and LDHA in the spheroids, indicating an inhibition of glycolysis in BCSCs
LDHA↓,
Glycolysis↓,
ChemoSen↑, LA enhances chemosensitivity of spheroids to Dox treatment

3454- ALA,    Lipoic acid blocks autophagic flux and impairs cellular bioenergetics in breast cancer and reduces stemness
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
TumCG↑, Lipoic acid inhibits breast cancer cell growth via accumulation of autophagosomes.
Glycolysis↓, Lipoic acid inhibits glycolysis in breast cancer cells.
ROS↑, Lipoic acid induces ROS production in breast cancer cells/BCSC.
CSCs↓, Here, we demonstrate that LA inhibits mammosphere formation and subpopulation of BCSCs
selectivity↑, In contrast, LA at similar doses. had no significant effect on the cell viability of the human embryonic kidney cell line (HEK-293)
LC3B-II↑, LA treatment (0.5 mM and 1.0 mM) increased the expression level of LC3B-I to LC3B-II in both MCF-7 and MDA-MB231cells at 48 h
MMP↓, LA induced mitochondrial ROS levels, decreased mitochondria complex I activity, and MMP in both MCF-7 and MDA-MB231 cells
mitResp↓, In MCF-7 cells, we found a substantial reduction in maximal respiration and ATP production at 0.5 mM and 1 mM of LA treatment after 48 h
ATP↓,
OCR↓, LA at 2.5 mM decreased OCR
NAD↓, we found that LA (0.5 mM and 1 mM) significantly reduced ATP production and NAD levels in MCF-7 and MDA-MB231 cells
p‑AMPK↑, LA treatment (0.5 mM and 1.0 mM) increased p-AMPK levels;
GlucoseCon↓, LA (0.5 mM and 1 mM) significantly decreased glucose uptake and lactate production in MCF-7, whereas LA at 1 mM significantly reduced glucose uptake and lactate production in MDA-MB231 cells but it had no effect at 0.5 mM
lactateProd↓,
HK2↓, LA reduced hexokinase 2 (HK2), phosphofructokinase (PFK), pyruvate kinase M2 (PKM2), and lactate dehydrogenase A (LDHA) expression in MCF-7 and MDA-MB231 cells
PFK↓,
LDHA↓,
eff↓, Moreover, we found that LA-mediated inhibition of cellular bioenergetics including OCR (maximal respiration and ATP production) and glycolysis were restored by NAC treatment (Fig. 6E and F) which indicates that LA-induced ROS production is responsibl
mTOR↓, LA inhibits mTOR signaling and thereby decreased the p-TFEB levels in breast cancer cells
ECAR↓, LA also inhibits glycolysis as evidenced by decreased glucose uptake, lactate production, and ECAR.
ALDH↓, LA decreased ALDH1 activity, CD44+/CD24-subpopulation, and increased accumulation of autophagosomes possibly due to inhibition of autophagic flux of breast cancer.
CD44↓,
CD24↓,

1279- And,    Andrographolide Exhibits Anticancer Activity against Breast Cancer Cells (MCF-7 and MDA-MB-231 Cells) through Suppressing Cell Proliferation and Inducing Cell Apoptosis via Inactivation of ER-α Receptor and PI3K/AKT/mTOR Signaling
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7
Apoptosis↑,
Bcl-2↓,
BAX↑,
ERα↓, ER-positive
PI3K↓, ER-positive
mTOR↓, ER-positive BC

1008- Api,    Apigenin-induced lysosomal degradation of β-catenin in Wnt/β-catenin signaling
- in-vitro, CRC, HCT116 - in-vitro, CRC, SW480
Wnt/(β-catenin)↓,
β-catenin/ZEB1↓,
TumAuto↑,
Akt↓,
mTOR↓,
tumCV↓,
TumCCA↑, cell cycle arrest at G2/M phase
TumAuto↑, data suggested the involvement of autophagy in apigenin-induced β-catenin down-regulation during Wnt signaling
p‑Akt↓,
p‑p70S6↓,
p‑4E-BP1↓,

242- Api,    Apigenin inhibits proliferation and invasion, and induces apoptosis and cell cycle arrest in human melanoma cells
- in-vitro, Melanoma, A375 - in-vitro, Melanoma, C8161
ERK↓,
PI3k/Akt/mTOR↓, Akt/mTOR
Casp3↑, cleaved
PARP↑, cleaved
p‑mTOR↓,
p‑Akt↓,

270- Api,    Apigenin induces apoptosis in human leukemia cells and exhibits anti-leukemic activity in vivo via inactivation of Akt and activation of JNK
- in-vivo, AML, U937
Akt↓, nactivation of Akt and activation of JNK
JNK↑,
Mcl-1↓,
cl‑Bcl-2↓, cleavage
Casp3↑,
Casp7↑,
Casp9↑,
cl‑PARP↑, cleaved
mTOR↓,
GSK‐3β↓,

2584- Api,  Chemo,    The versatility of apigenin: Especially as a chemopreventive agent for cancer
- Review, Var, NA
ChemoSen↑, Apigenin has also been studied for its potential as a sensitizer in cancer therapy, improving the efficacy of traditional chemotherapeutic drugs and radiotherapy
RadioS↑, Apigenin enhances radiotherapy effects by sensitizing cancer cells to radiation-induced cell death
eff↝, It works by suppressing the expression of involucrin (hINV), a hallmark of keratinocyte development. Apigenin inhibits the rise in hINV expression caused by differentiating agents
DR5↑, Apigenin also greatly upregulates the expression of death receptor 5 (DR5
selectivity↑, Surprisingly, apigenin-mediated increase of DR5 expression is missing in normal mononuclear cells from human peripheral blood and doesn't subject these cells to TRAIL-induced death.
angioG↓, Apigenin has been found to prevent angiogenesis by targeting critical signaling pathways involved in blood vessel creation.
selectivity↑, Importantly, apigenin has been demonstrated to selectively kill cancer cells while sparing normal ones
chemoP↑, This selective cytotoxicity is beneficial in cancer therapy because it reduces the negative effects frequently associated with traditional treatments like chemotherapy
MAPK↓, Apigenin's ability to suppress MAPK signaling adds to its anticancer properties.
PI3K↓, Apigenin suppresses the PI3K/Akt/mTOR pathway, which is typically dysregulated in cancer.
Akt↓,
mTOR↓,
Wnt↓, Apigenin inhibits Wnt signaling by increasing β-catenin degradation
β-catenin/ZEB1↓,
GLUT1↓, fig 3
radioP↑, while reducing radiation-induced damage to healthy tissues
BioAv↓, obstacles associated with apigenin's low bioavailability and stability

2631- Api,    Apigenin Induces Autophagy and Cell Death by Targeting EZH2 under Hypoxia Conditions in Gastric Cancer Cells
- in-vivo, GC, NA - in-vitro, GC, AGS
ER Stress↑, We further show that APG induces ER stress- and autophagy-related cell death through the inhibition of HIF-1α and Ezh2 under normoxia and hypoxia.
Hif1a↓, APG Inhibits HIF-1α and Induces Cell Death under Hypoxia in GC Cells
EZH2↓,
HDAC↓, Apigenin, a flavonoid found in traditional medicine, fruits, and vegetables and an HDAC inhibitor, is a powerful anti-cancer agent against various cancer cell lines.
TumAuto↑, APG Induces Autophagic Cell Death in GC Cells
p‑mTOR↓, APG decreased the phosphorylation of mTOR and increased the activation of AMPKα and ULK1
AMPKα↑,
GRP78/BiP↑, APG mediates the up-regulation of GRP78 through exosomes, and that this effect causes ER stress-induced cell death in APG-treated GC cells.
ROS↑, APG generates intracellular ROS release in colorectal cancer cells, and it causes various cell death types, including cell cycle arrest, chromatin condensation, MMP loss, intracellular Ca2+, annexin-v-positive cells, and ER stress-related cell death
MMP↓,
Ca+2↑, we found that APG exerts intracellular Ca2+ release in a dose- and time-dependent manner
ATF4↑, APG also increased ATF4 and CHOP in a time-dependent manner
CHOP↑,

1545- Api,    The Potential Role of Apigenin in Cancer Prevention and Treatment
- Review, NA, NA
TNF-α↓, Apigenin downregulates the TNFα
IL6↓,
IL1α↓,
P53↑,
Bcl-xL↓,
Bcl-2↓,
BAX↑,
Hif1a↓, Apigenin inhibited HIF-1alpha and vascular endothelial growth factor expression
VEGF↓,
TumCCA↑, Apigenin exposure induces G2/M phase cell cycle arrest, DNA damage, apoptosis and p53 accumulation
DNAdam↑,
Apoptosis↑,
CycB↓,
cycA1↓,
CDK1↓,
PI3K↓,
Akt↓,
mTOR↓,
IKKα↓, , decreases IKKα kinase activity,
ERK↓,
p‑Akt↓,
p‑P70S6K↓,
p‑S6↓,
p‑ERK↓, decreased the expression of phosphorylated (p)-ERK1/2 proteins, p-AKT and p-mTOR
p‑P90RSK↑,
STAT3↓,
MMP2↓, Apigenin down-regulated Signal transducer and activator of transcription 3target genes MMP-2, MMP-9 and vascular endothelial growth factor
MMP9↓,
TumCP↓, Apigenin significantly suppressed colorectal cancer cell proliferation, migration, invasion and organoid growth through inhibiting the Wnt/β-catenin signaling
TumCMig↓,
TumCI↓,
Wnt/(β-catenin)↓,

1548- Api,    A comprehensive view on the apigenin impact on colorectal cancer: Focusing on cellular and molecular mechanisms
- Review, Colon, NA
*BioAv↓, Apigenin is not easily absorbed orally because of its low water solubility, which is only 2.16 g/mL
*Half-Life∅, Apigenin is slowly absorbed and eliminated from the body, as evidenced by its half‐life of 91.8 h in the blood
selectivity↑, selective anticancer effects and effective cell cytotoxic activity while exhibiting negligible toxicity to ordinary cells
*toxicity↓, intentional consumption in higher doses, as the toxicity hazard is low
Wnt/(β-catenin)↓, inhibiting the Wnt/β‐catenin
P53↑,
P21↑,
PI3K↓,
Akt↓,
mTOR↓,
TumCCA↑, G2/M
TumCI↓,
TumCMig↓,
STAT3↓, apigenin can activate p53, which improves catalase and inhibits STAT3,
PKM2↓,
EMT↓, reversing increases in epithelial–mesenchymal transition (EMT)
cl‑PARP↑, apigenin increases the cleavage of poly‐(ADP‐ribose) polymerase (PARP) and rapidly enhances caspase‐3 activity,
Casp3↑,
Bax:Bcl2↑,
VEGF↓, apigenin suppresses VEGF transcription
Hif1a↓, decrease in hypoxia‐inducible factor 1‐alpha (HIF‐1α
Dose∅, effectiveness of apigenin (200 and 300 mg/kg) in treating CC was evaluated by establishing xenografts on Balb/c nude mice.
GLUT1↓, Apigenin has been found to inhibit GLUT1 activity and glucose uptake in human pancreatic cancer cells
GlucoseCon↓,

1565- Api,    Apigenin-7-glucoside induces apoptosis and ROS accumulation in lung cancer cells, and inhibits PI3K/Akt/mTOR pathway
- in-vitro, Lung, A549 - in-vitro, Nor, BEAS-2B - in-vitro, Lung, H1975
TumCP↓, AGL significantly reduced proliferation, promoted cell apoptosis, and attenuated the migration and invasion of A549 or H1975 cell
Apoptosis↑,
TumCMig↓,
TumCI↓,
Cyt‑c↑, elevated the levels of cytochrome C and MDA
MDA↑,
GSH↓, but reduced the production of GSH in A549 and H1975 cells.
ROS↑, AGL enhanced the accumulation of ROS
PI3K↓, induces ROS accumulation in lung cancer cells by repressing PI3K/Akt/mTOR pathway
Akt↓,
mTOR↓,

1076- ART/DHA,    The Potential Mechanisms by which Artemisinin and Its Derivatives Induce Ferroptosis in the Treatment of Cancer
- Review, NA, NA
Ferroptosis↑,
ROS↑, interaction between heme-derived iron and ART will result in the production of ROS
ER Stress↑,
i-Iron↓, DHA can cause intracellular iron depletion in a time- and dose-dependent manner
TumAuto↑,
AMPK↑,
mTOR↑,
P70S6K↑,
Fenton↑,
lipid-P↑,
ROS↑,
ChemoSen↑, combination of ART and Nrf2 inhibitors to promote ferroptosis may have more efficient anticancer effects without damaging normal cells.
NRF2↑, Liu et al. discovered that ART covalently targets Keap1 at Cys151 to activate the Nrf2-dependent pathway [94

556- ART/DHA,    Artemisinins as a novel anti-cancer therapy: Targeting a global cancer pandemic through drug repurposing
- Review, NA, NA
IL6↓,
IL1↓, IL-1β
TNF-α↓,
TGF-β↓, TGF-β1
NF-kB↓,
MIP2↓,
PGE2↓,
NO↓,
Hif1a↓,
KDR/FLK-1↓,
VEGF↓,
MMP2↓,
TIMP2↑,
ITGB1↑,
NCAM↑,
p‑ATM↑,
p‑ATR↑,
p‑CHK1↑,
p‑Chk2↑,
Wnt/(β-catenin)↓,
PI3K↓,
Akt↓,
ERK↓, ERK1/2
cMyc↓,
mTOR↓,
survivin↓,
cMET↓,
EGFR↓,
cycD1↓,
cycE1↓,
CDK4/6↓,
p16↑,
p27↑,
Apoptosis↑,
TumAuto↑,
Ferroptosis↑,
oncosis↑,
TumCCA↑, G0/G1 into M phase, G0/G1 into S phase, G1 and G2/M
ROS↑, ovarian cancer cell line model, artesunate induced oxidative stress, DNA double-strand breaks (DSBs) and downregulation of RAD51 foci
DNAdam↑,
RAD51↓,
HR↓,

558- ART/DHA,    Artemisinin and Its Synthetic Derivatives as a Possible Therapy for Cancer
- Review, NA, NA
ROS↑,
oncosis↑, low doses of artesunate induced oncosis-like cell death
Apoptosis↑, higher doses of art
LysoPr↑,
TumAuto↑,
Wnt/(β-catenin)↑,
AMP↓,
NF-kB↓,
Myc↓,
CREBBP↓,
mTOR↓,
E-cadherin↑,

566- ART/DHA,  2DG,    Dihydroartemisinin inhibits glucose uptake and cooperates with glycolysis inhibitor to induce apoptosis in non-small cell lung carcinoma cells
- in-vitro, Lung, A549 - in-vitro, Lung, PC9
GlucoseCon↓,
ATP↓,
lactateProd↓,
p‑S6↓,
mTOR↓,
GLUT1↓,
Casp9↑,
Casp8↑,
Casp3↑,
Cyt‑c↑,
AIF↑,
ROS↑, generation of ROS is critical for the toxic effects of DHA

2324- ART/DHA,    Research Progress of Warburg Effect in Hepatocellular Carcinoma
- Review, Var, NA
PKM2↓, DHA effectively suppressed aerobic glycolysis and ESCC progression by downregulating PKM2 expression in esophageal squamous cell carcinoma (ESCC) and ESCC cells
GLUT1↓, DHA inhibited leukemia cell K562 proliferation by suppressing GLUT1 and PKM2 levels, thereby regulating glucose uptake and inhibiting aerobic glycolysis
Glycolysis↓,
Akt↓, In LNCaP cells, DHA reduced Akt/mTOR and HIF-1α activity, leading to decreased expression of GLUT1, HK2, PKM2, and LDH and subsequent inhibition of aerobic glycolysis
mTOR↓,
Hif1a↓,
HK2↓,
LDH↓,
NF-kB↓, DHA was also found to inhibit the NF-κB signaling pathway to prevent GLUT1 translocation to the plasma membrane, thereby inhibiting the progression of non-small-cell lung cancer (NSCLC) cells via targeting glucose metabolism

3396- ART/DHA,    Progress on the study of the anticancer effects of artesunate
- Review, Var, NA
TumCP↓, reported inhibitory effects on cancer cell proliferation, invasion and migration.
TumCI↓,
TumCMig↓,
Apoptosis↑, ART has been reported to induce apoptosis, differentiation and autophagy in colorectal cancer cells by impairing angiogenesis
Diff↑,
TumAuto↑,
angioG↓,
TumCCA↑, inducing cell cycle arrest (11), upregulating ROS levels, regulating signal transduction [for example, activating the AMPK-mTOR-Unc-51-like autophagy activating kinase (ULK1) pathway in human bladder cancer cells]
ROS↑,
AMPK↑,
mTOR↑,
ChemoSen↑, ART has been shown to restore the sensitivity of a number of cancer types to chemotherapeutic drugs by modulating various signaling pathways
Tf↑, ART could upregulate the mRNA levels of transferrin receptor (a positive regulator of ferroptosis), thus inducing apoptosis and ferroptosis in A549 non-small cell lung cancer (NSCLC) cells.
Ferroptosis↑,
Ferritin↓, ferritin degradation, lipid peroxidation and ferroptosis
lipid-P↑,
CDK1↑, Cyclin-dependent kinase 1, 2, 4 and 6
CDK2↑,
CDK4↑,
CDK6↑,
SIRT1↑, Sirt1 levels
COX2↓,
IL1β↓, IL-1? ?
survivin↓, ART can selectively downregulate the expression of survivin and induce the DNA damage response in glial cells to increase cell apoptosis and cell cycle arrest, resulting in increased sensitivity to radiotherapy
DNAdam↑,
RadioS↑,

1335- AS,    Extract from Astragalus membranaceus inhibit breast cancer cells proliferation via PI3K/AKT/mTOR signaling pathway
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, BC, SkBr3
p‑PI3K↓,
p‑GS3Kβ↓,
p‑Akt↓,
p‑mTOR↓,

1357- Ash,    Cytotoxicity of withaferin A in glioblastomas involves induction of an oxidative stress-mediated heat shock response while altering Akt/mTOR and MAPK signaling pathways
- in-vitro, GBM, U87MG - in-vitro, GBM, U251 - in-vitro, GBM, GL26
TumCP↓,
TumCCA↑, G2/M cell cycle
Akt↓,
mTOR↓,
p70S6↓,
p85S6K↓,
AMPKα↑,
TSC2↑,
HSP70/HSPA5↑,
HO-1↑,
HSF1↓,
Apoptosis↑,
ROS↑, Withaferin A elevates pro-oxidant potential in GBM cells and induces a cellular oxidative stress response
eff↓, Pre-treatment with a thiol-antioxidant protects GBM cells from the anti-proliferative and cytotoxic effects of withaferin A NAC pretreatment was able to completely prevent cell cycle shift to G2/M arrest following 1µM WA treatment at 24h

3155- Ash,    Overview of the anticancer activity of withaferin A, an active constituent of the Indian ginseng Withania somnifera
- Review, Var, NA
Half-Life↝, The pharmacokinetic study demonstrates that a dose of 4 mg/kg in mice results in 2 μM concentration in plasma (with a half-life of 1.3 h, in the breast cancer model of mice),
Inflam↓, WA has many biological activities: anti-inflammatory (Dubey et al. 2018), immunomodulatory (Davis and Girija 2000), antistress (Singh et al. 2016), antioxidant (Sumathi et al. 2007) and anti-angiogenesis
antiOx↓,
angioG↓,
ROS↑, WA induces oxidative stress (ROS) determining mitochondrial dysfunction as well as apoptosis in leukaemia cells
BAX↑, withaferin mediates apoptosis by ROS generation and activation of Bax/Bak.
Bak↑,
E6↓, The results of the study show that withaferin treatment downregulates the HPV E6 and E7 oncoprotein and induces accumulation of p53 result in the activation of various apoptotic markers (e.g. Bcl2, Bax, caspase-3 and cleaved PARP).
E7↓,
P53↑,
Casp3↑,
cl‑PARP↑,
STAT3↓, WA treatment also decreases the level of STAT3
eff↑, This study concludes that combination of DOX with WA can reduce the doses and side effects of the treatment which gives valuable possibilities for future research.
HSP90↓, by inhibiting the HSP90
TGF-β↓, WA inhibited TGFβ1 and TNFα- induced EMT;
TNF-α↓,
EMT↑,
mTOR↓, by downregulation of mTOR/STAT3 signalling.
NOTCH1↓, WA showed inhibition of pro-survival signalling markers (Notch1, pAKT and NFκB)
p‑Akt↓,
NF-kB↓,
Dose↝, WA dose escalation sets consisted of 72, 108, 144 and 216 mg, fractioned in 2-4 doses/day.

3166- Ash,    Exploring the Multifaceted Therapeutic Potential of Withaferin A and Its Derivatives
- Review, Var, NA
*p‑PPARγ↓, preventing the phosphorylation of peroxisome proliferator-activated receptors (PPARγ)
*cardioP↑, cardioprotective activity by AMP-activated protein kinase (AMPK) activation and suppressing mitochondrial apoptosis.
*AMPK↑,
*BioAv↝, The oral bioavailability was found to be 32.4 ± 4.8% after 5 mg/kg intravenous and 10 mg/kg oral WA administration.
*Half-Life↝, The stability studies of WA in gastric fluid, liver microsomes, and intestinal microflora solution showed similar results in male rats and humans with a half-life of 5.6 min.
*Half-Life↝, WA reduced quickly, and 27.1% left within 1 h
*Dose↑, WA showed that formulation at dose 4800 mg having equivalent to 216 mg of WA, was tolerated well without showing any dose-limiting toxicity.
*chemoP↑, Here, we discuss the chemo-preventive effects of WA on multiple organs.
IL6↓, attenuates IL-6 in inducible (MCF-7 and MDA-MB-231)
STAT3↓, WA displayed downregulation of STAT3 transcriptional activity
ROS↓, associated with reactive oxygen species (ROS) generation, resulted in apoptosis of cells. The WA treatment decreases the oxidative phosphorylation
OXPHOS↓,
PCNA↓, uppresses human breast cells’ proliferation by decreasing the proliferating cell nuclear antigen (PCNA) expression
LDH↓, WA treatment decreases the lactate dehydrogenase (LDH) expression, increases AMP protein kinase activation, and reduces adenosine triphosphate
AMPK↑,
TumCCA↑, (SKOV3 andCaOV3), WA arrest the G2/M phase cell cycle
NOTCH3↓, It downregulated the Notch-3/Akt/Bcl-2 signaling mediated cell survival, thereby causing caspase-3 stimulation, which induces apoptosis.
Akt↓,
Bcl-2↓,
Casp3↑,
Apoptosis↑,
eff↑, Withaferin-A, combined with doxorubicin, and cisplatin at suboptimal dose generates ROS and causes cell death
NF-kB↓, reduces the cytosolic and nuclear levels of NF-κB-related phospho-p65 cytokines in xenografted tumors
CSCs↓, WA can be used as a pharmaceutical agent that effectively kills cancer stem cells (CSCs).
HSP90↓, WA inhibit Hsp90 chaperone activity, disrupting Hsp90 client proteins, thus showing antiproliferative effects
PI3K↓, WA inhibited PI3K/AKT pathway.
FOXO3↑, Par-4 and FOXO3A proapoptotic proteins were increased in Pten-KO mice supplemented with WA.
β-catenin/ZEB1↓, decreased pAKT expression and the β-catenin and N-cadherin epithelial-to-mesenchymal transition markers in WA-treated tumors control
N-cadherin↓,
EMT↓,
FASN↓, WA intraperitoneal administration (0.1 mg) resulted in significant suppression of circulatory free fatty acid and fatty acid synthase expression, ATP citrate lyase,
ACLY↓,
ROS↑, WA generates ROS followed by the activation of Nrf2, HO-1, NQO1 pathways, and upregulating the expression of the c-Jun-N-terminal kinase (JNK)
NRF2↑,
HO-1↑,
NQO1↑,
JNK↑,
mTOR↓, suppressing the mTOR/STAT3 pathway
neuroP↑, neuroprotective ability of WA (50 mg/kg b.w)
*TNF-α↓, WA attenuate the levels of neuroinflammatory mediators (TNF-α, IL-1β, and IL-6)
*IL1β↓,
*IL6↓,
*IL8↓, WA decreases the pro-inflammatory cytokines (IL-6, TNFα, IL-8, IL-18)
*IL18↓,
RadioS↑, radiosensitizing combination effect of WA and hyperthermia (HT) or radiotherapy (RT)
eff↑, WA and cisplatin at suboptimal dose generates ROS and causes cell death [41]. The actions of this combination is attributed by eradicating cells, revealing markers of cancer stem cells like CD34, CD44, Oct4, CD24, and CD117

2290- Ba,    Research Progress of Scutellaria baicalensis in the Treatment of Gastrointestinal Cancer
- Review, GI, NA
p‑mTOR↓, Baicalein treatment decreased the expression levels of p-mTOR, p-Akt, p-IκB and NF-κB proteins, and suppressed GC cells by inhibiting the PI3K/Akt
p‑Akt↓,
p‑IKKα↓,
NF-kB↓,
PI3K↓,
Akt↓,
ROCK1↓, Baicalin reduces HCC proliferation and metastasis by inhibiting the ROCK1/GSK-3β/β-catenin signaling pathway
GSK‐3β↓,
CycB↓, Baicalein induces S-phase arrest in gallbladder cancer cells by down-regulating Cyclin B1 and Cyclin D1 in gallbladder cancer BGC-SD and SGC996 cells while up-regulating Cyclin A
cycD1↓,
cycA1↑,
CDK4↓, Following baicalein treatment, there is a down-regulation of Ezrin, CyclinD1, and CDK4, as well as an up-regulation of p53 and p21 protein levels, thereby leading to the induction of CRC HCT116 cell cycle arrest
P53↑,
P21↑,
TumCCA↑,
MMP2↓, baicalein was able to inhibit the metastasis of gallbladder cancer cells by down-regulating ZFX, MMP-2 and MMP-9.
MMP9↓,
EMT↓, Baicalein treatment effectively inhibits the snail-induced EMT process in CRC HT29 and DLD1 cells
Hif1a↓, Baicalein inhibits VEGF by downregulating HIF-1α, a crucial regulator of angiogenesis
Shh↓, baicalein inhibits the metastasis of PC by impeding the Shh pathway
PD-L1↓, Baicalin and baicalein down-regulate PD-L1 expression induced by IFN-γ by reducing STAT3 activity
STAT3↓,
IL1β↓, baicalein therapy significantly diminishes the levels of pro-inflammatory cytokines such as interleukin-1 beta (IL-1β), IL-2, IL-6, and GM-CSF
IL2↓,
IL6↓,
PKM2↓, Baicalein, by reducing the expression levels of HIF-1A and PKM2, can inhibit the glycolysis process in ESCC cells
HDAC10↓, Baicalein treatment increases the level of miR-3178 and decreases HDAC10 expression, resulting in the inactivation of the AKT signaling pathways.
P-gp↓, baicalein reverses P-glycoprotein (P-gp)-mediated resistance in multidrug-resistant HCC (Bel7402/5-FU) cells by reducing the levels of P-gp and Bcl-xl
Bcl-xL↓,
eff↓, Baicalein combined with gemcitabine/docetaxel promotes apoptosis of PC cells by activating the caspase-3/PARP signaling pathway
BioAv↓, baicalein suffers from low water solubility and susceptibility to degradation by the digestive system
BioAv↑, Encapsulation of baicalein into liposomal bilayers exhibits a therapeutic efficacy close to 90% for PDAC

2292- Ba,  BA,    Baicalin and baicalein in modulating tumor microenvironment for cancer treatment: A comprehensive review with future perspectives
- Review, Var, NA
AntiCan↑, Baicalin and baicalein exhibit anticancer activities against multiple cancers with extremely low toxicity to normal cells.
*toxicity↓,
BioAv↝, Baicalein permeates easily through the epithelium from the gut lumen to the blood underneath due to its low molecular mass and high lipophilicity, albeit a low presence of its transporters.
BioAv↓, In contrast, baicalin has limited permeability partly due to its larger molecular mass and higher hydrophilicity [24]. The overall low water solubility of baicalin and baicalein contributes to their poor bioavailability.
*ROS↓, baicalin protected macrophages against mycoplasma gallisepticum (MG)-induced ROS production and NLRP3 inflammasome activation by upregulating autophagy and TLR2-NFκB pathway
*TLR2↓,
*NF-kB↓,
*NRF2↑, Therefore, baicalin exerts strong antioxidant activity by activating NRF2 antioxidant program.
*antiOx↑,
*Inflam↓, These data suggest that by attenuating ROS and inflammation baicalein inhibits tumor formation and metastasis.
HDAC1↓, baicalein reduced CTCLs by inhibiting HDAC1 and HDAC8 and its effect on tumor inhibition was better than traditional HDAC inhibitors
HDAC8↓,
Wnt↓, Baicalein also reduced the proliferation of acute T-lymphoblastic leukemia (TLL) Jurkat cells by inhibiting the Wnt/β-catenin signaling pathway
β-catenin/ZEB1↓,
PD-L1↓, baicalein and baicalin promoted antitumor immune response by suppressing PD-L1 expression of HCC cells, thus increasing tumor regression
Sepsis↓, Baicalein can also attenuate severe sepsis via ameliorating immune dysfunction of T lymphocytes.
NF-kB↓, downregulation of NFκB and CD74/CD44 signaling in EBV-transformed B cells
LOX1↓, baicalein is considered to be an inhibitor of lipoxygenases (LOXs)
COX2↓, inhibits the expression of NF-κB/p65 and COX-2
VEGF↑, Baicalin was shown to suppress the expression of VEGF, resulting in the inhibition of PI3K/AKT/mTOR pathway and reduction of proliferation and migration of human mesothelioma cells
PI3K↓,
Akt↓,
mTOR↓,
MMP2↓, baicalin suppressed expression of MMP-2 and MMP-9 via restriction of p38MAPK signaling, resulting in reduced breast cancer cell growth, invasion
MMP9↓,
SIRT1↑, The inhibition of MMP-2 and MMP-9 expression in NSCLC cells is mediated by activating the SIRT1/AMPK signaling pathway.
AMPK↑,

2296- Ba,    The most recent progress of baicalein in its anti-neoplastic effects and mechanisms
- Review, Var, NA
CDK1↓, graphical abstract
Cyc↓,
p27↑,
P21↑,
P53↑,
TumCCA↑, Cell cycle arrest
TumCI↓, Inhibit invastion
MMP2↓,
MMP9↓,
E-cadherin↑,
N-cadherin↓,
Vim↓,
LC3A↑,
p62↓,
p‑mTOR↓,
PD-L1↓,
CAFs/TAFs↓,
VEGF↓,
ROCK1↓,
Bcl-2↓,
Bcl-xL↓,
BAX↑,
ROS↑,
cl‑PARP↑,
Casp3↑,
Casp9↑,
PTEN↑, A549, H460
MMP↓, ↓mitochondrial transmembrane potential, redistribution of cytochrome c,
Cyt‑c↑,
Ca+2↑, ↑Ca2+
PERK↑, ↑PERK, ↑IRE1α, ↑CHOP,
IRE1↑,
CHOP↑,
Copper↑, ↑Cu+2
Snail↓, ↓Snail, ↓vimentin, ↓Twist1,
Vim↓,
Twist↓,
GSH↓, ↑ROS, ↓GSH, ↑MDA, ↓MMP, ↓NRF2, ↓HO-1, ↓GPX4, ↓FTH1, ↑TFR1, ↓p-JAK2, ↓p-STAT3
NRF2↓,
HO-1↓,
GPx4↓,
XIAP↓, ↓Bcl-2, ↓Bcl-xL, ↓XIAP, ↓surviving
survivin↓,
DR5↑, ↑ROS, ↑DR5

2599- Ba,    Baicalein induces apoptosis and autophagy of breast cancer cells via inhibiting PI3K/AKT pathway in vivo and vitro
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
TumCP↓, baicalein has the potential to suppress cell proliferation, induce apoptosis and autophagy of breast cancer cells in vitro and in vivo.
Apoptosis↑,
p‑Akt↓, baicalein significantly downregulated the expression of p-AKT, p-mTOR, NF-κB, and p-IκB
p‑mTOR↓,
NF-kB↓,
p‑IKKα↓,
IKKα↑, while enhancing the expression of IκB in MCF-7 and MDA-MB-231
PI3K↓, baicalein induces apoptosis and autophagy of breast cancer cells via inhibiting the PI3K/AKT signaling pathway in vivo and vitro
MMP↓, increasing dose of baicalein, the ΔΨm was decreased in MCF-7 and MDA-MB-231 cells.
TumAuto↑, Baicalein induces autophagy in MCF-7 and MDA-MB-231 cells
TumVol↓, demonstrated that the growth, volume, and weight of tumors were significantly suppressed in the baicalein-treated group compared with the control group
TumW↓,

2603- Ba,    Baicalein inhibits prostate cancer cell growth and metastasis via the caveolin-1/AKT/mTOR pathway
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3
TumCG↓, baicalein potently suppressed the growth and induced the apoptosis of DU145 and PC-3
Apoptosis↑,
Cav1↓, baicalein can suppress caveolin-1 and the phosphorylation of AKT and mTOR in a time- and dose-dependent manner
p‑Akt↓,
p‑mTOR↓,
Bax:Bcl2↑, revealed that the Bax/Bcl-2 ratio was increased after baicalein treatment in a dose-dependent manner
survivin↓, survivin was decreased, whereas the level of cleaved PARP was elevated.
cl‑PARP↑,
BioAv↓, Although low water solubility, fast oxidative degradation, and fast metabolism limit its pharmaceutical use in some degree, various methods have been used to overcome these issues of flavonoids

2618- Ba,    Baicalein induces apoptosis by inhibiting the glutamine-mTOR metabolic pathway in lung cancer
- in-vitro, Lung, H1299 - in-vivo, Lung, A549
TumCG↓, Baicalein inhibited lung cancer xenograft tumor growth in vivo and suppressed proliferation and promoted apoptosis in lung cancer cells in vitro.
TumCP↓,
Apoptosis↑,
GLUT1↓, baicalein interacted with glutamine transporters as well as glutaminase and inhibited their activation
GLS↓,
mTOR↓, mTOR, an apoptosis-related protein and downstream target of glutamine metabolism, was also inhibited by baicalein treatment
*toxicity∅, baicalein treatment did not result in damage to the mouse organs, including the liver, heart, spleen, lung, or kidney
cl‑Casp9↓, baicalein dose-dependently suppressed the protein levels of Bax, cleaved caspase 9, and cleaved caspase 3 in H1299 and A549 cells
cl‑Casp3↓,
GSH↓, Meanwhile, the levels of glutathione (GSH), S-formylglutathione, and pyroglutamic acid in baicalein-treated A549 cells were downregulated when compared to that in control group
GlutMet↓, These findings indicate that baicalein inhibits cellular glutamine uptake, which is consistent with the findings of metabolomics studies.

2617- Ba,    Potential of baicalein in the prevention and treatment of cancer: A scientometric analyses based review
- Review, Var, NA
Ca+2↑, MDA-MB-231 ↑Ca2+
MMP2↓, MDA-MB-231 ↓MMP-2/9
MMP9↓,
Vim↓, ↓Vimentin, ↓SNAIL, ↑E-cadherin, ↓Wnt1, ↓β-catenin
Snail↓,
E-cadherin↑,
Wnt↓,
β-catenin/ZEB1↓,
p‑Akt↓, MCF-7 ↓p-Akt, ↓p-mTOR, ↓NF-κB
p‑mTOR↓,
NF-kB↓,
i-ROS↑, MCF-7 ↑Intracellular ROS, ↓Bcl-2, ↑Bax, ↑cytochrome c, ↑caspase-3/9
Bcl-2↓,
BAX↑,
Cyt‑c↑,
Casp3↑,
Casp9↑,
STAT3↓, 4T1, MDA-MB-231 ↓STAT3, ↓ IL-6
IL6↓,
MMP2↓, HeLa ↓MMP-2, ↓MMP-9
MMP9↓,
NOTCH↓, ↓Notch 1
PPARγ↓, ↓PPARγ
p‑NRF2↓, HCT-116 ↓p-Nrf2
HK2↓, ↓HK2, ↓LDH-A, ↓PDK1, ↓glycolysis, PTEN/Akt/HIF-1α regulation
LDHA↓,
PDK1↓,
Glycolysis↓,
PTEN↑, Furthermore, baicalein inhibited hypoxia-induced Akt phosphorylation by promoting PTEN accumulation, thereby attenuating hypoxia-inducible factor-alpha ( HIF-1a) expression in AGS cells.
Akt↓,
Hif1a↓,
MMP↓, SGC-7901 ↓ΔΨm
VEGF↓, ↓VEGF, ↓VEGFR2
VEGFR2↓,
TOP2↓, ↓Topoisomerase II
uPA↓, ↓u-PA, ↓TIMP1, ↓TIMP2
TIMP1↓,
TIMP2↓,
cMyc↓, ↓β-catenin, ↓c-Myc, ↓cyclin D1, ↓Axin-2
TrxR↓, EL4 ↓Thioredoxin reductase, ↑ASK1,
ASK1↑,
Vim↓, ↓vimentin
ZO-1↑, ↑ZO-1
E-cadherin↑, ↑E-cadherin
SOX2↓, PANC-1, BxPC-3, SW1990 ↓Sox-2, ↓Oct-4, ↓SHH, ↓SMO, ↓Gli-2
OCT4↓,
Shh↓,
Smo↓,
Gli1↓,
N-cadherin↓, ↓N-cadherin
XIAP↓, ↓XIAP

2615- Ba,    The Multifaceted Role of Baicalein in Cancer Management through Modulation of Cell Signalling Pathways
- Review, Var, NA
*AntiCan↓, Baicalein is known to display anticancer activity through the inhibition of inflammation and cell proliferation
*Inflam↓,
TumCP↓,
NF-kB↓, baicalein decreased the activation of nuclear factor-κB (NF-κB)
PPARγ↑, anti-inflammatory effects of baicalein might be initiated via PPARγ activation.
TumCCA↑, baicalein inhibited cell cycle progression and cell growth, and promoted apoptosis of cancer cells
JAK2↓, inactivation of the signaling pathway JAK2/STAT3 [63]
STAT3↓,
TumCMig↓, baicalein suppressed migration as well as invasion through decreasing the aerobic glycolysis and expression of MMP-2/9 proteins.
Glycolysis↓,
MMP2↓,
MMP9↓,
selectivity↑, Furthermore, baicalein and baicalin had less inhibitory effects on normal ovarian cells’ viability.
VEGF↓, baicalein is more effective in inhibiting the expressions of VEGF, HIF-1α, cMyc, and NFκB
Hif1a↓,
cMyc↓,
ChemoSen↑, baicalein enhanced the cisplatin sensitivity of SGC-7901/DDP gastric cancer cells by inducing autophagy and apoptosis through the Akt/mTOR and Keap 1/Nrf2 pathways
ROS↑, oral squamous cell carcinoma Cal27 cells. Significantly, it was noticed that baicalein activated reactive oxygen species (ROS) generation in Cal27 cells
p‑mTOR↓, results suggest that p-mTOR, p-Akt, p-IκB, and NF-κB protein expressions were decreased
PTEN↑, Baicalein upregulated PTEN expression, downregulated miR-424-3p, and downregulated PI3K and p-Akt.

1532- Ba,    Baicalein as Promising Anticancer Agent: A Comprehensive Analysis on Molecular Mechanisms and Therapeutic Perspectives
- Review, NA, NA
ROS↑, Baicalein initially incited the formation of ROS, which subsequently aimed at endoplasmic reticulum stress and stimulated the Ca2+/-reliant mitochondrial death pathway.
ER Stress↑,
Ca+2↑,
MMPs↓,
Cyt‑c↑, cytochrome C release
Casp3↑,
ROS↑, Baicalein on apoptosis in human bladder cancer 5637 cells was investigated, and it was found that it induces ROS generation
DR5↑, Baicalein activates DR5 up-regulation
ROS↑, MCF-7 cells by inducing mitochondrial apoptotic cell death. It does this by producing ROS, such as hydroxyl radicals, and reducing Cu (II) to Cu (I) in the Baicalein–Cu (II) system
BAX↑,
Bcl-2↓,
MMP↓,
Casp3↑,
Casp9↑,
P53↑,
p16↑,
P21↑,
p27↑,
HDAC10↑, modulating the up-regulation of miR-3178 and Histone deacetylase 10 (HDAC10), which accelerates apoptotic cell death
MDM2↓, MDM2-mediated breakdown
Apoptosis↑,
PI3K↓, baicalein-influenced apoptosis is controlled via suppression of the PI3K/AKT axis
Akt↓,
p‑Akt↓, by reducing the concentrations of p-Akt, p-mTOR, NF-κB, and p-IκB while increasing IκB expression
p‑mTOR↓,
NF-kB↓,
p‑IκB↓,
IκB↑,
BAX↑,
Bcl-2↓,
ROS⇅, Based on its metabolic activities and intensity, Baicalein can act as an antioxidant and pro-oxidant.
BNIP3↑, Baicalein also increases the production of BNIP3 which is a protein stimulated by ROS and promotes apoptosis
p38↑,
12LOX↓, inhibition of 12-LOX (Platelet-type 12-Lipoxygenase)
Mcl-1↓,
Wnt?, decreasing Wnt activity
GLI2↓, Baicalein significantly reduced the presence of Gli-2, a crucial transcription factor in the SHH pathway
AR↓, downregulating the androgen receptor (AR)
eff↑, PTX/BAI NE could increase intracellular ROS levels, reduce cellular glutathione (GSH) levels, and trigger caspase-3 dynamism in MCF-7/Tax cells. Moreover, it exhibited higher efficacy in inhibiting tumors in vivo

2047- BA,    Sodium butyrate inhibits migration and induces AMPK-mTOR pathway-dependent autophagy and ROS-mediated apoptosis via the miR-139-5p/Bmi-1 axis in human bladder cancer cells
- in-vitro, CRC, T24 - in-vitro, Nor, SV-HUC-1 - in-vitro, Bladder, 5637 - in-vivo, NA, NA
HDAC↓, Sodium butyrate (NaB) is a histone deacetylase inhibitor and exerts remarkable antitumor effects in various cancer cells
AntiTum↑,
TumCMig↓, NaB inhibited migration
AMPK↑, induced AMPK/mTOR pathway-activated autophagy and reactive oxygen species (ROS) overproduction via the miR-139-5p/Bmi-1 axis
mTOR↑,
TumAuto↑,
ROS↑, NaB initiates ROS overproduction
miR-139-5p↑, NaB upregulates miR-139-5p and depletes Bmi-1 in bladder cancer cells
BMI1↓,
TumCI?, NaB significantly inhibited cell migration dose-dependently
E-cadherin↑, E-cadherin was markedly increased, while the expression of N-cadherin, Vimentin, and Snail was decreased
N-cadherin↓,
Vim↓,
Snail↓,
cl‑PARP↑, increased expression levels of cleaved PARP, cleaved caspase-3, and Bax and the concurrent decrease in Bcl-2 and Bcl-xl
cl‑Casp3↑,
BAX↑,
Bcl-2↓,
Bcl-xL↓,
MMP↓, impairs mitochondrial membrane potential
PINK1↑, activates the PINK1/ PARKIN pathway
PARK2↑,
TumMeta↓, NaB inhibits tumor metastasis and growth in vivo
TumCG↓,
LC3II↑, a significant increase in the levels of cleaved caspase3, p-AMPK, and LC3B-II along with decreased Bmi-1 and Vimentin
p62↓, elevated LC3B-II levels and degradation of p62
eff↓, NAC abolished the impairment of MMP and ROS overproduction. Interestingly, NAC also significantly inhibited apoptosis induced by NaB

2021- BBR,    Berberine: An Important Emphasis on Its Anticancer Effects through Modulation of Various Cell Signaling Pathways
- Review, NA, NA
*antiOx?, Berberine has been noted as a potential therapeutic candidate for liver fibrosis due to its antioxidant and anti-inflammatory activities
*Inflam↓,
Apoptosis↑, Apoptosis induced by berberine in liver cancer cells caused cell cycle arrest at the M/G1 phase and increased the Bax expression
TumCCA↑,
BAX↑,
eff↑, mixture of curcumin and berberine effectively decreases growth in breast cancer cell lines
VEGF↓, berberine also prevented the expression of VEGF
PI3K↓, berberine plays an important role in cancer management through inhibition of the PI3K/AKT/mTOR pathway
Akt↓,
mTOR↓,
Telomerase↓, Berberine decreased the telomerase activity and level of the colorectal cancer cell line,
β-catenin/ZEB1↓, berberine and its derivatives have the ability to inhibit β-catenin/Wnt signaling in tumorigenesis
Wnt↓,
EGFR↓, berberine treatment decreased cell proliferation and epidermal growth factor receptor expression levels in the xenograft model.
AP-1↓, Berberine efficiently targets both the host and the viral factors accountable for cervical cancer development via inhibition of activating protein-1
NF-kB↓, berberine inhibited lung cancer cell growth by concurrently targeting NF-κB/COX-2, PI3K/AKT, and cytochrome-c/caspase signaling pathways
COX2↑,
NRF2↓, Berberine suppresses the Nrf2 signaling-related protein expression in HepG2 and Huh7 cells,
RadioS↑, suggesting that berberine supports radiosensitivity through suppressing the Nrf2 signaling pathway in hepatocellular carcinoma cells
STAT3↓, regulating the JAK–STAT3 signaling pathway
ERK↓, berberine prevented the metastatic potential of melanoma cells via a reduction in ERK activity, and the protein levels of cyclooxygenase-2 by a berberine-caused AMPK activation
AR↓, Berberine reduced the androgen receptor transcriptional activity
ROS↑, In a study on renal cancer, berberine raised the levels of autophagy and reactive oxygen species in human renal tubular epithelial cells derived from the normal kidney HK-2 cell line, in addition to human cell lines ACHN and 786-O cell line.
eff↑, berberine showed a greater apoptotic effect than gemcitabine in cancer cells
selectivity↑, After berberine treatment, it was noticed that berberine showed privileged selectivity towards cancer cells as compared to normal ones.
selectivity↑, expression of caspase-1 and its downstream target Interleukin-1β (IL-1β) was higher in osteosarcoma cells as compared to normal cells
BioAv↓, several studies have been undertaken to overcome the difficulties of low absorption and poor bioavailability through nanotechnology-based strategies.
DNMT1↓, In human multiple melanoma cell U266, berberine can inhibit the expression of DNMT1 and DNMT3B, which leads to hypomethylation of TP53 by altering the DNA methylation level and the p53-dependent signal pathway
cMyc↓, Moreover, berberine suppresses SLC1A5, Na+ dependent transporter expression through preventing c-Myc

1387- BBR,    Antitumor Activity of Berberine by Activating Autophagy and Apoptosis in CAL-62 and BHT-101 Anaplastic Thyroid Carcinoma Cell Lines
- in-vitro, Thyroid, CAL-62
TumCG↓,
Apoptosis↑,
LC3B↑, LC3B-II
ROS↑,
PI3K↓,
Akt↓,
mTOR↓,

2696- BBR,    Berberine regulates proliferation, collagen synthesis and cytokine secretion of cardiac fibroblasts via AMPK-mTOR-p70S6K signaling pathway
- in-vivo, Nor, NA
*α-SMA↓, It was demonstrated that treatment of cardiac fibroblasts with berberine resulted in deceased proliferation, and attenuated fibroblast α-smooth muscle actin expression and collagen synthesis.
*TGF-β1↓, protein secretion of TGFβ1 was inhibited; however, the protein secretion of IL-10 was increased in cardiac fibroblasts with berberine treatment.
*IL10↑,
*p‑AMPK↑, Mechanistically, the phosphorylation level of AMPK was increased
*p‑mTOR↓, phosphorylation levels of mTOR and p70S6K were decreased in berberine treatment group
*P70S6K↓,
*cardioP↑, protective effects of berberine on cellular behaviors of cardiac fibroblasts

2698- BBR,    A gene expression signature-based approach reveals the mechanisms of action of the Chinese herbal medicine berberine
- Analysis, BC, MDA-MB-231
HDAC↓, Results showed that BBR may inhibit protein synthesis, histone deacetylase (HDAC), or AKT/mammalian target of rapamycin (mTOR) pathways.
Akt↓,
mTOR↓,
ER Stress↑, BBR inhibited global protein synthesis and basal AKT activity, and induced endoplasmic reticulum (ER) stress and autophagy, which was associated with activation of AMP-activated protein kinase (AMPK).
TumAuto↑,
AMPK↑,
mTOR∅, However, BBR did not alter mTOR or HDAC activities.
HDAC∅, SAHA but not BBR inhibited HDAC activity, suggesting that BBR is not an HDAC inhibitor.
ac‑α-tubulin↑, BBR induced the acetylation of α-tubulin, a substrate of HDAC6, although it did not directly inhibit HDAC activity

2707- BBR,    Berberine exerts its antineoplastic effects by reversing the Warburg effect via downregulation of the Akt/mTOR/GLUT1 signaling pathway
- in-vitro, Liver, HepG2 - in-vitro, BC, MCF-7
GLUT1↓, BBR downregulated the protein expression levels of GLUT1, maintained the cytoplasmic internalization of GLUT1
Akt↓, and suppressed the Akt/mTOR signaling pathway in both HepG2 and MCF7 cell lines
mTOR↓,
ATP↓, BBR-induced decrease in ATP synthesis, glucose uptake, GLUT1 expression and cell proliferation
GlucoseCon↓,
TumCP↓,
Warburg↓, antineoplastic effect of BBR may involve the reversal of the Warburg effect
selectivity↑, The results demonstrated that the colony-forming capacity was slightly inhibited in Hs 578Bst normal breast cells following BBR treatment, but significantly inhibited in both cancer cell lines.
TumCCA↑, BBR effectively induced cell cycle arrest at the G2M phase
Glycolysis↓, Notably, our preliminary experiments identified that BBR strongly decreased the glucose uptake ability of HepG2 and MCF7 cell lines, therefore, it was hypothesized that BBR may interfere with tumor progression by inhibiting glycolysis.

2708- BBR,    Berberine decelerates glucose metabolism via suppression of mTOR‑dependent HIF‑1α protein synthesis in colon cancer cells
- in-vitro, CRC, HCT116
TumCG↓, we revealed that berberine, which suppressed the growth of colon cancer cell lines HCT116 and KM12C, greatly inhibited the glucose uptake and the transcription of glucose metabolic genes, GLUT1, LDHA and HK2 in these two cell lines
GlucoseCon↓,
GLUT1↓,
LDHA↓, berberine inhibited the mRNA levels of LDHA and HK2 in a concentration-dependent manner
HK2↓,
Hif1a↓, protein expression but not mRNA transcription of HIF‑1α, a well‑known transcription factor critical for dysregulated cancer cell glucose metabolism, was dramatically inhibited in berberine‑treated colon cancer cell lines
mTOR↓, mTOR signaling previously reported to regulate HIF‑1α protein synthesis was further found to be suppressed by berberine.
Glycolysis↓, berberine inhibits overactive glucose metabolism of colon cancer cells via suppressing mTOR‑depended HIF‑1α protein synthesis

2674- BBR,    Berberine: A novel therapeutic strategy for cancer
- Review, Var, NA - Review, IBD, NA
Inflam↓, anti-inflammatory, antidiabetic, antibacterial, antiparasitic, antidiarrheal, antihypertensive, hypolipidemic, and fungicide.
AntiCan↑, elaborated on the anticancer effects of BBR through the regulation of different molecular pathways such as: inducing apoptosis, autophagy, arresting cell cycle, and inhibiting metastasis and invasion.
Apoptosis↑,
TumAuto↑,
TumCCA↑,
TumMeta↓,
TumCI↓,
eff↑, BBR is shown to have beneficial effects on cancer immunotherapy.
eff↑, BBR inhibited the release of Interleukin 1 beta (IL-1β), Interferon gamma (IFN-γ), Interleukin 6 (IL-6), and Tumor Necrosis Factor-alpha (TNF-α) from LPS stimulated lymphocytes by acting as a dopamine receptor antagonist
CD4+↓, BBR inhibited the proliferation of CD4+ T cells and down-regulated TNF-α and IL-1 and thus, improved autoimmune neuropathy.
TNF-α↓,
IL1↓,
BioAv↓, On the other hand, P-Glycoprotein (P-gp), a secretive pump located in the epithelial cell membrane, restricts the oral bioavailability of a variety of medications, such as BBR. The use of P-gp inhibitors is a common and effective way to prevent this
BioAv↓, Regardless of its low bioavailability, BBR has shown great therapeutic efficacy in the treatment of a number of diseases.
other↓, BBR has been also used as an effective therapeutic agent for Inflammatory Bowel Disease (IBD) for several years
AMPK↑, inhibitory effects on inflammation by regulating different mechanisms such as 5′ Adenosine Monophosphate-Activated Protein Kinase (AMPK. Increase of AMPK
MAPK↓, Mitogen-Activated Protein Kinase (MAPK), and NF-κB signaling pathways
NF-kB↓,
IL6↓, inhibiting the expression of proinflammatory genes such as IL-1, IL-6, Monocyte Chemoattractant Protein 1 (MCP1), TNF-α, Prostaglandin E2 (PGE2), and Cyclooxygenase-2 (COX-2)
MCP1↓,
PGE2↓,
COX2↓,
*ROS↓, BBR protected PC-12 cells (normal) from oxidative damage by suppressing ROS through PI3K/AKT/mTOR signaling pathways
*antiOx↑, BBR therapy improved the antioxidant function of mice intestinal tissue by enhancing the levels of glutathione peroxidase and catalase enzymes.
*GPx↑,
*Catalase↑,
AntiTum↑, Besides, BBR leaves great antitumor effects on multiple types of cancer such as breast cancer,69 bladder cancer,70 hepatocarcinoma,71 and colon cancer.72
TumCP↓, BBR exerts its antitumor activity by inhibiting proliferation, inducing apoptosis and autophagy, and suppressing angiogenesis and metastasis
angioG↓,
Fas↑, by increasing the amounts of Fas receptor (death receptor)/FasL (Fas ligand), ROS, ATM, p53, Retinoblastoma protein (Rb), caspase-9,8,3, TNF-α, Bcl2-associated X protein (Bax), BID
FasL↑,
ROS↑,
ATM↑,
P53↑,
RB1↑,
Casp9↑,
Casp8↑,
Casp3↓,
BAX↑,
Bcl-2↓, and declining Bcl2, Bcl-X, c-IAP1 (inhibitor of apoptosis protein), X-linked inhibitor of apoptosis protein (XIAP), and Survivin levels
Bcl-xL↓,
IAP1↓,
XIAP↓,
survivin↓,
MMP2↓, Furthermore, BBR suppressed Matrix Metalloproteinase-2 (MMP-2), and MMP-9 expression.
MMP9↓,
CycB↓, Inhibition of cyclin B1, cdc2, cdc25c
CDC25↓,
CDC25↓,
Cyt‑c↑, BBR inhibited tumor cell proliferation and migration and induced mitochondria-mediated apoptosis pathway in Triple Negative Breast Cancer (TNBC) by: stimulating cytochrome c release from mitochondria to cytosol
MMP↓, decreased the mitochondrial membrane potential, and enabled cytochrome c release from mitochondria to cytosol
RenoP↑, BBR significantly reduced the destructive effects of cisplatin on the kidney by inhibiting autophagy, and exerted nephroprotective effects.
mTOR↓, U87 cell, Inhibition of m-TOR signaling
MDM2↓, Downregulation of MDM2
LC3II↑, Increase of LC3-II and beclin-1
ERK↓, BBR stimulated AMPK signaling, resulting in reduced extracellular signal–regulated kinase (ERK) activity and COX-2 expression in B16F-10 lung melanoma cells
COX2↓,
MMP3↓, reducing MMP-3 in SGC7901 GC and AGS cells
TGF-β↓, BBR suppressed the invasion and migration of prostate cancer PC-3 cells by inhibiting TGF-β-related signaling molecules which induced Epithelial-Mesenchymal Transition (EMT) such as Bone morphogenetic protein 7 (BMP7),
EMT↑,
ROCK1↓, inhibiting metastasis-associated proteins such as ROCK1, FAK, Ras Homolog Family Member A (RhoA), NF-κB and u-PA, leading to in vitro inhibition of MMP-1 and MMP-13.
FAK↓,
RAS↓,
Rho↓,
NF-kB↓,
uPA↓,
MMP1↓,
MMP13↓,
ChemoSen↑, recent studies have indicated that it can be used in combination with chemotherapy agents

2677- BBR,    Liposome-Encapsulated Berberine Alleviates Liver Injury in Type 2 Diabetes via Promoting AMPK/mTOR-Mediated Autophagy and Reducing ER Stress: Morphometric and Immunohistochemical Scoring
- in-vivo, Diabetic, NA
*hepatoP↑, berberine (Lip-BBR) to aid in ameliorating hepatic damage and steatosis, insulin homeostasis, and regulating lipid metabolism in type 2 diabetes (T2DM)
*LC3II↑, Lip-BBR treatment promoted autophagy via the activation of LC3-II and Bclin-1 proteins and activated the AMPK/mTOR pathway in the liver tissue of T2DM rats.
*Beclin-1↑,
*AMPK↑,
*mTOR↑,
*ER Stress↓, It decreased the endoplasmic reticulum stress by limiting the CHOP, JNK expression, oxidative stress, and inflammation.
*CHOP↓,
*JNK↓,
*ROS↓,
*Inflam↓,
*BG↓, Oral supplementation of diabetic rats either by Lip-BBR or Vild, 10 mg/kg of each, significantly (p < 0.001) lowered the blood glucose levels of tested diabetic rats compared to the diabetic group.
*SOD↑, when the diabetic rats received Lip-BBR, the decrements were less pronounced compared to the diabetic group by 1.16 fold, 2.52 fold, and 67.57% for SOD, GPX, and CAT, respectively.
*GPx↑,
*Catalase↑,
*IL10↑, Treatment of the diabetic rats with Lip-BBR significantly (p < 0.001) elevated serum IL-10 levels by 37.01% compared with diabetic rats.
*IL6↓, Oral supplementation of Lip-BBR could markedly (p < 0.0001) reduce the elevated serum levels of IL-6 and TNF-α when it is used as a single treatment by 55.83% and 49.54%,
*TNF-α↓,
*ALAT↓, ALT, AST, and ALP in the diabetic group were significantly higher (p < 0.0001) by 88.95%, 81.64%, and 1.8 fold, respectively, compared with those in the control group, but this was reversed by the treatment with Lip-BBR
*AST↓,
*ALP↓,

2678- BBR,    Berberine as a Potential Agent for the Treatment of Colorectal Cancer
- Review, CRC, NA
*Inflam↓, BBR exerts remarkable anti-inflammatory (94–96), antiviral (97), antioxidant (98), antidiabetic (99), immunosuppressive (100), cardiovascular (101, 102), and neuroprotective (103) activities.
*antiOx↑,
*cardioP↑,
*neuroP↑,
TumCCA↑, BBR could induce G1 cycle arrest in A549 lung cancer cells by decreasing the levels of cyclin D1 and cyclin E1
cycD1↓,
cycE↓,
CDC2↓, BBR also induced G1 cycle arrest by inhibiting cyclin B1 expression and CDC2 kinase in some cancer cells
AMPK↝, BBR has been suggested to induce autophagy in glioblastoma by targeting the AMP-activated protein kinase (AMPK)/mechanistic target of rapamycin (mTOR)/ULK1 pathway
mTOR↝,
Casp8↑, BBR has been revealed to stimulate apoptosis in leukemia by upregulation of caspase-8 and caspase-9
Casp9↑,
Cyt‑c↑, in skin squamous cell carcinoma A431 cells by increasing cytochrome C levels
TumCMig↓, BBR has been confirmed to inhibit cell migration and invasion by inhibiting the expression of epithelial–mesenchymal transition (EMT)
TumCI↓,
EMT↓,
MMPs↓, metastasis-related proteins, such as matrix metalloproteinases (MMPs) and E-cadherin,
E-cadherin↓,
Telomerase↓, BBR has shown antitumor effects by interacting with microRNAs (125) and inhibiting telomerase activity
*toxicity↓, Numerous studies have revealed that BBR is a safe and effective treatment for CRC
GRP78/BiP↓, Downregulates GRP78
EGFR↓, Downregulates EGFR
CDK4↓, downregulates CDK4, TERT, and TERC
COX2↓, Reduces levels of COX-2/PGE2, phosphorylation of JAK2 and STAT3, and expression of MMP-2/-9.
PGE2↓,
p‑JAK2↓,
p‑STAT3↓,
MMP2↓,
MMP9↓,
GutMicro↑, BBR can inhibit tumor growth through meditation of the intestinal flora and mucosal barrier, and generally and ultimately improve weight loss. BBR has been reported to modulate the composition of intestinal flora and significantly reduce flora divers
eff↝, BBR can regulate the activity of P-glycoprotein (P-gp), and potential drug-drug interactions (DDIs) are observed when BBR is coadministered with P-gp substrates
*BioAv↓, the efficiency of BBR is limited by its low bioavailability due to its poor absorption rate in the gut, low solubility in water, and fast metabolism. Studies have shown that the oral bioavailability of BBR is 0.68% in rats
BioAv↑, combining it with p-gp inhibitors (such as tariquidar and tetrandrine) (196, 198), and modification to berberine organic acid salts (BOAs)

2682- BBR,    Berberine Inhibited Growth and Migration of Human Colon Cancer Cell Lines by Increasing Phosphatase and Tensin and Inhibiting Aquaporins 1, 3 and 5 Expressions
- in-vitro, CRC, HT29 - in-vitro, CRC, SW480 - in-vitro, CRC, HCT116
TumCP↓, We demonstrated that treatment of these CRC cell lines with berberine inhibited cell proliferation, migration and invasion through induction of apoptosis and necrosis.
TumCMig↓,
TumCI↓,
Apoptosis↑,
necrosis↑,
AQPs↓, berberine treatment down-regulated the expression of all three types of AQPs.
PTEN↑, up-regulating PTEN and down-regulating PI3K, AKT and p-AKT expression as well as suppressing its downstream targets, mTOR and p-mTOR at the protein level
PI3K↓,
Akt↓,
p‑Akt↓,
mTOR↓,
p‑mTOR↓,

2736- BetA,  Chemo,    Multifunctional Roles of Betulinic Acid in Cancer Chemoprevention: Spotlight on JAK/STAT, VEGF, EGF/EGFR, TRAIL/TRAIL-R, AKT/mTOR and Non-Coding RNAs in the Inhibition of Carcinogenesis and Metastasis
- Review, Var, NA
chemoP↑, reviews about cancer chemopreventive role of betulinic acid against wide variety of cancers [18,19,20,21].
p‑STAT3↓, betulinic acid reduced the levels of p-STAT3 in tumor tissues derived from KB cells
JAK1↓, Betulinic acid exerted inhibitory effects on the constitutive phosphorylation of JAK1 and JAK2
JAK2↓,
VEGF↓, betulinic acid mediated inhibition of VEGF
EGFR↓, evaluation of betulinic acid as a next-generation EGFR inhibitor
Cyt‑c↑, release of SMAC/DIABLO and cytochrome c from mitochondria in SHEP neuroblastoma cells
Diablo↑,
AMPK↑, Betulinic acid induced activation of AMPK and consequently reduced the activation of mTOR.
mTOR↓,
Sp1/3/4↓, Betulinic acid significantly reduced the quantities of Sp1, Sp3 and Sp4 in the tissues of the tumors derived from RKO cells
DNAdam↑, Betulinic acid efficiently triggered DNA damage (γH2AX) and apoptosis (caspase-3 and p53 phosphorylation) in temozolomide-sensitive and temozolomide-resistant glioblastoma cells.
Gli1↓, Betulinic acid effectively reduced GLI1, GLI2 and PTCH1 in RMS-13 cells.
GLI2↓,
PTCH1↓,
MMP2↓, betulinic acid exerted inhibitory effects on MMP-2 and MMP-9 in HepG2 cells.
MMP9↓,
miR-21↓, Collectively, p53 increased miR-21 levels and inhibited SOD2 levels, leading to significant increase in the accumulation of ROS levels and apoptotic cell death.
SOD2↓,
ROS↑,
Apoptosis↑,

2730- BetA,    Betulinic acid induces autophagy-dependent apoptosis via Bmi-1/ROS/AMPK-mTOR-ULK1 axis in human bladder cancer cells
- in-vitro, Bladder, T24
tumCV↓, The present study showed that BA exposure significantly suppressed viability, proliferation, and migration of EJ and T24 human bladder cancer cells
TumCP↓,
TumCMig↓,
Casp↑, These effects reflected caspase 3-mediated apoptosis
TumAuto↑, BA-induced autophagy was evidenced by epifluorescence imaging of lentivirus-induced expression of mCherry-GFP-LC3B and increased expression of two autophagy-related proteins, LC3B-II and TEM.
LC3B-II↑,
p‑AMPK↑, Moreover, enhanced AMPK phosphorylation and decreased mTOR and ULK-1 phosphorylation suggested BA activates autophagy via the AMPK/mTOR/ULK1 pathway.
mTOR↓,
BMI1↓, decreased Bmi-1 expression in BA-treated T24 cell xenografts in nude mice suggested that downregulation of Bmi-1 is the underlying mechanism in BA-mediated, autophagy-dependent apoptosis.
ROS↑, BA induced ROS production dose-dependently
eff↓, Co-incubation with NAC effectively blocked ROS production (Figure 4B), rescued cell viability,

2776- Bos,    Anti-inflammatory and anti-cancer activities of frankincense: Targets, treatments and toxicities
- Review, Var, NA
*5LO↓, Arthritis Human primary chondrocytes: 5-LOX↓, TNF-α↓, MMP3↓
*TNF-α↓,
*MMP3↓,
*COX1↓, COX-1↓, Leukotriene synthesis by 5-LOX↓
*COX2↓, Arthritis Human blood in vitro: COX-2↓, PGE2↓, TH1 cytokines↓, TH2 cytokines↑
*PGE2↓,
*Th2↑,
*Catalase↑, Ethanol-induced gastric ulcer: CAT↑, SOD↑, NO↑, PGE-2↑
*SOD↑,
*NO↑,
*PGE2↑,
*IL1β↓, inflammation Human PBMC, murine RAW264.7 macrophages: TNFα↓ IL-1β↓, IL-6↓, Th1 cytokines (IFNγ, IL-12)↓, Th2 cytokines (IL-4, IL-10)↑; iNOS↓, NO↓, phosphorylation of JNK and p38↓
*IL6↓,
*Th1 response↓,
*Th2↑,
*iNOS↓,
*NO↓,
*p‑JNK↓,
*p38↓,
GutMicro↑, colon carcinogenesis: gut microbiota; pAKT↓, GSK3β↓, cyclin D1↓
p‑Akt↓,
GSK‐3β↓,
cycD1↓,
Akt↓, Prostate Ca: AKT and STAT3↓, stemness markers↓, androgen receptor↓, Sp1 promoter binding↓, p21(WAF1/CIP1)↑, cyclin D1↓, cyclin D2↓, DR5↑,CHOP↑, caspases-3/-8↑, PARP cleavage, NFκB↓, IKK↓, Bcl-2↓, Bcl-xL↓, caspase 3↑, DNA
STAT3↓,
CSCs↓,
AR↓,
P21↑,
DR5↑,
CHOP↑,
Casp3↑,
Casp8↑,
cl‑PARP↑,
DNAdam↑,
p‑RB1↓, Glioblastoma: pRB↓, FOXM1↓, PLK1↓, Aurora B/TOP2A pathway↓,CDC25C↓, pCDK1↓, cyclinB1↓, Aurora B↓, TOP2A↓, pERK-1/-2↓
Foxm1↓,
TOP2↓,
CDC25↓,
p‑CDK1↓,
p‑ERK↓,
MMP9↓, Pancreas Ca: Ki-67↓, CD31↓, COX-2↓, MMP-9↓, CXCR4↓, VEGF↓
VEGF↓,
angioG↓, Apoptosis↑, G2/M arrest, angiogenesis↓
ROS↑, ROS↑,
Cyt‑c↑, Leukemia : cytochrome c↑, AIF↑, SMAC/DIABLO↑, survivin↓, ICAD↓
AIF↑,
Diablo↑,
survivin↓,
ICAD↓,
ChemoSen↑, Breast Ca: enhancement in combination with doxorubicin
SOX9↓, SOX9↓
ER Stress↑, Cervix Ca : ER-stress protein GRP78↑, CHOP↑, calpain↑
GRP78/BiP↑,
cal2↓,
AMPK↓, Breast Ca: AMPK/mTOR signaling↓
mTOR↓,
ROS↓, Boswellia extracts and its phytochemicals reduced oxidative stress (in terms of inhibition of ROS and RNS generation)

1416- Bos,    Anti-cancer properties of boswellic acids: mechanism of action as anti-cancerous agent
- Review, NA, NA
5LO↓,
TumCCA↑, G0/G1 phase
LC3B↓, reduced the expression of LC3A/B-I and LC3A/B-II,
PI3K↓,
Akt↓,
Glycolysis↓,
AMPK↑,
mTOR↓,
Let-7↑,
COX2↓, methanolic extract decreased the expression of cyclooxygenase-2 gene
VEGF↓,
CXCR4↓,
MMP2↓,
MMP9↓,
HIF-1↓,
angioG↓,
TumCP↓,
TumCMig↓,
NF-kB↓,

1101- CA,  Tras,    Cooperative antitumor activities of carnosic acid and Trastuzumab in ERBB2+ breast cancer cells
- in-vitro, BC, NA
ChemoSen↑, CA reversibly enhances Tz inhibition of cell survival, cooperatively inhibits cell migration and induces cell cycle arrest in G0/G1
HER2/EBBR2↓,
PI3K↓,
Akt↓,
mTOR↓,
p62↑,

2017- CAP,    Spice Up Your Kidney: A Review on the Effects of Capsaicin in Renal Physiology and Disease
- Review, Var, NA
RenoP↑, observed experimental benefits in preventing acute kidney injury
AntiTum↑, anti-tumoral properties of capsaicin on different types of cancer cells are well-acknowledged
AMPK↑, activating the AMPK/mTOR
mTOR↑,
PD-1↓, capsaicin promotes the inhibition of the PD-L1/PD-1 checkpoint
PD-L1↓,

2018- CAP,  MF,    Capsaicin: Effects on the Pathogenesis of Hepatocellular Carcinoma
- Review, HCC, NA
TRPV1↑, Capsaicin is an agonist for transient receptor potential cation channel subfamily V member 1 (TRPV1)
eff↑, It is noteworthy that capsaicin binding to the TRPV1 receptor may be increased using a static magnetic field (SMF), thus enhancing the anti-cancer effect of capsaicin on HepG2 (human hepatoblastoma cell line) cells through caspase-3 apoptosis
Akt↓, capsaicin can regulate autophagy by inhibiting the Akt/mTOR
mTOR↓,
p‑STAT3↑, Capsaicin can upregulate the activity of the signal transducer and activator of transcription 3 (p-STAT3)
MMP2↑, increase of the expression of MMP-2
ER Stress↑, capsaicin may induce apoptosis through endoplasmic reticulum (ER) stress
Ca+2↑, and the subsequent ER release of Ca2+
ROS↑, Capsaicin-induced ROS generation
selectivity↑, On the other hand, an excess of capsaicin is cytotoxic on HepG2 cells, and normal hepatocytes to a smaller extent, by collapse of the mitochondrial membrane potential with ROS formation
MMP↓,
eff↑, combination of capsaicin and sorafenib demonstrated significant anticarcinogenic properties on LM3 HCC cells, restricting tumor cell growth

2019- CAP,    Capsaicin: A Two-Decade Systematic Review of Global Research Output and Recent Advances Against Human Cancer
- Review, Var, NA
chemoP↑, Capsaicin has shown significant prospects as an effective chemopreventive agent
Ca+2↑, Capsaicin was shown to cause upstream activation of Ca2+
antiOx↑, Another plausible mechanism implicated in the chemopreventive action of capsaicin is its anti-oxidative effects.
*ROS↓, capsaicin inhibits ROS release and the subsequent mitochondrial membrane potential collapse, cytochrome c expression, chromosome condensation, and caspase-3 activation induced by oxidized low-density lipoprotein in normal human HUVEC cells
*MMP∅,
*Cyt‑c∅,
*Casp3∅,
*eff↑, dietary curcumin and capsaicin concurrent administration in high-fat diet-fed rats were shown to mitigate the testicular and hepatic antioxidant status by increasing GSH levels, glutathione transferase activity, and Cu-ZnSOD expression
*Inflam↓, Anti-inflammation is another mechanism implicated in the chemopreventive action of capsaicin.
*NF-kB↓, inhibition of NF-kB by capsaicin
*COX2↓, compound elicits COX-2 enzyme activity inhibition and downregulation of iNOS
iNOS↓,
TRPV1↑, major pro-apoptotic mechanisms of capsaicin is via the vanilloid receptors, primarily TRPV1
i-Ca+2?, causing a concomitant influx of Ca2+: severe condition of mitochondria calcium overload. at high concentration (> 10 µM), capsaicin induces a slow but persistent increase in intracellular Ca2+
MMP↓, depolarization of mitochondria membrane potential
Cyt‑c↑, release of cytochrome C
Bax:Bcl2↑, activation of Bax and p53 through C-jun N-terminal kinase (JNK) activation
P53↑,
JNK↑,
PI3K↓, blocking the Pi3/Akt/mTOR signalling pathway, capsaicin increases levels of autophagic markers (LC3-II and Atg5)
Akt↓,
mTOR↓,
LC3II↑,
ATG5↑,
p62↑, enhances p62 and Fap-1 degradation and increases caspase-3 activity to induce apoptosis in human nasopharyngeal carcinoma cells
Fap1↓,
Casp3↑,
Apoptosis↑,
ROS↑, generation of ROS in human hepatoma (HepG2 cells)
MMP9↓, inhibition of MMP9 by capsaicin occurs via the suppression of AMPK-NF-κB, EGFR-mediated FAK/Akt, PKC/Raf/ERK, p38 MAPK, and AP-1 signaling pathway
eff↑, capsaicin 8% patch could promote the regeneration and restoration of skin nerve fibres in chemotherapy-induced peripheral neuropathy in addition to pain relief
eff↓, capsaicin has shown several unpleasant side effects, including stomach cramps, skin and gastric irritation, and burning sensation
eff↑, liposomes and micro-emulsion-based drugs have been known to significantly improve oral bioavailability and reduce the irritation of drugs
selectivity↑, In addition, these delivery systems can be surfaced-modified to perform site-directed/cell-specific drug delivery, thereby ensuring increased cell death of cancer cells while sparing non-selective normal cells
eff↑, Furthermore, owing to its antioxidant potential, capsaicin has been applied as a bioreduction and capping agent to synthesize biocompatible silver nanoparticles
ChemoSen↑, capsaicin has been combined with other anticancer therapies for more pronounced anticancer effects

1145- CHr,    Chrysin inhibits propagation of HeLa cells by attenuating cell survival and inducing apoptotic pathways
- in-vitro, Cerv, HeLa
tumCV↓,
BAX↑,
BID↑,
BOK↑,
APAF1↑,
TNF-α↑,
FasL↑,
Fas↑,
FADD↑,
Casp3↑,
Casp7↑,
Casp8↑,
Casp9↑,
Mcl-1↓,
NAIP↓,
Bcl-2↓,
CDK4↓,
CycB↓,
cycD1↓,
cycE1↓,
TRAIL↑,
p‑Akt↓,
Akt↓,
mTOR↓,
PDK1↓,
BAD↓,
GSK‐3β↑,
AMPK↑, AMPKa
p27↑,
P53↑,

2781- CHr,  PBG,    Chrysin a promising anticancer agent: recent perspectives
- Review, Var, NA
PI3K↓, It can block Phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) and Mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling in different animals against various cancers
Akt↓,
mTOR↓,
MMP9↑, Chrysin strongly suppresses Matrix metalloproteinase-9 (MMP-9), Urokinase plasminogen activator (uPA) and Vascular endothelial growth factor (VEGF), i.e. factors that can cause cancer
uPA↓,
VEGF↓,
AR↓, Chrysin has the ability to suppress the androgen receptor (AR), a protein necessary for prostate cancer development and metastasis
Casp↑, starts the caspase cascade and blocks protein synthesis to kill lung cancer cells
TumMeta↓, Chrysin significantly decreased lung cancer metastasis i
TumCCA↑, Chrysin induces apoptosis and stops colon cancer cells in the G2/M cell cycle phase
angioG↓, Chrysin prevents tumor growth and cancer spread by blocking blood vessel expansion
BioAv↓, Chrysin’s solubility, accessibility and bioavailability may limit its medical use.
*hepatoP↑, As chrysin reduced oxidative stress and lipid peroxidation in rat liver cells exposed to a toxic chemical agent.
*neuroP↑, Protecting the brain against oxidative stress (GPx) may be aided by increasing levels of antioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GPx).
*SOD↑,
*GPx↑,
*ROS↓, A decrease in oxidative stress and an increase in antioxidant capacity may result from chrysin’s anti-inflammatory properties
*Inflam↓,
*Catalase↑, Supplementation with chrysin increased the activity of antioxidant enzymes like SOD and catalase and reduced the levels of oxidative stress markers like malondialdehyde (MDA) in the colon tissue of the rats.
*MDA↓, Antioxidant enzyme activity (SOD, CAT) and oxidative stress marker (MDA) levels were both enhanced by chrysin supplementation in mouse liver tissue
ROS↓, reduction of reactive oxygen species (ROS) and oxidative stress markers in the cancer cells further indicated the antioxidant activity of chrysin
BBB↑, After crossing the blood-brain barrier, it has been shown to accumulate there
Half-Life↓, The half-life of chrysin in rats is predicted to be close to 2 hours.
BioAv↑, Taking chrysin with food may increase the effectiveness of the supplement: increased by a factor of 1.8 when taken with a high-fat meal
ROS↑, In contrast to 5-FU/oxaliplatin, chrysin increases the production of reactive oxygen species (ROS), which in turn causes autophagy by stopping Akt and mTOR from doing their jobs
eff↑, mixture of chrysin and cisplatin caused the SCC-25 and CAL-27 cell lines to make more oxygen free radicals. After treatment with chrysin, cisplatin, or both, the amount of reactive oxygen species (ROS) was found to have gone up.
ROS↑, When reactive oxygen species (ROS) and calcium levels in the cytoplasm rise because of chrysin, OC cells die.
ROS↑, chrysin is the cause of death in both types of prostate cancer cells. It does this by depolarizing mitochondrial membrane potential (MMP), making reactive oxygen species (ROS), and starting lipid peroxidation.
lipid-P↑,
ER Stress↑, when chrysin is present in DU145 and PC-3 cells, the expression of a group of proteins that control ER stress goes up
NOTCH1↑, Chrysin increased the production of Notch 1 and hairy/enhancer of split 1 at the protein and mRNA levels, which stopped cells from dividing
NRF2↓, Not only did chrysin stop Nrf2 and the genes it controls from working, but it also caused MCF-7 breast cancer cells to die via apoptosis.
p‑FAK↓, After 48 hours of treatment with chrysin at amounts between 5 and 15 millimoles, p-FAK and RhoA were greatly lowered
Rho↓,
PCNA↓, Lung histology and immunoblotting studies of PCNA, COX-2, and NF-B showed that adding chrysin stopped the production of these proteins and maintained the balance of cells
COX2↓,
NF-kB↓,
PDK1↓, After the chrysin was injected, the genes PDK1, PDK3, and GLUT1 that are involved in glycolysis had less expression
PDK3↑,
GLUT1↓,
Glycolysis↓, chrysin stops glycolysis
mt-ATP↓, chrysin inhibits complex II and ATPases in the mitochondria of cancer cells
Ki-67↓, the amounts of Ki-67, which is a sign of growth, and c-Myc in the tumor tissues went down
cMyc↓,
ROCK1↓, (ROCK1), transgelin 2 (TAGLN2), and FCH and Mu domain containing endocytic adaptor 2 (FCHO2) were much lower.
TOP1↓, DNA topoisomerases and histone deacetylase were inhibited, along with the synthesis of the pro-inflammatory cytokines tumor necrosis factor alpha (TNF-alpha) and (IL-1 beta), while the activity of protective signaling pathways was increased
TNF-α↓,
IL1β↓,
CycB↓, Chrysin suppressed cyclin B1 and CDK2 production in order to stop cancerous growth.
CDK2↓,
EMT↓, chrysin treatment can also stop EMT
STAT3↓, chrysin block the STAT3 and NF-B pathways, but it also greatly reduced PD-L1 production both in vivo and in vitro.
PD-L1↓,
IL2↑, chrysin increases both the rate of T cell growth and the amount of IL-2

2785- CHr,    Emerging cellular and molecular mechanisms underlying anticancer indications of chrysin
- Review, Var, NA
*NF-kB↓, suppressed pro-inflammatory cytokine expression and histamine release, downregulated nuclear factor kappa B (NF-kB), cyclooxygenase 2 (COX-2), and inducible nitric oxide synthase (iNOS)
*COX2↓,
*iNOS↓,
angioG↓, upregulated apoptotic pathways [28], inhibited angiogenesis [29] and metastasis formation
TOP1↓, suppressed DNA topoisomerases [31] and histone deacetylase [32], downregulated tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β)
HDAC↓,
TNF-α↓,
IL1β↓,
cardioP↑, promoted protective signaling pathways in the heart [34], kidney [35] and brain [8], decreased cholesterol level
RenoP↑,
neuroP↑,
LDL↓,
BioAv↑, bioavailability of chrysin in the oral route of administration was appraised to be 0.003–0.02% [55], the maximum plasma concentration—12–64 nM
eff↑, Chrysin alone and potentially in combination with metformin decreased cyclin D1 and hTERT gene expression in the T47D breast cancer cell line
cycD1↓,
hTERT↓,
MMP-10↓, Chrysin pretreatment inhibited MMP-10 and Akt signaling pathways
Akt↓,
STAT3↓, Chrysin declined hypoxic survival, inhibited activation of STAT3, and reduced VEGF expression in hypoxic cancer cells
VEGF↓,
EGFR↓, chrysin to inhibit EGFR was reported in a breast cancer stem cell model [
Snail↓, chrysin downregulated MMP-10, reduced snail, slug, and vimentin expressions increased E-cadherin expression, and inhibited Akt signaling pathway in TNBC cells, proposing that chrysin possessed a reversal activity on EMT
Slug↓,
Vim↓,
E-cadherin↑,
eff↑, Fabrication of chrysin-attached to silver and gold nanoparticles crossbred reduced graphene oxide nanocomposites led to augmentation of the generation of ROS-induced apoptosis in breast cancer
TET1↑, Chrysin induced augmentation in TET1
ROS↑, Pretreatment with chrysin induced ROS formation, and consecutively, inhibited Akt phosphorylation and mTOR.
mTOR↓,
PPARα↓, Chrysin inhibited mRNA expression of PPARα
ER Stress↑, ROS production by chrysin was the critical mediator behind induction of ER stress, leading to JNK phosphorylation, intracellular Ca2+ release, and activation of the mitochondrial apoptosis pathway
Ca+2↑,
ERK↓, reduced protein expression of p-ERK/ERK
MMP↑, Chrysin pretreatment led to an increase in mitochondrial ROS creation, swelling in isolated mitochondria from hepatocytes, collapse in MMP, and release cytochrome c.
Cyt‑c↑,
Casp3↑, Chrysin could elevate caspase-3 activity in the HCC rats group
HK2↓, chrysin declined HK-2 combined with VDAC-1 on mitochondria
NRF2↓, chrysin inhibited the Nrf2 expression and its downstream genes comprising AKR1B10, HO-1, and MRP5 by quenching ERK and PI3K-Akt pathway
HO-1↓,
MMP2↓, Chrysin pretreatment also downregulated MMP2, MMP9, fibronectin, and snail expression
MMP9↓,
Fibronectin↓,
GRP78/BiP↑, chrysin induced GRP78 overexpression, spliced XBP-1, and eIF2-α phosphorylation
XBP-1↓,
p‑eIF2α↑,
*AST↓, Chrysin administration significantly reduced AST, ALT, ALP, LDH and γGT serum activities
ALAT↓,
ALP↓,
LDH↓,
COX2↑, chrysin attenuated COX-2 and NFkB p65 expression, and Bcl-xL and β-arrestin levels
Bcl-xL↓,
IL6↓, Reduction in IL-6 and TNF-α and augmentation in caspases-9 and 3 were observed due to chrysin supplementation.
PGE2↓, Chrysin induced entire suppression NF-kB, COX-2, PG-E2, iNOS as well.
iNOS↓,
DNAdam↑, Chrysin induced apoptosis of cells by causing DNA fragmentation and increasing the proportions of DU145 and PC-3 cells
UPR↑, Also, it induced ER stress via activation of UPR proteins comprising PERK, eIF2α, and GRP78 in DU145 and PC-3 cells.
Hif1a↓, Chrysin increased the ubiquitination and degradation of HIF-1α by increasing its prolyl hydroxylation
EMT↓, chrysin was effective in HeLa cell by inhibiting EMT and CSLC properties, NF-κBp65, and Twist1 expression
Twist↓,
lipid-P↑, Chrysin disrupted intracellular homeostasis by altering MMP, cytosolic Ca (2+) levels, ROS generation, and lipid peroxidation, which plays a role in the death of choriocarcinoma cells.
CLDN1↓, Chrysin decreased CLDN1 and CLDN11 expression in human lung SCC
PDK1↓, Chrysin alleviated p-Akt and inhibited PDK1 and Akt
IL10↓, Chrysin inhibited cytokines release, TNF-α, IL-1β, IL-10, and IL-6 induced by Ni in A549 cells.
TLR4↓, Chrysin suppressed TLR4 and Myd88 mRNA and protein expression.
NOTCH1↑, Chrysin inhibited tumor growth in ATC both in vitro and in vivo through inducing Notch1
PARP↑, Pretreating cells with chrysin increased cleaved PARP, cleaved caspase-3, and declined cyclin D1, Mcl-1, and XIAP.
Mcl-1↓,
XIAP↓,

1578- Citrate,    Understanding the Central Role of Citrate in the Metabolism of Cancer Cells and Tumors: An Update
- Review, Var, NA
TCA↑,
FASN↑, Cytosolic acetyl-CoA sustains fatty acid (FA) synthesis (FAS)
Glycolysis↓,
glucoNG↑, while it enhances gluconeogenesis by promoting fructose-1,6-biphosphatase (FBPase)
PFK1↓, citrate directly inhibits the main regulators of glycolysis, phosphofructokinase-1 (PFK1) and phosphofructokinase-2 (PFK2)
PFK2↓, well-known inhibitor of PFK
FBPase↑, enhances gluconeogenesis by promoting fructose-1,6-biphosphatase (FBPase)
TumCP↓, inhibits the proliferation of various cancer cells of solid tumors (human mesothelioma, gastric and ovarian cancer cells) at high concentrations (10–20 mM),
eff↑, promoting apoptosis and the sensitization of cells to cisplatin
ACLY↓, higher concentrations (10 mM or more) decreased both acetylation and ACLY expression
Dose↑, In various cell lines, a high concentration of citrate—generally above 10 mM—inhibits the proliferation of cancer cells in a dose dependent manner
Casp3↑,
Casp2↑,
Casp8↑,
Casp9↑,
Bcl-xL↓,
Mcl-1↓,
IGF-1R↓, citrate at high concentration (10 mM) also inhibits the insulin-like growth factor-1 receptor (IGF-1R)
PI3K↓, pathways
Akt↓, activates PTEN, the key phosphatase inhibiting the PI3K/Akt pathway
mTOR↓,
PTEN↑, high dose of citrate activates PTEN
ChemoSen↑, citrate increases the sensibility of cells to chemotherapy (in particular, cisplatin)
Dose?, oral gavage of citrate sodium (4 g/kg twice a day) for several weeks (4 to 7 weeks) significantly regressed tumors

1580- Citrate,    Citrate activates autophagic death of prostate cancer cells via downregulation CaMKII/AKT/mTOR pathway
- in-vitro, Pca, PC3 - in-vivo, PC, NA - in-vitro, Pca, LNCaP - in-vitro, Pca, WPMY-1
Apoptosis↑,
Ca+2↓, Ca2+-chelating property of citrate
Akt↓, downregulation CaMKII/AKT/mTOR pathway
mTOR↓,
selectivity↑, citrate (0-3 mM) did not affect the cell growth of normal prostate epithelial cells (WPMY-1).
TumCP↓, also verified that citrate significantly inhibited the proliferation of PCa cells (PC3 and LNCaP).
cl‑Casp3↑,
cl‑PARP↑, increased the levels of Cleaved caspase3 and Cleaved PARP in prostate cancer cells
LC3‑Ⅱ/LC3‑Ⅰ↑, ratio of LC3-II/I was markedly increased and the expression of p62 was significantly decreased after the treatment of citrate in PCa cells (PC3 and LNCaP).
p62↓,
ATG5↑, citrate also promoted the protein expression of Atg5, Atg7 and Beclin-1 in PCa cells (PC3 and LNCaP).
ATG7↑,
Beclin-1↑,
TumAuto↑, citrate induces autophagy of prostate cancer cells
CaMKII ↓, citrate suppresses the activation of the CaMKI

1585- Citrate,    Sodium citrate targeting Ca2+/CAMKK2 pathway exhibits anti-tumor activity through inducing apoptosis and ferroptosis in ovarian cancer
- in-vitro, Ovarian, SKOV3 - in-vitro, Ovarian, A2780S - in-vitro, Nor, HEK293
Apoptosis↑,
Ferroptosis↑,
Ca+2↓, Sodium citrate chelates intracellular Ca2+
CaMKII ↓, inhibits the CAMKK2/AKT/mTOR/HIF1α-dependent glycolysis pathway, thereby inducing cell apoptosis.
Akt↓,
mTOR↓,
Hif1a↓,
ROS↑, Inactivation of CAMKK2/AMPK pathway reduces Ca2+ level in the mitochondria by inhibiting the activity of the MCU, resulting in excessive ROS production.
ChemoSen↑, Sodium citrate increases the sensitivity of ovarian cancer cells to chemo-drugs
Casp3↑,
Casp9↑,
BAX↑,
Bcl-2↓,
Cyt‑c↑, co-localization of cytochrome c and Apaf-1
GlucoseCon↓, glucose consumption, lactate production and pyruvate content were significantly reduced
lactateProd↓,
Pyruv↓,
GLUT1↓, sodium citrate decreased both mRNA and protein expression levels of glycolysis-related proteins such as Glut1, HK2 and PFKP
HK2↓,
PFKP↓,
Glycolysis↓, sodium citrate inhibited glycolysis of SKOV3 and A2780 cells
Hif1a↓, HIF1α expression was decreased significantly after sodium citrate treatment
p‑Akt↓, phosphorylation of AKT and mTOR was notably suppressed after sodium citrate treatment.
p‑mTOR↓,
Iron↑, ovarian cancer cells treated with sodium citrate exhibited higher Fe2+ levels, LPO levels, MDA levels, ROS and mitochondrial H2O2 levels
lipid-P↑,
MDA↑,
ROS↑,
H2O2↑,
mtDam↑, shrunken mitochondria, an increase in mitochondrial membrane density and disruption of mitochondrial cristae
GSH↓, (GSH) levels, GPX activity and expression levels of GPX4 were significantly reduced in SKOV3 and A2780 cells with sodium citrate treatment
GPx↓,
GPx4↓,
NADPH/NADP+↓, significant elevation in the NADP+/NADPH ratio was observed with sodium citrate treatment
eff↓, Fer-1, NAC and NADPH significantly restored the cell viability inhibited by sodium citrate
FTH1↓, decreased expression of FTH1
LC3‑Ⅱ/LC3‑Ⅰ↑, sodium citrate increased the conversion of cytosolic LC3 (LC3-I) to the lipidated form of LC3 (LC3-II)
NCOA4↑, higher levels of NCOA4
eff↓, test whether Ca2+ supplementation could rescue sodium citrate-induced ferroptosis. The results showed that Ca2+ dramatically reversed the enhanced levels of MDA, LPO and ROS triggered by sodium citrate
TumCG↓, sodium citrate inhibited tumor growth by chelation of Ca2+ in vivo

2315- Citrate,    Why and how citrate may sensitize malignant tumors to immunotherapy
- Review, Var, NA
Bcl-2↓, SCT can induce silent apoptosis by reducing expression of key pro-apoptotic proteins (Bcl-2, surviving, MCL1), and promoting the activation of caspases-3 and −9 and −8, as showed in multiple cancer cell lines
Mcl-1↓,
survivin↓,
Casp3↑,
Casp9↑,
Ferroptosis↑, SCT can also trigger ferroptosis, an iron-dependent form of lytic cell death inducing lipid peroxidation (LPO)
lipid-P↑,
Ca+2↓, citrate lowers mitochondrial Ca2+ concentration by chelation
Akt↓, by chelating cytosolic Ca2+, citrate inhibits the Ca2+/CAMKK2/AKT/mTOR signaling pathway, thereby suppressing HIF1-α dependent glycolysis
mTOR↓,
Hif1a↓,
MCU↓, reduces the activity of the mitochondrial calcium uniporter (MCU), resulting in decreasing ATP production, increasing ROS production
ATP↓,
ROS↑,
eff↑, Of note, ferroptosis can enhance the effectiveness of immunotherapy, as showed in glioma models

2304- CUR,    Curcumin decreases Warburg effect in cancer cells by down-regulating pyruvate kinase M2 via mTOR-HIF1α inhibition
- in-vitro, Lung, H1299 - in-vitro, BC, MCF-7 - in-vitro, Cerv, HeLa - in-vitro, Pca, PC3 - in-vitro, Nor, HEK293
Glycolysis↓, curcumin inhibits glucose uptake and lactate production (Warburg effect) in a variety of cancer cell lines
GlucoseCon↓,
lactateProd↓,
PKM2↓, by down-regulating PKM2 expression, via inhibition of mTOR-HIF1α axis.
mTOR↓,
Hif1a↓,
selectivity↑, however, no appreciable decrease in Warburg effect was observed in HEK 293 cells
Dose↝, Dose-dependent decrease in Warburg effect started at 2.5 μM with maximal decrease at 20 μM curcumin.
tumCV↓, Curcumin decreases viability of cancer cells

2307- CUR,    Cell-Type Specific Metabolic Response of Cancer Cells to Curcumin
- in-vitro, Colon, HT29 - in-vitro, Laryn, FaDu
PKM2↓, Siddiqui et al. have recently reported that curcumin downregulates PKM2 expression in cancer cells, consequently decreasing the Warburg effect.
Warburg↓,
mTOR↓, pKM2 downregulation coincided with the inhibition of the mammalian target of rapamycin (mTOR) pathway and consequential downregulation of hypoxia-inducible factor 1-alpha HIF1α
Hif1a↓,
Glycolysis↓, showed that a decrease of PKM2 (mediated by curcumin or by targeted PKM2 silencing) significantly reduces aerobic glycolysis and is also consequential for cell survival.

2821- CUR,    Antioxidant curcumin induces oxidative stress to kill tumor cells (Review)
- Review, Var, NA
*antiOx↑, Curcumin is a plant polyphenol in turmeric root and a potent antioxidant
*NRF2↑, regulation by nuclear factor erythroid 2-related factor 2, thereby suppressing reactive oxygen species (ROS) and exerting anti-inflammatory, anti-infective and other pharmacological effects
*ROS↓,
*Inflam↓,
ROS↑, Of note, curcumin induces oxidative stress in tumors. curcumin-induced accumulation of ROS in tumors to kill tumor cells has been noted in several studies
p‑ERK↑, Curcumin promoted ERK/JNK phosphorylation, causing elevated ROS levels and triggering mitochondria-dependent apoptosis
ER Stress↑, Curcumin triggered disturbances in Ca2+ homeostasis, leading to endoplasmic reticulum stress, mitochondrial damage and apoptosis
mtDam↑,
Apoptosis↑,
Akt↓, Curcumin inhibited the AKT/mTOR/p70S6K signaling pathway
mTOR↓,
HO-1↑, Curcumin-induced HO-1 overexpression led to a disturbed intracellular iron distribution and triggered the Fenton reaction
Fenton↑,
GSH↓, Non-small cell lung cancer: Curcumin induced a decrease in GSH and an increase in ROS levels and iron accumulation
Iron↑,
p‑JNK↑, Curcumin causes mitochondrial damage by promoting phosphorylation of ERK and JNK, resulting in the increased release of ROS and cytochrome c into the cytoplasm, thereby triggering a mitochondrion-dependent pathway of apoptosis
Cyt‑c↑,
ATF6↑, thyroid cancer with curcumin, both activating transcription factor (ATF) 6 and the ER stress marker C/EBP homologous protein (CHOP) were activated by curcumin and Ca2+-ATPase activity was also affected.
CHOP↑,

140- CUR,    Curcumin inhibits cancer-associated fibroblast-driven prostate cancer invasion through MAOA/mTOR/HIF-1α signaling
- in-vitro, Pca, PC3
CAFs/TAFs↓,
EMT↓,
ROS↓, We found that curcumin abolished the CAF-derived CM-induced ROS production and CXCR4 and IL-6 receptor expression in PC3 cells
CXCR4↓,
IL6↓,
MAOA↓,
mTOR↓,
HIF-1↓,

15- CUR,  UA,    Effects of curcumin and ursolic acid in prostate cancer: A systematic review
NF-kB↝,
Akt↝,
AR↝,
Apoptosis↝,
Bcl-2↝,
Casp3↝,
BAX↝,
P21↝,
ROS↝,
Apoptosis↝,
Bcl-xL↝,
JNK↝,
MMP2↝,
P53↝,
PSA↝,
VEGF↝,
COX2↝,
cycD1↝,
EGFR↝,
IL6↝,
β-catenin/ZEB1↝,
mTOR↝,
NRF2↝,
p‑Akt↝,
AP-1↝,
Cyt‑c↝,
PI3K↝,
PTEN↝,
Cyc↝,
TNF-α↝,

168- CUR,    Curcumin inhibits Akt/mammalian target of rapamycin signaling through protein phosphatase-dependent mechanism
- in-vitro, Pca, PC3
Akt↓,
mTOR↓,
AMPK↑,
TAp63α↑, MAP kinases

425- CUR,    Curcumin inhibits proliferation and promotes apoptosis of breast cancer cells
- in-vitro, BC, T47D - in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, BC, MDA-MB-468
CDC25↓,
cDC2↓,
P21↑,
p‑Akt↓,
p‑mTOR↓, phosphorylation
Bcl-2↓,
BAX↑,
Casp3↑,

435- CUR,    Antitumor activity of curcumin by modulation of apoptosis and autophagy in human lung cancer A549 cells through inhibiting PI3K/Akt/mTOR pathway
- in-vitro, Lung, A549
Apoptosis↑,
TumAuto↑,
LC3‑Ⅱ/LC3‑Ⅰ↑,
Beclin-1↑,
p62↓,
PI3K↓,
Akt↓,
mTOR↓,
p‑Akt↓,
p‑mTOR↓,
NA↓,

471- CUR,    Curcumin induces apoptotic cell death and protective autophagy by inhibiting AKT/mTOR/p70S6K pathway in human ovarian cancer cells
- in-vitro, Ovarian, SKOV3 - in-vitro, Ovarian, A2780S
Apoptosis↑,
TumAuto↑,
p62↓,
p‑Akt↓,
p‑mTOR↓,
p‑P70S6K↓,
Casp9↑,
PARP↑,
ATG3↑,
Beclin-1↑,
LC3‑Ⅱ/LC3‑Ⅰ↑,

476- CUR,    The effects of curcumin on proliferation, apoptosis, invasion, and NEDD4 expression in pancreatic cancer
- in-vitro, PC, PATU-8988 - in-vitro, PC, PANC1
TumCMig↓,
TumCI↓,
Apoptosis↑,
NEDD9↓,
p‑Akt↓,
p‑mTOR↓,
PTEN↑,
p73↑,
β-TRCP↑,

445- CUR,    Curcumin Regulates the Progression of Colorectal Cancer via LncRNA NBR2/AMPK Pathway
- in-vitro, CRC, HCT116 - in-vitro, CRC, HCT8 - in-vitro, CRC, SW480 - in-vitro, CRC, SW-620
p‑AMPK↑,
p‑ACC-α↑,
NBR2↑,
p‑S6K↓,
mTOR↓,

452- CUR,    Curcumin downregulates the PI3K-AKT-mTOR pathway and inhibits growth and progression in head and neck cancer cells
- vitro+vivo, HNSCC, SCC9 - vitro+vivo, HNSCC, FaDu - vitro+vivo, HNSCC, HaCaT
TumCCA↑, arrested cell cycle at phase G2 /M
PI3k/Akt/mTOR↓,
Casp3↑,
EGFR↓, 0.18 fold
EGF↑, Curcumin induced a noticeable increase in the expression of EGF (11.3-fold change)
PRKCG↑, 13.2 fold
p‑Akt↓,
p‑mTOR↓,
RPS6KA1↓, 0.17 fold
EIF4E↓, 0.18 fold
proCasp3↓,

457- CUR,    Curcumin regulates proliferation, autophagy, and apoptosis in gastric cancer cells by affecting PI3K and P53 signaling
- in-vitro, GC, SGC-7901 - in-vitro, GC, BGC-823
TumCP↓,
Apoptosis↑,
TumAuto↑,
P53↑,
PI3K↓,
P21↑,
p‑Akt↓,
p‑mTOR↓,
Bcl-2↓,
Bcl-xL↓,
LC3I↓, LC3I
BAX↑,
Beclin-1↑,
cl‑Casp3↑,
cl‑PARP↑,
LC3II↑,
ATG3↑,
ATG5↑,

1869- DCA,    Dichloroacetate induces autophagy in colorectal cancer cells and tumours
- in-vitro, CRC, HT-29 - in-vitro, CRC, HCT116 - in-vitro, Pca, PC3 - in-vitro, CRC, HT-29
LC3II↑, Increased expression of the autophagy markers LC3B II was observed following DCA treatment both in vitro and in vivo
ROS↑, increased production of reactive oxygen species (ROS)
mTOR↓, mTOR inhibition
MCT1↓, DCA is a possible competitive MCT-1 inhibitor
NADH:NAD↓, increased NAD+/NADH ratios
NAD↑,
TumAuto↑, DCA induces autophagy in cancer cells accompanied by ROS production and mTOR inhibition, reduced lactate excretion, reduced kPL and increased NAD+/NADH ratio.
lactateProd↓, DCA treatment reduces lactate excretion with no change in glucose uptake
LDH↑, Increased LDH activity

1442- Deg,    Deguelin, a novel anti-tumorigenic agent targeting apoptosis, cell cycle arrest and anti-angiogenesis for cancer chemoprevention
- Review, Var, NA
PI3K/Akt↓, Deguelin is a well-known PI3K/Akt inhibitor
IKKα↓,
AMP↓,
mTOR↓,
survivin↓,
NF-kB↓,
Apoptosis↑,
TumCCA↑, G1-S phase cell cycle arrest
toxicity↓, No sign of overt toxicity has been observed at the dose of 2–4 mg/kg
HSP90↓,
Casp↑, caspase cascade of apoptosis is initiated
TumCG↓,
p27↑, found to regulate cell cycle in colon cancer cells by stimulating p27
cycE↓,
angioG↓,
Hif1a↓,
VEGF↓,
*toxicity↑, Treatment with deguelin, a potential mitochondria complex I inhibitor (34), reduced tyrosine hydroxylase-positive neurons, leading to Parkinson’s disease (PD).

19- Deg,    Deguelin inhibits proliferation and migration of human pancreatic cancer cells in vitro targeting hedgehog pathway
- in-vitro, PC, Bxpc-3 - in-vitro, PC, PANC1
HH↓,
Gli1↓,
PTCH1↓,
Sufu↓,
MMP2↓,
MMP9↓,
PI3K/Akt↓,
HIF-1↓,
VEGF↓,
IKKα↓,
NF-kB↓,
EMT↓,
AMPK↑,
mTOR↓,
survivin↓,

1854- dietFMD,    How Far Are We from Prescribing Fasting as Anticancer Medicine?
- Review, Var, NA
ChemoSideEff↓, ample nonclinical evidence indicating that fasting can mitigate the toxicity of chemotherapy and/or increase the efficacy of chemotherapy.
ChemoSen↑, Fasting-Induced Increase of the Efficacy of Chemotherapy
IGF-1↓,
IGFBP1↑, biological activity of IGF-1 is further compromised due to increased levels of insulin-like growth factor binding protein 1 (IGFBP1)
adiP↑, increased levels of adiponectin stimulate the fatty acid breakdown.
glyC↓, After depletion of stored glycogen, which occurs usually 24 h after initiation of fasting, the fatty acids serve as the main fuels for most tissues
E-cadherin↑, upregulation of E-cadherin expression via activation of c-Src kinase
MMPs↓, decrease of cytokines, chemokines, metalloproteinases, growth factors
Casp3↑, increase of level of activated caspase-3
ROS↑, it is postulated that the beneficial effects of fasting are ascribed to rapid metabolic and immunological response, triggered by a temporary increase in oxidative free radical production
ATP↓, Glucose deprivation leads to ATP depletion, resulting in ROS accumulation
AMPK↑, Additionally, ROS activate AMPK
mTOR↓, Under conditions of glucose deprivation, AMPK inhibits mTORC1
ROS↑, Beyond glucose deprivation, another mechanism increasing ROS levels is the AA (amino acids) starvation
Glycolysis↓, Indeed, in cancer cells, limited glucose sources impair glycolysis, decrease glycolysis-based NADPH production due to reduced utilization of the pentose phosphate pathway [88,89,90,91],
NADPH↓,
OXPHOS↝, and shift the metabolism from glycolysis to oxidative phosphorylation (OXPHOS) (“anti-Warburg effect”), leading to ROS overload [92,93,94,95].
eff↑, Fasting compared to long-term CR causes a more profound decrease in insulin (90% versus 40%, respectively) and blood glucose (50% versus 25%, respectively).
eff↑, FMD have been demonstrated to result in alterations of the serum levels of IGF-I, IGFBP1, glucose, and ketone bodies reminiscent of those observed in fasting
*RAS↓, A plausible explanation of the differential protective effect of fasting against chemotherapy is the attenuation of the Ras/MAPK and PI3K/Akt pathways downstream of decreased IGF-1 in normal cells
*MAPK↓,
*PI3K↓,
*Akt↓,
eff↑, Starvation combined with cisplatin has been shown in vitro to protect normal cells, promoting complete arrest of cellular proliferation mediated by p53/p21 activation in AMPK-dependent and ATM-independent manner
ROS↑, generation of ROS due to paradoxical activation of the AKT/S6K, partially via the AMPK-mTORC1 energy-sensing pathways malignant cells
Akt↑, cancer cells
Casp3↑, combination of fasting and chemotherapy was in part ascribed to enhanced apoptosis due to activation of caspase 3

1852- dietFMD,  Chemo,    Starvation Based Differential Chemotherapy: 
A Novel Approach for Cancer Treatment
- Review, Var, NA
ChemoSideEff↓, Ten volunteers with different types of cancers were starved for 48–140 hours before chemotherapy and five–56 hours after. Overall, all patients showed decreased side effects of chemotherapy.
*toxicity↓, A case report showed that short-term starvation of up to five days followed by chemotherapy is not only safe and feasible, but also helps to ameliorate chemotherapy related side-effects.3
mTOR↓, reduction in mTOR activity
IGF-1↓, Studies reveal that starvation reduces levels of IGF-1 significantly. Short-term starvation of 72 hours reduces circulating IGF-1 by 70%
IGFBP1↑, and increases the level of IGF binding protein (IGFBP-1) an IGF-1 inhibitor, by 11-fold
BG↓, glucose levels were reduced by 41%
ROS↑, Increased metabolic rate as a result of DR causes increased ROS production

1849- dietFMD,    The emerging role of fasting-mimicking diets in cancer treatment
- Review, Var, NA
TumCG↓, Accumulating evidence suggests that FMDs attenuate tumor growth by altering the energy metabolism of cancer cells
toxicity∅, FMD reduces risk factors and markers for aging, cardiovascular disease, diabetes, and cancer without serious adverse effects in healthy adults.
BG↓, dramatic downregulation of blood glucose
IGF-1↓, prolonged fasting downregulated IGF-1
mTOR↓, inhibits cellular mTOR activity.
M2 MC↓, In addition, alternate-day fasting inhibited colorectal cancer growth by suppressing adenosine-induced M2 macrophage polarization in the tumor microenvironment
eff↑, large prospective cohort study of breast cancer patients, a longer nightly fasting duration was associated with a decreased risk of breast cancer recurrence, so the FMD may also be beneficial after the eradication of the initial tumo
ChemoSen↑, Combining fasting cycles with chemotherapeutic agents markedly prevented the progression of subcutaneous breast cancer, melanoma, and glioma in mouse models
QoL↑, Fasting for 60 hours seemed to improve the patients' fatigue and quality of life during chemotherapy
RadioS↑, In response to stress, cancer cells engage antioxidant and DNA repair mechanisms in an energy-demanding manner, facilitating cancer cell survival. Thus, restriction of the energy supply would improve the antitumor activity of radiotherapy.
selectivity↑, Recently, short-term starvation was shown to increase the DNA damage induced by a single exposure to high-dose radiation in metastatic cancer cell lines, whereas healthy cells were not affected by starvation medium

1844- dietFMD,    Unlocking the Potential: Caloric Restriction, Caloric Restriction Mimetics, and Their Impact on Cancer Prevention and Treatment
- Review, NA, NA
Risk↓, CRMs were well tolerated, and metformin and aspirin showed the most promising effect in reducing cancer risk in a selected group of patients.
AMPK↑, the increased AMP levels activate AMPK
Akt↓, This activation results in the inhibition of AKT and mTOR pathways
mTOR↓,
SIRT1↑, energy deficit also activates the SIRT pathways, which downregulates HIF1α, and the Nrf2 pathway
Hif1a↓,
NRF2↓,
SOD↑, enhances antioxidant defenses (e.g., superoxide dismutase SOD1 and SOD2)
ROS↑, Additionally, in prostate cancer (PC) [55] and triple-negative breast cancer (TNBC) [56] cell lines glucose restriction (GR) has been shown to trigger an increase in ROS, leading to cell death.
IGF-1↓, CR decreases poor prognosis markers such as IGF1, pAKT, and PI3K
p‑Akt↓,
PI3K↑,
GutMicro↑, induces changes in the gut microbiome linked to anti-tumor effects
OS↑, Incorporating a nutraceutical regimen like CR or KD with CT has reduced tumor growth and relapse and improved the survival rate
eff↝, type of dietary intervention, with FMD being the first option, followed by KD and CR last. FMD has been considered the most cost-effective and applicable because it does not completely restrict food intake.
ROS↑, findings consistently indicating that dietary restrictions render highly proliferative tumor cells more susceptible to oxidative damage
TumCCA↑, CR has been reported to induce cell cycle arrest in the G0/G1 phases , enabling cells to undergo DNA repair more efficiently and diminishing DNA damage by CRT
*DNArepair↑,
DNAdam↑, In contrast, tumoral cells, which have an altered cell cycle, are unable to repair DNA, leading to cell death

1860- dietFMD,  Chemo,    Fasting-mimicking diet blocks triple-negative breast cancer and cancer stem cell escape
- in-vitro, BC, SUM159 - in-vitro, BC, 4T1
PI3K↑, FMD activates PI3K-AKT, mTOR, and CDK4/6 as survival/growth pathways, which can be targeted by drugs to promote tumor regression.
Akt↑,
mTOR↑,
CDK4↑,
CDK6↑,
hyperG↓, FMD cycles also prevent hyperglycemia and other toxicities caused by these drugs.
TumCG↓, cycles of FMD significantly slowed down tumor growth, reduced tumor size, and caused an increased expression of intratumor Caspase3
TumVol↓,
Casp3↑,
BG↓, confirming our hypothesis that lowering intracellular glucose levels (through reduced extracellular levels or reduced uptake) reduces CSC survival
eff↑, 2DG potentiated the effect of FMD both in terms of delaying tumor progression and in decreasing the number of mammospheres derived by tumor masses,
eff∅, metformin did not show any additive or synergistic antitumor effect when combined with the FMD, thus suggesting that FMD and metformin have redundant effects on blood glucose levels
PKA↓, We have previously shown that prolonged fasting reduces the activity of protein kinase A (PKA) in different types of normal cells
KLF5↓, PKA inhibition resulted in the downregulation of KLF5, a potential therapeutic target for TNBC
p‑GSK‐3β↑, (GSK3β) phosphorylation
Nanog↓, stemness-associated genes NANOG and OCT4, and KLF2 and TBX3,
OCT4↓,
KLF2↓,
eff↑, Combining FMD cycles with PI3K/AKT/mTOR inhibitors results in long-term animal survival and reduces treatment-induced side effects
ROS↑, FMD resulted in an increased expression of pro-apoptotic molecules, such as BIM, and ASK1, a critical cellular stress sensor frequently activated by ROS, whose production was previously shown to be increased by the FMD
BIM↑,
ASK1↑,
PI3K↑, FMD cycles upregulate PI3K-AKT and mTOR pathways and downregulate CCNB-CDK1 while upregulating CCND-CDK4/6 signaling axes
Akt↑,
mTOR↑,
CDK1↓,
CDK4↑,
CDK6↑,
eff↑, combining STS with pictilisib, ipatasertib, and rapamycin, selective inhibitors for PI3K, AKT, and mTOR, respectively, resulted in enhanced cancer cell death and reduction of mammosphere numbers in SUM159 cells

2352- dietFMD,    Glucose restriction reverses the Warburg effect and modulates PKM2 and mTOR expression in breast cancer cell lines
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7
Warburg↓, n this study, we investigated the role of glucose restriction (GR) and mTOR inhibition in reversing the Warburg effect in MDA-MB 231 and MCF-7 breast cancer cell lines
mTOR↓, Glucose restriction contribute to the reduction of the Warburg effect through mTOR inhibition and regulation of PKM2 kinases.
PKM2↓, Glucose restriction contribute to the reduction of the Warburg effect through mTOR inhibition and regulation of PKM2 kinases.

2272- dietMet,    Methionine restriction - Association with redox homeostasis and implications on aging and diseases
- Review, Nor, NA
*OS↑, MR seems to be an approach to prolong lifespan which has been validated extensively in various animal models
*mt-ROS↓, Mitochondrial ROS reduction by methionine restriction (MR) maintains redox balance
*H2S↑, MR ameliorates oxidative stress by autophagy activation and hepatic H2S generation.
*FGF21↑, MR impact on cognition by upregulation of FGF21 and alterations of gut microbiome.
*cognitive↑,
*GutMicro↑,
*IGF-1↓, long-term, low-fat, whole-food vegan diet may increase life expectancy in humans by down-regulating IGF-I activity
*mTOR↓, Suppression of the mTOR pathway by MR can also lead to increased H2S production,
*GSH↑, 80% MR increases the GSH content in erythrocytes of rats,
*SOD↑, A diet restricting methionine to 80% (0.17% Met) significantly increases plasma SOD and decreases MDA levels while increasing mRNA expression of Nrf2, HO-1, and NQO-1 in the heart of HFD-fed mice with cardiovascular impairment
*MDA↓,
*NRF2↑,
*HO-1↑,
*NQO1↑,
*GLUT4↑, In skeletal muscle, MR improved expression and transport of GLUT4 and glycogen levels and increased the expression of glycolysis-related genes (HK2, PFK, PKM) in HFD-fed mice
*Glycolysis↑,
*HK2↑,
*PFK↑,
*PKM2↑,
*GlucoseCon↑, promoting glucose uptake and glycogen synthesis, glycolysis, and aerobic oxidation in skeletal muscle.
*ATF4↑, MR can increase the expression of hepatic FGF21 by activating GCN2/ATF4/PPARα signaling in liver cells, thereby improving insulin sensitivity, accelerating energy expenditure, and promoting fat oxidation and glucose metabolism
*PPARα↑,
GSH↓, MR was able to decrease GSH in HepG2 cells, thereby regulating the activation state of protein tyrosine phosphatases such as PTEN.
GSTs↑, decrease of GSH by MR also triggers upregulation of glutathione S-transferase
ROS↑, Double deprivation of methionine and cystine both in vitro and in vivo resulted in a decrease in GSH content, an increase in ROS levels, and an induction of autophagy in glioma cells
*neuroP↑, A neuroprotective role of FGF21

1608- EA,    Ellagic Acid from Hull Blackberries: Extraction, Purification, and Potential Anticancer Activity
- in-vitro, Cerv, HeLa - in-vitro, Liver, HepG2 - in-vitro, BC, MCF-7 - in-vitro, Lung, A549 - in-vitro, Nor, HUVECs
eff↑, Hull blackberry fruits into five growth periods according to color and determined the EA content in the fruits in each period. The EA content in the green fruit stage was the highest at 5.67 mg/g FW
Dose∅, EA inhibited HeLa cells with an IC50 of 35 μg/mL
*BioAv↑, EA is not sensitive to high temperatures and is not highly soluble in many solvents.
selectivity↑, selectivity index varied from 7.4 for Hela to about 1 for A549
TumCP↓, EA reduced the proliferation of human cervical cancer HeLa, SiHa, and C33A cells in a dose- and time-dependent manner, and the inhibitory effect was significantly more pronounced in HeLa cells than in SiHa and C33A cells
Casp↑, EA reduced the proliferation of human cervical cancer HeLa, SiHa, and C33A cells in a dose- and time-dependent manner, and the inhibitory effect was significantly more pronounced in HeLa cells than in SiHa and C33A cells
PTEN↑,
TSC1↑,
mTOR⇅,
Akt↓, AKT, PDK1 expression were down-regulated
PDK1↓,
E6↓, mRNA levels of E6/E7 were determined to decrease gradually with the increase in EA incubation time and concentration
E7↓,
DNAdam↑, When DNA damage is introduced into cells from exogenous or endogenous sources there is an increase in the amount of intracellular reactive oxygen species (ROS)
ROS↑,
*BioAv↓, EA cannot be exploited for in vivo therapeutic applications in the current situation because of its poor water solubility and accordingly low bioavailability.
*BioEnh↑, As Lei [52] reported that EA in pomegranate leaf is rapidly absorbed and distributed as well as eliminated in rats
*Half-Life∅, blood concentration peaked at 0.5 h with Cmax = 7.29 μg/mL, and the drug concentration decreased to half of the original after 57 min of administration

1610- EA,    Anticancer Effect of Pomegranate Peel Polyphenols against Cervical Cancer
- Review, Cerv, NA
TumCCA↑, EA had a dose-dependent apoptotic effect on HeLa cells caused by cell cycle arrest in the G1 phase via the regulation of STAT3
STAT3↓,
P21↑, increase in the expression of both p21 mRNA and protein
IGFBP7↑, increase in igfb7
Akt↓, inhibition of the Akt/mTOR signaling
mTOR↓,
ROS↑, increase in the production of ROS and DNA damage
DNAdam↑,
P53↑, restored activity of p53 and p21 genes and
P21↑,
BAX↑, increased expression of the Bax

20- EGCG,    Potential Therapeutic Targets of Epigallocatechin Gallate (EGCG), the Most Abundant Catechin in Green Tea, and Its Role in the Therapy of Various Types of Cancer
- in-vivo, Liver, NA - in-vivo, Tong, NA
HH↓,
Gli1↓,
Smo↓,
TNF-α↓,
COX2↓, EGCG inhibits cyclooxygenase-2 without affecting COX-1 expression at both the mRNA and protein levels, in androgen-sensitive LNCaP and androgen-insensitive PC-3
*antiOx↑, EGCG is a well-known antioxidant and it scavenges most free radicals, such as ROS and RNS
Hif1a↓,
NF-kB↓,
VEGF↓,
STAT3↓,
Bcl-2↓,
P53↑, EGCG activates p53 in human prostate cancer cells
Akt↓,
p‑Akt↓,
p‑mTOR↓,
EGFR↓,
AP-1↓,
BAX↑,
ROS↑, apoptosis was convoyed by ROS production and caspase-3 cleavage
Casp3↑,
Apoptosis↑,
NRF2↑, pancreatic cancer cells via inducing cellular reactive oxygen species (ROS) accumulation and activating Nrf2 signaling
*H2O2↓, EGCG plays a role in the inhibition of H2O2 and NO production in human skin [10].
*NO↓, EGCG plays a role in the inhibition of H2O2 and NO production in human skin [10].
*SOD↑, fig 2
*Catalase↑, fig 2
*GPx↑, fig 2
*ROS↓, fig 2

651- EGCG,    Epigallocatechin-3-Gallate Therapeutic Potential in Cancer: Mechanism of Action and Clinical Implications
ROS↑, mounting evidence that EGCG can stimulate ROS production, which in turn leads to the phosphorylation and activation of AMPK
p‑AMPK↑,
mTOR↓,
FAK↓,
Smo↓,
Gli1↓,
HH↓,
TumCMig↓,
TumCI↓,
NOTCH↓,
JAK↓,
STAT↓,
Bcl-2↓,
Bcl-xL↓,
BAX↑,
Casp9↑,

694- EGCG,    Matcha green tea (MGT) inhibits the propagation of cancer stem cells (CSCs), by targeting mitochondrial metabolism, glycolysis and multiple cell signalling pathways
- in-vitro, BC, MCF-7
Glycolysis↓, MGT might similarly act as a glycolysis inhibitor
GAPDH↓,
ROS↑, Tea cathechins may act both as anti-oxidant and as pro-oxidants
OCR↓,
ECAR↓,
mTOR↓,
OXPHOS↓,

683- EGCG,    Targeting the AMP-Activated Protein Kinase for Cancer Prevention and Therapy
- Review, NA, NA
AMPK↑, EGCG analogs activate AMPK
TumCP↓,
P21↑,
mTOR↓,
COX2↓,

682- EGCG,    Suppressive Effects of EGCG on Cervical Cancer
- Review, NA, NA
E7↓,
E6↓,
PI3K/Akt↓,
P53↑,
p27↑,
P21↑,
CDK2↓,
mTOR↓,
HIF-1↓,
IGF-1↓,
EGFR↓,
ERK↓, ERK1/2
VEGF↓,

3244- EGCG,    Novel epigallocatechin gallate (EGCG) analogs activate AMP-activated protein kinase pathway and target cancer stem cells
AMPK↑, In this study we demonstrated that synthetic EGCG analogs 4 and 6 were more potent AMPK activators than metformin and EGCG.
TumCP↓, EGCG analogs resulted in inhibition of cell proliferation, up-regulation of the cyclin-dependent kinase inhibitor p21, down-regulation of mTOR pathway, and suppression of stem cell population in human breast cancer cells.
P21↑,
mTOR↓,
CSCs↓,
CD44↓, Both EGCG analogs 4 and 6 significantly decreased the CD44+high/CD24-low population in breast cancer cells
CD24↓,

3214- EGCG,    EGCG-induced selective death of cancer cells through autophagy-dependent regulation of the p62-mediated antioxidant survival pathway
- in-vitro, Nor, MRC-5 - in-vitro, Cerv, HeLa - in-vitro, Nor, HEK293 - in-vitro, BC, MDA-MB-231 - in-vitro, CRC, HCT116
mTOR↓, In contrast, EGCG treatment in HeLa cells led to AMPK-induced mTOR inactivation
AMPK↑, via AMPK activation,
selectivity↑, EGCG was previously reported to differentially induce ROS production in normal and cancer cells, resulting in the preferential perturbation of the redox homeostasis of cancer cells via increased ROS levels, especially H2O2, in cancer cells
ROS↑,
selectivity↑, EGCG-induced selective death of cancer cells is accomplished by the positive and negative regulation of the p62-KEAP1-NRF2-HO-1 antioxidant survival pathway between normal cells and cancer cells, respectively,
HO-1↓, HO-1 expression decreased significantly with increasing EGCG concentration in all six different cancer cells
*NRF2↑, According to our findings, EGCG increased the protein level of NRF2 in normal cells but decreased them in cancer cells even though its mRNA levels were more or less equal in both cell types
NRF2↓,
*HO-1↑, upregulates HO-1 through the prolonged stability of NRF2 in MRC5 cells, whereas it downregulates HO-1 through the increased degradation of NRF2 by ubiquitination in HeLa and HCT116 cells.

1323- EMD,    Anticancer action of naturally occurring emodin for the controlling of cervical cancer
- Review, Cerv, NA
TumCCA↑, cell cycle arrest in the G2/M phase
DNAdam↑,
mTOR↓,
Casp3↑,
Casp8↑,
Casp9↑,
TGF-β↑,
SMAD3↓,
p‑SMAD4↓,
ROS↑,
MMP↓,
CXCR4↓,
HER2/EBBR2↓,
ER Stress↓,
TumAuto↑, can increase the level of autophagy in A549 lung cancer cells, but did not affect autophagy in healthy non-cancerous Ha CaT cells
NOTCH1↓,

1654- FA,    Molecular mechanism of ferulic acid and its derivatives in tumor progression
- Review, Var, NA
AntiCan↑, FA has anti-inflammatory, analgesic, anti-radiation, and immune-enhancing effects and also shows anticancer activity,
Inflam↓,
RadioS↑,
ROS↑, FA can cause mitochondrial apoptosis by inducing the generation of intracellular reactive oxygen species (ROS)
Apoptosis↑,
TumCCA↑, G0/G1 phase
TumCMig↑, inducing autophagy; inhibiting cell migration, invasion, and angiogenesis
TumCI↓,
angioG↓,
ChemoSen↑, synergistically improving the efficacy of chemotherapy drugs and reducing adverse reactions.
ChemoSideEff↓,
P53↑, FA could increase the expression level of p53 in MIA PaCa-2 pancreatic cancer cells
cycD1↓, while reducing the expression levels of cyclin D1 and cyclin-dependent kinase (CDK) 4/6.
CDK4↓,
CDK6↓,
TumW↓, FA treatment was found to reduce tumor weight in a dose-dependent manner, increase miR-34a expression, downregulate Bcl-2 protein expression, and upregulate caspase-3 protein expression
miR-34a↑,
Bcl-2↓,
Casp3↑,
BAX↑,
β-catenin/ZEB1↓, isoferulic acid dose-dependently downregulated the expression of β-catenin and MYC proto-oncogene (c-Myc), inducing apoptosis
cMyc↓,
Bax:Bcl2↑, FXS-3 can inhibit the activity of A549 cells by upregulating the Bax/Bcl-2 ratio
SOD↓, After treatment with FA, Cao et al. [40] observed an increase in ROS production and a decrease in superoxide dismutase activity and glutathione content in EC-1 and TE-4 oesophageal cancer cells
GSH↓,
LDH↓, FA could promote the release of lactate dehydrogenase (LDH)
ERK↑, A can activate the ERK1/2 pathway
eff↑, conjugated zinc oxide nanoparticles with FA (ZnONPs-FA) to act on hepatoma Huh-7 and HepG2 cells. The results showed that ZnONPs-FA could induce oxidative DNA damage and apoptosis by inducing ROS production.
JAK2↓, by inhibiting the JAK2/STAT6 immune signaling pathway
STAT6↓,
NF-kB↓, thus inhibiting the activation of NF-κB
PYCR1↓, FA can target PYCR1 and inhibit its enzyme activity in a concentration-dependent manner.
PI3K↓, FA inhibits the activation of the PI3K/AKT pathway
Akt↓,
mTOR↓, FA could significantly reduce the expression level of mTOR mRNA and Ki-67 protein in A549 lung cancer graft tissue
Ki-67↓,
VEGF↓,
FGFR1↓, FA is a novel FGFR1 inhibitor
EMT↓, FA can inhibit EMT
CAIX↓, selectively inhibit CAIX
LC3II↑, Autophagy vacuoles and increased LC3-II and p62 autophagy proteins were observed after treatment with this compound
p62↑,
PKM2↓, FA could inhibit the expression of PKM2 and block aerobic glycolysis
Glycolysis↓,
*BioAv↓, FA has poor solubility in water and a poor ability to pass through biological barriers [118]; therefore, the extent to which it is metabolized in vivo after oral administration is largely unknown

2845- FIS,    Fisetin: A bioactive phytochemical with potential for cancer prevention and pharmacotherapy
- Review, Var, NA
PI3K↓, block multiple signaling pathways such as the phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) and p38
Akt↓,
mTOR↓,
p38↓,
*antiOx↑, antioxidant, anti-inflammatory, antiangiogenic, hypolipidemic, neuroprotective, and antitumor effect
*neuroP↑,
Casp3↑, U266 cancer cell line through activation of caspase-3, downregulation of Bcl-2 and Mcl-1L, upregulation of Bax, Bim and Bad
Bcl-2↓,
Mcl-1↓,
BAX↑,
BIM↑,
BAD↑,
AMPK↑, activation of 5'adenosine monophosphate-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC) and decreased phosphorylation of AKT and mTOR were also observed
ACC↑,
DNAdam↑, DNA fragmentation, mitochondrial membrane depolarizatio
MMP↓,
eff↑, fisetin in combination with a citrus flavanone, hesperetin mediated apoptosis by mitochondrial membrane depolarization and caspase-3 act
ROS↑, NCI-H460 human non-small cell lung cancer line, fisetin generated reactive oxygen species (ROS), endoplasmic reticulum (ER) stress
cl‑PARP↑, fisetin treatment resulted in PARP cleavage
Cyt‑c↑, release of cyt. c
Diablo↑, release of cyt. c and Smac/DIABLO from mitochondria,
P53↑, increased p53 protein levels
p65↓, reduced phospho-p65 and Myc oncogene expression
Myc↓,
HSP70/HSPA5↓, fisetin causes inhibition of proliferation by the modulation of heat shock protein 70 (HSP70), HSP27
HSP27↓,
COX2↓, anti-proliferative effects of fisetin through the activation of apoptosis via inhibition of cyclooxygenase-2 (COX-2) and Wnt/EGFR/NF-κB signaling pathways
Wnt↓,
EGFR↓,
NF-kB↓,
TumCCA↑, The anti-proliferative effects of fisetin and hesperetin were shown to be occurred through S, G2/M, and G0/G1 phase arrest in K562 cell progression
CDK2↓, decrease in levels of cyclin D1, cyclin A, Cdk-4 and Cdk-2
CDK4↓,
cycD1↓,
cycA1↓,
P21↑, increase in p21 CIP1/WAF1 levels in HT-29 human colon cancer cell
MMP2↓, fisetin has exhibited tumor inhibitory effects by blocking matrix metalloproteinase-2 (MMP- 2) and MMP-9 at mRNA and protein levels,
MMP9↓,
TumMeta↓, Antimetastasis
MMP1↓, fisetin also inhibited the MMP-14, MMP-1, MMP-3, MMP-7, and MMP-9
MMP3↓,
MMP7↓,
MET↓, promotion of mesenchymal to epithelial transition associated with a decrease in mesenchymal markers i.e. N-cadherin, vimentin, snail and fibronectin and an increase in epithelial markers i.e. E-cadherin
N-cadherin↓,
Vim↓,
Snail↓,
Fibronectin↓,
E-cadherin↑,
uPA↓, fisetin suppressed the expression and activity of urokinase plasminogen activator (uPA)
ChemoSen↑, combination treatment of fisetin and sorafenib reduced the migration and invasion of BRAF-mutated melanoma cells both in in-vitro
EMT↓, inhibited epithelial to mesenchymal transition (EMT) as observed by a decrease in N-cadherin, vimentin and fibronectin and an increase in E-cadherin
Twist↓, inhibited expression of Snail1, Twist1, Slug, ZEB1 and MMP-2 and MMP-9
Zeb1↓,
cFos↓, significant decrease in NF-κB, c-Fos, and c-Jun levels
cJun↓,
EGF↓, Fisetin inhibited epidermal growth factor (EGF)
angioG↓, Antiangiogenesis
VEGF↓, decreased expression of endothelial nitric oxide synthase (eNOS) and VEGF, EGFR, COX-2
eNOS↓,
*NRF2↑, significantly increased nuclear translocation of Nrf2 and antioxidant response element (ARE) luciferase activity, leading to upregulation of HO-1 expression
HO-1↑,
NRF2↓, Fisetin also triggered the suppression of Nrf2
GSTs↓, declined placental type glutathione S-transferase (GST-p) level in the liver of the fisetin- treated rats with hepatocellular carcinoma (HCC)
ATF4↓, Fisetin also rapidly increased the levels of both Nrf2 and ATF4

2847- FIS,    Fisetin-induced cell death, apoptosis, and antimigratory effects in cholangiocarcinoma cells
- in-vitro, CCA, NA
tumCV↓, Fisetin was significant in suppressing CCA cell viability and colony formation during the course of this experiment.
ChemoSen↑, fisetin significantly potentiated the cisplatin-induced CCA cells death
TumCMig↓, reduced the migration of cancer cells and demonstrated more pronounced effects on KKU-M452 cells
ROS↑, fisetin prompted cell death and apoptosis in CCA cells by stimulating the generation of ROS in KKU-100 cells at a dosage of 50 μM
TumCI↓, suppression of cell invasion and migration,prevention of angiogenesis
angioG↓,
CDK2↓, mechanisms including the suppression of cyclin-dependent kinases, the inhibition of PI3K/Akt/mTOR
PI3K↓,
Akt↓,
mTOR↓,
EGFR↓, suppression of the EGFR pathway, the stimulation of the caspase cascade
Casp↑,
mTORC1↓, suppressing the mTORC1 and 2 signaling
mTORC2↑,
cycD1↓, decreasing the level of the cyclin D1 and cyclin E mRNA
cycE↓,
MMP2↓, Matrix metalloproteinases (MMP) 2 and MMP 9 gene expression and enzyme activity are suppressed
MMP9↓,
ER Stress↑, Moreover, fisetin also caused endoplasmic reticulum (ER) stress-induced production of mitochondrial ROS generation and Ca2+, with the involvement of MAPK signaling
Ca+2↑,
eff↓, The ROS scavenger molecule N-acetyl cysteine decreased fisetin-activated apoptosis in multiple myeloma and oral cancer cells

2849- FIS,    Activation of reactive oxygen species/AMP activated protein kinase signaling mediates fisetin-induced apoptosis in multiple myeloma U266 cells
- in-vitro, Melanoma, U266
TumCD↑, Fisetin elicited the cytotoxicity in U266 cells, manifested as an increased fraction of the cells with sub-G1 content or stained positively with TUNEL labeling
TumCCA↑,
Casp3↑, Fisetin enhanced caspase-3 activation, downregulation of Bcl-2 and Mcl-1L, and upregulation of Bax, Bim and Bad
Bcl-2↓,
Mcl-1↓,
BAX↑,
BIM↑,
BAD↑,
AMPK↑, Fisetin activated AMPK as well as its substrate acetyl-CoA carboxylase (ACC), along with a decreased phosphorylation of AKT and mTOR.
ACC↑,
p‑Akt↓,
p‑mTOR↓,
ROS↑, Fisetin also stimulated generation of ROS in U266 cells
eff↓, Conversely, compound C or N-acetyl-l-cystein blocked fisetin-induced apoptosis

2857- FIS,    A review on the chemotherapeutic potential of fisetin: In vitro evidences
- Review, Var, NA
COX2↓, fisetin altered the expression of cyclooxygenase 2 (COX2) thereby suppressed the secretion of prostaglandin E2 ultimately resulting in the inhibition of epidermal growth factor receptor (EGFR) and NF-κB in human colon cancer cells HT29
PGE2↓,
EGFR↓,
Wnt↓, fisetin treatment inhibited the stimulation of Wnt signaling pathway via downregulating the expression of β-catenin and Tcell factor (TCF) 4
β-catenin/ZEB1↓,
TCF↑,
Apoptosis↑, fisetin triggers apoptosis in U266 cells through multiple pathways: enhancing the activation of caspase-3 and PARP cleavage, decreasing the expression of anti-apoptotic proteins (Bcl-2 and Mcl-1 L ),
Casp3↑,
cl‑PARP↑,
Bcl-2↓,
Mcl-1↓,
BAX↑, ncreasing the expression of pro-apoptotic proteins (Bax, Bim, and Bad)
BIM↑,
BAD↑,
Akt↓, decreasing the phosphorylation of AKT and mTOR and elevating the expression of acetyl CoA carboxylase (ACC
mTOR↓,
ACC↑,
Cyt‑c↑, release the cytochrome c and Smac/Diablo into the cytosol
Diablo↑,
cl‑Casp8↑, fisetin exhibited an increased level of cleaved caspase-8, Fas/Fas ligand, death receptor 5/TRAIL, and p53 levels in HCT-116 cells
Fas↑,
DR5↑,
TRAIL↑,
Securin↓, Securin gets degraded on exposure to fisetin in colon cancer cells.
CDC2↓, fisetin decreased the expression of cell division cycle proteins (CDC2 and CDC25C)
CDC25↓,
HSP70/HSPA5↓, Fisetin induced apoptosis as a result of the downregulation of HSP70 and BAG3 and the inhibition of Bcl-2, Bcl-x L and Mcl-1. T
CDK2↓, AGS 0, 25, 50, 75 μM – 24 and 48 h ↓CDK2, ↓CDK4, ↓cyclin D1, ↑casapse-3 cleavage
CDK4↓,
cycD1↓,
MMP2↓, A549 0, 1, 5, 10 μM- 24 and 48 hr: ↓MMP-2, ↓u-PA, ↓NF- κB, ↓c-Fos, ↓c-Jun
uPA↓,
NF-kB↓,
cFos↓,
cJun↓,
MEK↓, ↓ MEK1/2 and ERK1/2 phosphorylation, ↓N-cadherin, ↓vimentin, ↓snail, ↓fibronectin, ↑E-cadherin, ↑desmoglein
p‑ERK↓,
N-cadherin↓,
Vim↓,
Snail↓,
Fibronectin↓,
E-cadherin↓,
NF-kB↑, increased expression of NF-κB p65 leading to apoptosis was due to ROS generation on exposure to fisetin
ROS↑,
DNAdam↑, increased ROS triggered cell death through PARP cleavage, DNA damage and mitochondrial membrane depolarization.
MMP↓,
CHOP↑, Though fisetin upregulated CHOP expression and increased the production of ROS, these events fail to induce apoptosis in Caki cells.
eff↑, 50 μM fisetin + 1 mM melatonin Sk-mel-28 Enhances anti-tumour activity [54] 20 μM fisetin + 1 mM melatonin MeWo Enhances anti-tumour activity [54] 10 μM fisetin + 0.1 μM melatonin A549 Induces autophagic cell death
ChemoSen↑, 20 μM fisetin + 5 μM sorafenib A375, SK-MEL-28 Suppresses invasion and metastasis [44] 40 μM fisetin + 10 μM cisplatin A549, A549-CR Enhances apoptosis

2860- FIS,    Fisetin induces autophagy in pancreatic cancer cells via endoplasmic reticulum stress- and mitochondrial stress-dependent pathways
- in-vitro, PC, PANC1 - in-vitro, PC, Bxpc-3 - in-vitro, Nor, hTERT-HPNE - in-vivo, NA, NA
AMPK↑, We found that the AMPK/mTOR signaling pathway was enhanced after fisetin treatment
mTOR↑,
UPR↑, RNA-seq analysis revealed that the unfolded protein response pathway, which is activated by ER stress, was enriched
ER Stress↑, Fisetin induced ER stress in pancreatic cancer cells
selectivity↑, results showed that fisetin was less cytotoxic to normal cells compared with pancreatic cancer cells
TumCP↓, fisetin inhibited the proliferation of PANC-1 cells
PERK↑, expression of PERK, ATF4, and ATF6 were also upregulated by fisetin
ATF4↑,
ATF6↑,

2825- FIS,    Exploring the molecular targets of dietary flavonoid fisetin in cancer
- Review, Var, NA
*Inflam↓, present in fruits and vegetables such as strawberries, apple, cucumber, persimmon, grape and onion, was shown to possess anti-microbial, anti-inflammatory, anti-oxidant
*antiOx↓, fisetin possesses stronger oxidant inhibitory activity than well-known potent antioxidants like morin and myricetin.
*ERK↑, inducing extracellular signal-regulated kinase1/2 (ERK)/c-myc phosphorylation, nuclear NF-E2-related factor-2 (Nrf2), glutamate cystine ligase and glutathione (GSH) levels
*p‑cMyc↑,
*NRF2↑,
*GSH↑,
*HO-1↑, activate Nrf2 mediated induction of hemeoxygenase-1 (HO-1) important for cell survival
mTOR↓, in our studies on fisetin in non-small lung cancer cells, we found that fisetin acts as a dual inhibitor PI3K/Akt and mTOR pathways
PI3K↓,
Akt↓,
TumCCA↑, fisetin treatment to LNCaP cells resulted in G1-phase arrest accompanied with decrease in cyclins D1, D2 and E and their activating partner CDKs 2, 4 and 6 with induction ofWAF1/p21 and KIP1/p27
cycD1↓,
cycE↓,
CDK2↓,
CDK4↓,
CDK6↓,
P21↑,
p27↑,
JNK↑, fisetin could inhibit the metastatic ability of PC-3 cells by suppressing of PI3 K/Akt and JNK signaling pathways with subsequent repression of matrix metalloproteinase-2 (MMP-2) and MMP-9
MMP2↓,
MMP9↓,
uPA↓, fisetin suppressed protein and mRNA levels of MMP-2 and urokinase-type plasminogen activator (uPA) in an ERK-dependent fashion.
NF-kB↓, decrease in the nuclear levels of NF-B, c-Fos, and c-Jun was noted in fisetin treated cells
cFos↓,
cJun↓,
E-cadherin↑, upregulation of E-cadherin and down-regulation of vimentin and N-cadherin.
Vim↓,
N-cadherin↓,
EMT↓, EMT inhibiting potential of fisetin has been reported in melanoma cells
MMP↓, The shift in mitochondrial membrane potential was accompanied by release of cytochrome c and Smac/DIABLO resulting in activation of the caspase cascade and cleavage of PARP
Cyt‑c↑,
Diablo↑,
Casp↑,
cl‑PARP↑,
P53↑, fisetin with induction of p53 protein
COX2↓, Fisetin down-regulated COX-2 and reduced the secretion of prostaglandin E2 without affecting COX-1 protein expression.
PGE2↓,
HSP70/HSPA5↓, It was shown that the induction of HSF1 target proteins, such as HSP70, HSP27 and BAG3 were inhibited in HCT-116 cells exposed to heat shock at 43 C for 1 h in the presence of fisetin
HSP27↓,
DNAdam↑, DNA fragmentation, an increase in the number of sub-G1 phase cells, mitochondrial membrane depolarization and activation of caspase-9 and caspase-3.
Casp3↑,
Casp9↑,
ROS↑, This was associated with production of intracellular ROS
AMPK↑, Fisetin induced AMPK signaling
NO↑, fisetin induced cytotoxicity and showed that fisetin induced apoptosis of leukemia cells through generation of NO and elevated Ca2+ activating the caspase
Ca+2↑,
mTORC1↓, Fisetin was shown to inhibit the mTORC1 pathway and its downstream components including p70S6 K, eIF4B and eEF2 K.
p70S6↓,
ROS↓, Others have also noted a similar decrease in ROS with fisetin treatment.
ER Stress↑, Induction of ER stress upon fisetin treatment, evident as early as 6 h, and associated with up-regulation of IRE1, XBP1s, ATF4 and GRP78, was followed by autophagy which was not sustained
IRE1↑,
ATF4↑,
GRP78/BiP↑,
eff↑, Combination of fisetin and the BRAF inhibitor sorafenib was found to be extremely effective in inhibiting the growth of BRAF-mutated human melanoma cells
eff↑, synergistic effect of fisetin and sorafenib was observed in human cervical cancer HeLa cells,
eff↑, Similarly, fisetin in combination with hesperetin induced apoptosis
RadioS↑, pretreatment with fisetin enhanced the radio-sensitivity of p53 mutant HT-29 cancer cells,
ChemoSen↑, potential of fisetin in enhancing cisplatin-induced cytotoxicity in various cancer models
Half-Life↝, intraperitoneal (ip) dose of 223 mg/kg body weight the maximum plasma concentration (2.53 ug/ml) of fisetin was reached at 15 min which started to decline with a first rapid alpha half-life of 0.09 h and a longer half-life of 3.12 h.

2828- FIS,    Fisetin, a Potent Anticancer Flavonol Exhibiting Cytotoxic Activity against Neoplastic Malignant Cells and Cancerous Conditions: A Scoping, Comprehensive Review
- Review, Var, NA
*neuroP↑, As a hydrophobic agent, FIS readily penetrates cell membranes and accumulates in cells to exert neuroprotective, neurotrophic and antioxidant effects
*antiOx↑,
*Inflam↓, FIS treatment may include alleviating inflammation, cell apoptosis and oxidative stress
RenoP↑, alleviates cell apoptosis and inflammation in acute kidney injury
COX2↓, FIS induces apoptosis in various tumor cells by, for example, inhibiting cyclooxygenase-2, inhibiting the Wnt/EGFR/NF-κB pathway, activating the caspase-3 cascade
Wnt↓,
EGFR↓,
NF-kB↓,
Casp3↑,
Ca+2↑, activating the caspase-3 and Ca2+ dependent endonuclease, and activating the caspase-8/caspase-3 dependent pathway via ERK1/2.
Casp8↑,
TumCCA↑, FIS controls the cell cycle and inhibits cyclin-dependent kinases (CDKs) in human cancer cell lines,
CDK1↓,
PI3K↓, by inhibition of PI3K/Akt/mTOR signaling [20], mitogen-activated protein kinases (MAPK) [21], and nuclear transcription factor (NF-κB)
Akt↓,
mTOR↓,
MAPK↓,
*P53↓, FIS inhibits aging by reducing p53, p21 and p16 expression in mouse and human tissues
*P21↓,
*p16↓,
mTORC1↓, FIS induces autophagic cell death by inhibiting both the mTORC1 and mTORC2 pathways
mTORC2↓,
P53↑, FIS significantly increases the expression of p53 and p21 proteins and lowers the levels of cyclin D1 [27,28], cyclin A, CDK4 and CDK2, thus contributing to cell-cycle arrest.
P21↑,
cycD1↓,
cycA1↓,
CDK2↓,
CDK4↓,
BAX↑, FIS also increases Bax [27,28] and Bak [27] protein expression, but reduces the levels of Bcl-2 [27,28], Bcl-xL [27] and PCNA [28], and then starts the mitochondrial apoptotic pathway.
Bcl-2↓,
PCNA↓,
HER2/EBBR2↓, FIS reduces HER2 tyrosine phosphorylation in a dose-dependent manner and aids in proteasomal degradation of HER2 rather than lysosomal degradation
Cyt‑c↑, FIS cells causes destabilization of the mitochondrial membrane and an increase in cytochrome c levels, which is consistent with the loss of mitochondrial membrane integrity.
MMP↓,
cl‑Casp9↑,
MMP2↓, FIS reduces the enzymatic activity of both MMP-2 and MMP-9.
MMP9↓,
cl‑PARP↑, cell membrane, mitochondrial depolarization, activation of caspase-7, -8 and -9, and cleavage of PARP
uPA↓, interestingly, the promoter activity of the uPA gene is suppressed by FIS
DR4↑, induces upregulation of DR4 and DR5 death receptor expression in a dose-dependent manner
DR5↑,
ROS↓, FIS induces an increase in intracellular Ca2+ but reduces the production of ROS in WEHI-3 cells (myelomonocytic leukemia)
AIF↑, It also increases the levels of caspase-3 and AIF mRNA, but also increases necrosis markers including RIP3 and PARP1
CDC25↓, FIS reduces the expression of cdc25a, but increases the expression of p-p53, Chk1, p21 and p27, which may lead to a G0/G1 arrest.
Dose↑, FIS in concentrations from 0 to 10 μM does not affect cell viability; however, its use at concentrations of 20–40 μM significantly reduces the viability of lung cancer cells
CHOP↑, CaKi : FIS induces upregulation of CHOP expression and ROS production
ROS↑, NCI-H460 :FIS increases the ER stress signaling FIS increases the level of mitochondrial ROS FIS induces mitochondrial Ca2+ overloading and ER stress FIS induced ER stress-mediated cell death via activation of the MAPK pathway
cMyc↓, FIS influences proliferation related genes such as cyclin D1, c-myc and cyclooxygenase (COX)-2 by downregulating them.
cardioP↑, cardioprotective activity

2829- FIS,    Fisetin: An anticancer perspective
- Review, Var, NA
TumCP↓, Being a potent anticancer agent, fisetin has been used to inhibit stages in the cancer cells (proliferation, invasion), prevent cell cycle progression, inhibit cell growth, induce apoptosis, cause polymerase (PARP) cleavage
TumCI↓,
TumCCA↑,
TumCG↓,
Apoptosis↑,
cl‑PARP↑,
PKCδ↓, fisetin also suppresses the activation of the PKCα/ROS/ERK1/2 and p38 MAPK signaling pathways, reduces the NF‐κB activation, and down‐regulates the level of the oncoprotein securin
ROS↓,
ERK↓,
NF-kB↓,
survivin↓,
ROS↑, In human multiple myeloma U266 cells, fisetin stimulated the production of free radical species that led to apoptosis
PI3K↓, Multiple studies also authenticated the anticancer role of fisetin through various signaling pathways such as blocking of mammalian target of rapamycin (PI3K/Akt/mTOR)
Akt↓,
mTOR↓,
MAPK↓, phosphatidylinositol‐3‐kinase/protein kinase B, mitogen‐activated protein kinases (MAPK)‐dependent nuclear factor kappa‐light‐chain‐enhancer of activated B cells (NF‐κB), and p38, respectively,
p38↓,
HER2/EBBR2↓, (HER2)/neu‐overexpressing breast cancer cell lines. Fisetin caused induction through inactivating the receptor, inducing the degradation of the proteasomes, reducing its half‐life
EMT↓, In addition, mutation of epithelial‐to‐mesenchymal transition (EMT)
PTEN↑, up‐regulation of expression of PTEN mRNA and protein were reported after fisetin treatment
HO-1↑, In breast cancer cells (4T1 and JC cells), fisetin increased HO‐1 mRNA and protein expressions, elevated Nrf2 expression
NRF2↑,
MMP2↓, fisetin reduced MMP‐2 and MMP‐9 enzyme activity and gene expression for both mRNA levels and protein
MMP9↓,
MMP↓, fisetin treatment further led to permeabilization of mitochondrial membrane, activation of caspase‐8 and caspase‐9, as well as the cleavage of poly(ADP‐ribose) polymerase 1
Casp8↑,
Casp9↑,
TRAILR↑, enhanced the levels of TRAIL‐R1
Cyt‑c↑, mitochondrial releasing of cytochrome c into cytosol, up‐regulation and down‐regulation of X‐linked inhibitor of apoptosis protein
XIAP↓,
P53↑, fisetin also enhanced the protein p53 levels
CDK2↓, lowered cell number, the activities of CDK‐2,4)
CDK4↓,
CDC25↓, it also decreased cell division cycle protein levels (CDC)2 and CDC25C, and CDC2 activity (Lu et al., 2005)
CDC2↓,
VEGF↓, down‐regulating the expressions of p‐ERK1/2, vascular endothelial growth factor receptor 1(VEGFR1), p38, and pJNK, respectively
DNAdam↑, Fisetin (80 microM) showed dose‐dependently caused DNA fragmentation, induced cellular swelling and apoptotic death, and showed characteristics of apoptosis.
TET1↓, lowered the TET1 expression levels
CHOP↑, caused up‐regulation of (C/EBP) homologous protein (CHOP) expression and reactive oxygen species production,
CD44↓, down‐regulation of CD44 and CD133 markers
CD133↓,
uPA↓, down‐regulation of levels of matrix metalloproteinase‐2 (MMP‐2), urokinase‐type plasminogen activator (uPA),

2830- FIS,    Biological effects and mechanisms of fisetin in cancer: a promising anti-cancer agent
- Review, Var, NA
TumCG↓, suppressing cell growth, triggering programmed cell death, reducing the formation of new blood vessels, protecting against oxidative stress, and inhibiting cell migration.
angioG↓,
*ROS↓,
TumCMig↓,
VEGF↓, including vascular endothelial growth factor (VEGF), mitogen-activated protein kinase (MAPK), nuclear factor-kappa B (NF-κB), PI3K/Akt/mTOR, and Nrf2/HO-1.
MAPK↑, including the activation of MAPK. activation of MAPK is crucial for mediating cancer cell proliferation, apoptosis, and invasion
NF-kB↓, ability of fisetin to suppress NF-κB activity has been demonstrated in various diseases
PI3K↓, fisetin has been shown to inhibit the metastasis of PC3 prostate cancer cells by reducing the activity of the PI3K/AKT
Akt↓,
mTOR↓, Fisetin has been shown to be effective against PI3K expression, AKT phosphorylation, and mTOR activation in various cancer cells,
NRF2↑, effects of fisetin on the activation of Nrf2 and upregulation of HO-1 have been demonstrated in various diseases
HO-1↑,
ROS↓, Liver cancer Resist proliferation, migration and invasion, induce apoptosis, attenuate ROS and inflammation
Inflam↓,
ER Stress↑, Oral cancer Induce apoptosis and autophagy, promote ER stress and ROS, suppress proliferation
ROS↑, Multiple studies have demonstrated that fisetin has the ability to induce apoptosis in cancer cells, and various mechanisms are involved, including the activation of MAPK, NF-κB, p53, and the generation of reactive oxygen species (ROS)
TumCP↓,
ChemoSen↑, Breast cancer Promote apoptosis and invasion and metastasis, enhance chemotherapeutic effects
PTEN↑,
P53↑, activation of MAPK, NF-κB, p53,
Casp3↑,
Casp8↑,
Casp9↑,
COX2↓, fisetin inhibits COX2 expression
Wnt↓, regulating a number of important angiogenesis-related factors in cancer cells, such as VEGF, MMP2/9, eNOS, wingless and Wnt-signaling.
EGFR↓,
Mcl-1↓,
survivin↓, fisetin interferes with NF-κB signaling, resulting in the reduction of survivin, TRAF1, Bcl-xl, Bcl-2, and IAP1/2 levels, ultimately inhibiting apoptosis
IAP1↓,
IAP2↓,
PGE2↓, fisetin inhibits COX2 expression, leading to the down-regulation of PGE2 secretion and inactivation of β-catenin, thereby inducing apoptosis
β-catenin/ZEB1↓,
DR5↑, fisetin markedly induces apoptosis in renal carcinoma through increased expression of DR5, which is regulated by p53.
MMP2↓, fisetin has been shown to inhibit the metastasis of PC3 prostate cancer cells by reducing the activity of the PI3K/AKT and JNK pathways, resulting in the suppression of MMP-2 and MMP-9 expression
MMP9↓,
FAK↓, fisetin can inhibit cell migration and reduce focal adhesion kinase (FAK) phosphorylation levels
uPA↓, fisetin significantly suppresses the invasion of U-2 cells by decreasing the expression of NF-κB, urokinase-type plasminogen activator (uPA), FAK, and MMP-2/9
EMT↓, Fisetin has been shown to have the ability to reverse EMT, thereby inhibiting the invasion and migration of cancer cells
ERK↓, fisetin has the ability to suppress ERK1/2 activation and activate JNK/p38 pathways
JNK↑,
p38↑,
PKCδ↓, fisetin reduces the expression of MMP-9 by inhibiting PKCα/ROS/ERK1/2 and p38 MAPK activation
BioAv↓, low water solubility of fisetin poses a significant challenge for its administration, which can limit its biological effects
BioAv↑, Compared to free fisetin, fisetin nanoemulsion has demonstrated a 3.9-fold increase in the generation of reactive oxygen species (ROS) and induction of apoptosis, highlighting its enhanced efficacy
BioAv↑, Liposomal encapsulation has shown potential in enhancing the anticancer therapeutic effects of fisetin

2832- FIS,    Fisetin's Promising Antitumor Effects: Uncovering Mechanisms and Targeting for Future Therapies
- Review, Var, NA
MMP↓, fraction of cells with reduced mitochondrial membrane potential also increased, indicating that fisetin-induced apoptosis also destroys mitochondria.
mtDam↑,
Cyt‑c↑, Cytochrome c and Smac/DIABLO levels are also released when the mitochondrial membrane potential changes, and this results in the activation of the caspase cascade and the cleavage of poly [ADP-ribose] polymerase (PARP)
Diablo↑,
Casp↑,
cl‑PARP↑,
Bak↑, Fisetin induced apoptosis in HCT-116 human colon cancer cells by upregulating proapoptotic proteins Bak and BIM and downregulating antiapoptotic proteins B cell lymphoma (BCL)-XL and -2.
BIM↑,
Bcl-xL↓,
Bcl-2↓,
P53↑, fisetin through the activation of p53
ROS↑, over generation of ROS, which is also directly initiated by fisetin, the stimulation of AMPK
AMPK↑,
Casp9↑, activating caspase-9 collectively, then activating caspase-3, leading to apopotosis
Casp3↑,
BID↑, Bid, AIF and the increase of the ratio of Bax to Bcl-2, causing the activation of caspase 3–9
AIF↑,
Akt↓, The inhibition of the Akt/mTOR/MAPK/
mTOR↓,
MAPK↓,
Wnt↓, Fisetin has been shown to degrade the Wnt/β/β-catenin signal
β-catenin/ZEB1↓,
TumCCA↑, fisetin triggered G1 phase arrest in LNCaP cells by activating WAF1/p21 and kip1/p27, followed by a reduction in cyclin D1, D2, and E as well as CDKs 2, 4, and 6
P21↑,
p27↑,
cycD1↓,
cycE↓,
CDK2↓,
CDK4↓,
CDK6↓,
TumMeta↓, reduces PC-3 cells' capacity for metastasis
uPA↓, fisetin decreased MMP-2 protein, messenger RNA (mRNA), and uPA levels through an ERK-dependent route
E-cadherin↑, Fisetin can upregulate the epithelial marker E-cadherin, downregulate the mesenchymal marker vimentin, and drastically lower the EMT regulator twist protein level at noncytotoxic dosages, studies have revealed.
Vim↓,
EMT↓,
Twist↓,
DNAdam↑, Fisetin induces apoptosis in the human nonsmall lung cancer cell line NCI-H460, which causes DNA breakage, the growth of sub-G1 cells, depolarization of the mitochondrial membrane, and activation of caspases 9, 3, which are involved in prod of iROS
ROS↓, fisetin therapy has been linked to a reduction in ROS, according to other research.
COX2↓, Fisetin lowered the expression of COX-1 protein, downregulated COX-2, and decreased PGE2 production
PGE2↓,
HSF1↓, Fisetin is a strong HSF1 inhibitor that blocks HSF1 from binding to the hsp70 gene promoter.
cFos↓, NF-κB, c-Fos, c-Jun, and AP-1 nuclear levels were also lowered by fisetin treatment
cJun↓,
AP-1↓,
Mcl-1↓, inhibition of Bcl-2 and Mcl-1 all contribute to an increase in apoptosis
NF-kB↓, Fisetin's ability to prevent NF-κB activation in LNCaP cells
IRE1↑, fisetin (20–80 µM) was accompanied by brief autophagy and the production of ER stress, which was shown by elevated levels of IRE1 α, XBP1s, ATF4, and GRP78 in A375 and 451Lu cells
ER Stress↑,
ATF4↑,
GRP78/BiP↑,
MMP2↓, lowering MMP-2 and MMP-9 proteins in melanoma cell xenografts
MMP9↓,
TCF-4↓, fisetin therapy reduced levels of β-catenin, TCF-4, cyclin D1, and MMP-7,
MMP7↓,
RadioS↑, fisetin treatment could radiosensitize human colorectal cancer cells that are resistant to radiotherapy.
TOP1↓, fisetin blocks DNA topoisomerases I and II in leukemia cells.
TOP2↓,

2839- FIS,    Dietary flavonoid fisetin for cancer prevention and treatment
- Review, Var, NA
DNAdam↑, Fisetin induced DNA fragmentation, ROS generation, and apoptosis in NCI-H460 cells via a reduction in Bcl-2 and increase in Bax expression
ROS↑,
Apoptosis↑,
Bcl-2↓,
BAX↑,
cl‑Casp9↑, Fisetin treatment increased cleavage of caspase-9 and caspase-3 thereby increasing caspase-3 activation
cl‑Casp3↑,
Cyt‑c↑, leading to cytochrome-c release
lipid-P↓, Fisetin (25 mg/kg body weight) decreased histological lesions and levels of lipid peroxidation and modulated the enzymatic and nonenzymatic anti-oxidants in B(a)P-treated Swiss Albino mice
TumCG↓, We observed that fisetin treatment (5–20 μM) inhibits cell growth and colony formation in A549 NSC lung cancer cells.
TumCA↓, Another study showed that fisetin inhibits adhesion, migration, and invasion in A549 lung cancer cells by downregulating uPA, ERK1/2, and MMP-2
TumCMig↓,
TumCI↓,
uPA↓,
ERK↓,
MMP9↓,
NF-kB↓, Treatment with fisetin also decreased the nuclear levels of NF-kB, c-Fos, c-Jun, and AP-1 and inhibited NF-kB binding.
cFos↓,
cJun↓,
AP-1↓,
TumCCA↑, Our laboratory has previously shown that treatment of LNCaP cells with fisetin caused inhibition of PCa by G1-phase cell cycle arrest
AR↓, inhibited androgen signaling and tumor growth in athymic nude mice
mTORC1↓, induced autophagic cell death in PCa cells through suppression of mTORC1 and mTORC2
mTORC2↓,
TSC2↑, activated the mTOR repressor TSC2, commonly associated with inhibition of Akt and activation of AMPK
EGF↓, Fisetin also inhibits EGF and TGF-β induced YB-1 phosphorylation and EMT in PCa cells
TGF-β↓,
EMT↓, Fisetin also inhibits EGF and TGF-β induced YB-1 phosphorylation and EMT in PCa cells
P-gp↓, decrease the P-gp protein in multidrug resistant NCI/ADR-RES cells.
PI3K↓, Fisetin also inhibited the PI3K/AKT/NFkB signaling
Akt↓,
mTOR↓, Fisetin inhibited melanoma progression in a 3D melanoma skin model with downregulation of mTOR, Akt, and upregulation of TSC
eff↑, combinational treatment study of melatonin and fisetin demonstrated enhanced antitumor activity of fisetin
ROS↓, Fisetin inhibited ROS and augmented NO generation in A375 melanoma cells
ER Stress↑, induction of ER stress evidenced by increased IRE1α, XBP1s, ATF4, and GRP78 levels in A375 and 451Lu cells.
IRE1↑,
ATF4↑,
GRP78/BiP↑,
ChemoSen↑, combination of fisetin with sorafenib effectively inhibited EMT and augmented the anti-metastatic potential of sorafenib by reducing MMP-2 and MMP-9 proteins in melanoma cell xenografts
CDK2↓, Fisetin (0–60 μM) was shown to inhibit activity of CDKs dose-dependently leading to cell cycle arrest in HT-29 human colon cancer cells
CDK4↓, Fisetin treatment decreased activities of CDK2 and CDK4 via decreased levels of cyclin-E, cyclin-D1 and increase in p21 (CIP1/WAF1) levels.
cycE↓,
cycD1↓,
P21↑,
COX2↓, fisetin (30–120 μM) induces apoptosis in colon cancer cells by inhibiting COX-2 and Wnt/EGFR/NF-kB -signaling pathways
Wnt↓,
EGFR↓,
β-catenin/ZEB1↓, Fisetin treatment inhibited Wnt/EGFR/NF-kB signaling via downregulation of β-catenin, TCF-4, cyclin D1, and MMP-7
TCF-4↓,
MMP7↓,
RadioS↑, fisetin treatment was found to radiosensitize human colorectal cancer cells which are resistant to radiotherapy
eff↑, Combined treatment of fisetin with NAC increased cleaved caspase-3, PARP, reduced mitochondrial membrane potential with induction of caspase-9 in COLO25 cells

2843- FIS,    Fisetin and Quercetin: Promising Flavonoids with Chemopreventive Potential
- Review, Var, NA
NRF2↑, fisetin increased the protein level and accumulation Nrf2 and down regulated the protein levels of Keap1
Keap1↓,
ChemoSen↑, In vitro studies showed that fisetin and quercetin could also act against chemotherapeutic resistance in several cancers
BioAv↓, Fisetin has low aqueous solubility and bioavailability
Cyt‑c↑, release of cytochrome c from mitochondria, caspase-3 and caspase-9 mRNA and protein expression, and B-cell lymphoma 2 (Bcl-2) and Bcl-2 associated X (Bax) levels, were found to be regulated in the fisetin-treated cancer cell line
Casp3↑,
Casp9↑,
BAX↑,
tumCV↓, fisetin at 5–80 µM significantly reduced the viability of A431 human epidermoid carcinoma cells by the release of cytochrome c,
Mcl-1↓, reducing the anti-apoptotic protein expression of Bcl-2, Bcl-xL, and Mcl-1 along with elevation of pro-apoptotic protein expression (Bax, Bak, and Bad) and caspase cleavage and poly-ADP-ribose polymerase (PARP) protein
cl‑PARP↑,
IGF-1↓, fisetin promoted caspase-8 and cytochrome c expression, possibly by impeding the aberrant activation of insulin growth factor receptor 1 and Akt
Akt↓,
CDK6↓, fisetin binds with CDK6, which in turn blocks its activity with an inhibitory concentration (IC50) at a concentration of 0.85 μM
TumCCA↑, fisetin is identified as a regulator of cell cycle checkpoints, leading to cell arrest through CDK inhibition in HL60 cells and astrocyte cells over the G0/G1, S, and G2/M phases
P53?, exhibiting elevated levels of p53
cycD1↓, 10–60 μM fisetin concentration, prostate cancer cells PC3, LNCaP, and CWR22Ry1 had decreased cellular viability and decreased levels of D1, D2, and E cyclins and their activating partners CDK2, and CDKs 4/ 6,
cycE↓,
CDK2↓, decreased levels of D1, D2, and E cyclins and their activating partners CDK2, and CDKs 4/ 6,
CDK4↓,
CDK6↓,
MMP2↓, fisetin displayed tumor inhibitory effects by blocking MMP-2 and MMP-9 at mRNA and protein levels in prostate PC-3 cells
MMP9↓,
MMP1↓, Similarly, fisetin can also inhibit MMP-1, MMP-9, MMP-7, MMP-3, and MMP-14 gene expression linked with ECM remodeling in human umbilical vascular endothelial cells (HUVECs) and HT-1080 fibrosarcoma cells [9
MMP7↓,
MMP3↓,
VEGF↓, fisetin in a concentration-dependent manner (10–50 μM concentration) significantly inhibited regular serum, growth-enhancing supplement, and vascular endothelial growth factor (VEGF)
PI3K↓, fisetin inhibited PI3K expression and phosphorylation of Akt
mTOR↓, fisetin treatment activated the apoptotic process through inhibiting both PI3K and mammalian target of rapamycin (mTOR) signaling pathways
COX2↓, fisetin resulted in activation of apoptosis and inhibition of COX-2 and the Wnt/EGFR/NF-kB pathway
Wnt↓,
EGFR↓,
NF-kB↓,
ERK↓, Fisetin is one of the flavonoids that has been found to suppress ERK1/2 signaling in human gastric (SGC7901), hepatic (HepG2), colorectal (Caco-2)
ROS↑, fisetin induced ROS generation and suppressed ERK through its phosphorylation
angioG↓, fisetin-induced anti-angiogenesis led to reduced VEGF and epidermal growth factor receptor (EGFR) expression
TNF-α↓, Fisetin suppressed IL-1β-mediated expression of inducible nitric oxide synthase, nitric oxide, interleukin-6, tumor necrotic factor-α, prostaglandin E2, cyclooxygenase-2 (iNOS, NO, IL-6, TNF-α, PGE2, and COX-2),
PGE2↓,
iNOS↓,
NO↓,
IL6↓,
HSP70/HSPA5↝, fisetin-mediated inhibition of cellular proliferation by HSP70 and HSP27 regulation
HSP27↝,

2313- Flav,    Flavonoids against the Warburg phenotype—concepts of predictive, preventive and personalised medicine to cut the Gordian knot of cancer cell metabolism
- Review, Var, NA
Warburg↓, Flavonoids modulate key pathways involved in the Warburg phenotype including but not limited to PKM2, HK2, GLUT1 and HIF-1.
antiOx↑, Flavonoids represent a diverse group of phytochemicals (Fig. 3) that exhibit antioxidative, antiangiogenic and overall antineoplastic efficacy
angioG↓,
Glycolysis↓, Apigenin (AP) blocked glycolysis through regulation of PKM2 activity and expression in a colon cancer cell line (HCT116)
PKM2↓,
PKM2:PKM1↓, AP is regarded as a potential allosteric inhibitor of PKM2. AP could maintain a low PKM2/PKM1 ratio as a consequence of inhibition of the β-catenin/c-Myc/PTBP1 pathway
β-catenin/ZEB1↓,
cMyc↓,
HK2↓, QUE reduced the level of HK2 and suppressed Akt/mTOR signalling in hepatocellular cancer lines (SMMG-7721, BEL-7402) in vitro.
Akt↓,
mTOR↓,
GLUT1↓, EGCG demonstrated anticancer efficacy against 4T1 via reduction of GLUT1 expression
Hif1a↓, BA suppressed glycolysis via PTEN/Akt/HIF-1α, it is a possible therapeutic sensitiser against gastric cancer

1969- GamB,    Gambogic acid promotes apoptosis and resistance to metastatic potential in MDA-MB-231 human breast carcinoma cells
- in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
AntiTum↑, (GA) is considered a potent anti-tumor agent for its multiple effects on cancer cells in vitro and in vivo
TumCI↓, Low concentrations of GA (0.3-1.2 µmol/L) can suppress invasion of human breast carcinoma cells without affecting cell viability
Apoptosis↑, GA (3 and 6 µmol/L) induced apoptosis in MDA-MB-231 cells and the accumulation of reactive oxygen species (ROS).
ROS↑,
Cyt‑c↑, release of cytochrome c (Cyt c) from mitochondria
Akt↓, GA also inhibited cell survival via blocking Akt/mTOR signaling
mTOR↓,
TumCG↓, In vivo, GA significantly inhibited the xenograft tumor growth and lung metastases in athymic BALB/c nude mice bearing MDA-MB-231 cells.
TumMeta↓,

802- GAR,    Garcinol acts as an antineoplastic agent in human gastric cancer by inhibiting the PI3K/AKT signaling pathway
- in-vitro, GC, HGC27
TumCP↓,
TumCI↓,
Apoptosis↑,
PI3K/Akt↓, garcinol may inhibit gastric tumorigenesis by suppressing the PI3K/AKT signaling pathway
Akt↓, inhibited the levels of AKTp-Thr308 and AKTp-ser473
p‑mTOR↓, while the expression of total mTOR remained stable
cycD1↓,
MMP2↓,
MMP9↓,
BAX↑,
Bcl-2↓,

2507- H2,    Hydrogen protects against chronic intermittent hypoxia induced renal dysfunction by promoting autophagy and alleviating apoptosis
- in-vivo, NA, NA
*RenoP↑, We demonstrated that rats who inhale hydrogen gas showed improved renal function, alleviated pathological damage, oxidative stress and apoptosis in CIH rats.
*ROS↓,
*Apoptosis↓,
*ER Stress↓, endoplasmic reticulum stress was decreased by H2 as the expressions of CHOP, caspase-12, and GRP78 were down-regulated
*CHOP↓,
*Casp12↓,
*GRP78/BiP↓,
*LC3‑Ⅱ/LC3‑Ⅰ↑, higher levels of LC3-II/I ratio and Beclin-1, with decreased expression of p62, were found after H2 administrated.
*Beclin-1↑,
*p62↓,
*mTOR↓, Inhibition of mTOR may be involved in the upregulation of autophagy by H2

292- HCA,    Hydroxycitric Acid Inhibits Chronic Myelogenous Leukemia Growth through Activation of AMPK and mTOR Pathway
- in-vitro, AML, K562
ACLY↓,
AMPK↑,
mTOR↑,
eIF2α↑,
ATFs↑, ATF4
TumCG↓,

2894- HNK,    Pharmacological features, health benefits and clinical implications of honokiol
- Review, Var, NA - Review, AD, NA
*BioAv↓, HNK showed poor aqueous solubility due to phenolic hydroxyl groups forming intramolecular hydrogen bonds and poor solubility in water (
*neuroP↑, HNK has the accessibility to reach the neuronal tissue by crossing the BBB and showing neuroprotective effects
*BBB↑,
*ROS↓, fig 2
*Keap1↑,
*NRF2↑,
*Casp3↓,
*SIRT3↑,
*Rho↓,
*ERK↓,
*NF-kB↓,
angioG↓,
RAS↓,
PI3K↓,
Akt↓,
mTOR↓,
*memory↑, oral administration of HNK (1 mg/kg) in senescence-accelerated mice prevents age-related memory and learning deficits
*Aβ↓, in Alzheimer’s disease, HNK significantly reduces neurotoxicity of aggregated Ab
*PPARγ↑, Furthermore, the expression of PPARc and PGC1a was increased by HNK, suggesting its beneficial impact on energy metabolism
*PGC-1α↑,
NF-kB↓, activation of NFjB was suppressed by HNK via suppression of nuclear translocation and phosphorylation of the p65 subunit and further instigated apoptosis by enhancing TNF-a
Hif1a↓, HNK has anti-oxidative properties and can downregulate the HIF-1a protein, inhibiting hypoxia- related signaling pathways
VEGF↓, renal cancer, via decreasing the vascular endothelial growth factor (VEGF) and heme-oxygenase-1 (HO-1)
HO-1↓,
Foxm1↓, HNK interaction with the FOXM1 oncogenic transcription factor inhibits cancer cells
p27↑, HNK treatment upregulates the expression of CDK inhibitor p27 and p21, whereas it downregulates the expression of CDK2/4/6 and cyclin D1/2
P21↑,
CDK2↓,
CDK4↓,
CDK6↓,
cycD1↓,
Twist↓, HNK averted the invasion of urinary bladder cancer cells by downregulating the steroid receptor coactivator, Twist1 and Matrix metalloproteinase-2
MMP2↓,
Rho↑, By activating the RhoA, ROCK and MLC signaling, HNK inhibits the migration of highly metastatic renal cell carcinoma
ROCK1↑,
TumCMig↓,
cFLIP↓, HNK can be used to suppress c-FLIP, the apoptosis inhibitor.
BMPs↑, HNK treatment increases the expression of BMP7 protein
OCR↑, HNK might increase the oxygen consumption rate while decreasing the extracellular acidification rate in breast cancer cells.
ECAR↓,
*AntiAg↑, It also suppresses the platelet aggregation
*cardioP↑, HNK is an attractive cardioprotective agent because of its strong antioxidative properties
*antiOx↑,
*ROS↓, HNK treatment reduced cellular ROS production and decreased mitochondrial damage in neonatal rat cardiomyocytes exposed to hypoxia/reoxygenation
P-gp↓, The expres- sion of P-gp at mRNA and protein levels is reduced in HNK treatment on human MDR and MCF-7/ADR breast cancer cell lines

2883- HNK,    Honokiol targets mitochondria to halt cancer progression and metastasis
- Review, Var, NA
ChemoSen↑, Combination of HNK with many traditional chemotherapeutic drugs as well as radiation sensitizes cancer cells to apoptotic death
BBB↓, HNK is also capable of crossing the BBB
Ca+2↑, HNK promotes human glioblastoma cancer cell apoptosis via regulation of Ca(2+) channels
Cyt‑c↑, release of mitochondrial cytochrome c and activation of caspase-3
Casp3↑,
chemoP↑, potent chemopreventive agent against lung SCC development in a carcinogen-induced lung SCC murine model
OCR↓, HNK treatment results in a decreased oxygen consumption rate (OCR) in whole intact cells, rapidly, and persistently inhibiting mitochondrial respiration, which leads to the induction of apoptosis
mitResp↓,
Apoptosis↑,
RadioS↑, Honokiol as a chemo- and radiosensitizer
NF-kB↓, HNK as an anticancer drug is its potential to inhibit multiple important survival pathways, such as NF-B and Akt
Akt↓,
TNF-α↓, by inhibiting TNF-induced nerve growth factor IB expression in breast cancer cells
PGE2↓, reduced prostaglandin E2 (PGE2) and vascular endothelial growth factor (VEGF) secretion levels
VEGF↓,
NO↝, HNK inhibits cancer cell migration by targeting nitric oxide and cyclooxygenase-2 or Ras GTPase-activating-like protein (IQGAP1) [
COX2↓,
RAS↓,
EMT↓, HNK can reverse the epithelial-mesenchymal-transition (EMT) process, which is a key step during embryogenesis, cancer invasion, and metastasis,
Snail↓, HNK reduced the expression levels of Snail, N-cadherin and -catenin, which are mesenchymal markers, but increased E-cadherin,
N-cadherin↓,
β-catenin/ZEB1↓,
E-cadherin↑,
ER Stress↑, induction of ER stress
p‑STAT3↓, HNK inhibited STAT3 phosphorylation
EGFR↓, inhibiting EGFR phosphorylation and its downstream signaling pathways such as the mTOR signaling pathway
mTOR↓,
mt-ROS↑, We demonstrated that HNK treatment suppresses mitochondrial respiration and increases generation of ROS in the mitochondria, leading to the induction of apoptosis in lung cancer cells
PI3K↓, inhibition of PI3K/Akt/ mTOR, EMT, and Wnt signaling pathways.
Wnt↓,

2885- HNK,    Honokiol: a novel natural agent for cancer prevention and therapy
NF-kB↓, Honokiol targets multiple signaling pathways including nuclear factor kappa B (NF-κB), signal transducers and activator of transcription 3 (STAT3), epidermal growth factor receptor (EGFR) and mammalian target of rapamycin (m-TOR)
STAT3↓,
EGFR↓,
mTOR↓,
BioAv↝, honokiol has revealed a desirable spectrum of bioavailability after intravenous administration in animal models, thus making it a suitable agent for clinical trials
Inflam↓, inflammation, proliferation, angiogenesis, invasion and metastasis.
TumCP↓,
angioG↓,
TumCI↓,
TumMeta↓,
cSrc↓, STAT3 inhibition by honokiol has also been correlated with the repression of upstream protein tyrosine kinases c-Src, JAK1 and JAK2
JAK1↓,
JAK2↓,
ERK↓, by inhibiting ERK and Akt pathways (31) or by upregulation of PTEN
Akt↓,
PTEN↑,
ChemoSen↑, Chemopreventive/ chemotherapeutic effects of honokiol in various malignancies: preclinical studies
chemoP↑,
COX2↓, honokiol was found to inhibit UVB-induced expression of cyclooxygenase-2, prostaglandin E2, proliferating cell nuclear antigen and pro-inflammatory cytokines, such as TNF-α, interleukin (IL)-1β and IL-6 in the skin
PGE2↓,
TNF-α↓,
IL1β↓,
IL6↓,
Casp3↑, release of caspases-3, -8 and -9as well as poly (ADP-ribose) polymerase (PARP) cleavage and p53 activation upon honokiol treatment that led to DNA fragmentation
Casp8↑,
Casp9↑,
cl‑PARP↑,
DNAdam↑,
Cyt‑c↑, translocation of cytochrome c to cytosol in human melanoma cell lines
RadioS↑, liposomal honokiol for 24 h showed a higher radiation enhancement ratio (~ two-fold) as compared to the radiation alone,
RAS↓, Honokiol also caused suppression of Ras activation
BBB↑, honokiol could effectively cross BBB and BCSFB and inhibit brain tumor growth
BioAv↓, Due to the concerns about poor aqueous solubility, liposomal formulations of honokiol have been developed and tested for their pharmacokinetics
Half-Life↝, In another comparative study, plasma honokiol concentrations was maintained above 30 and 10 μg/mL for 24 and 48 hours, respectively, in liposomal honokiol-treated mice, whereas it fell quickly (less than 5 μg/mL) by 12 hours in free honokiol-treated
Half-Life↝, free honokiol has poor GIT absorption, bio-transformed in liver to mono-glucuronide honokiol and sulphated mono-hydroxyhonokiol, ~ 50% is secreted in bile, ~ 60-65% plasma protein bound with elimination half life of (t1/2) of 49.05 – 56.24 minutes.
toxicity↓, These studies suggest that honokiol either alone or as a part of magnolia bark extract does not induce toxicity in animal models and thus could be clinically safe

2888- HNK,    Honokiol mediated inhibition of PI3K/mTOR pathway: A potential strategy to overcome immunoresistance in glioma, breast and prostate carcinoma without impacting T cell function
- in-vitro, Var, PC3 - in-vitro, BC, BT549
PI3K↓, decrease PI3K/mTOR pathway mediated immunoresistance of glioma, breast and prostate cancer cell lines, without affecting critical pro-inflammatory T cell functions
mTOR↓,
Inflam↓, Honokiol has anti-inflammatory properties in T cells

2892- HNK,    Honokiol Induces Apoptosis, G1 Arrest, and Autophagy in KRAS Mutant Lung Cancer Cells
- in-vitro, Lung, A549 - in-vitro, Lung, H460 - in-vitro, Lung, H385 - in-vitro, Nor, BEAS-2B
TumCCA↑, Honokiol was shown to induce G1 arrest and apoptosis to inhibit the growth of KRAS mutant lung cancer cells
Apoptosis↑,
SIRT3↑, we also discovered that Sirt3 was significantly up-regulated in honokiol treated KRAS mutant lung cancer cells,
Hif1a↓, leading to destabilization of its target gene Hif-1α, (accompanied by a reduction of Hif-1a expression)
selectivity↑, but it showed low toxicity to two normal lung cells (CCD19-Lu and BEAS-2B)
p‑mTOR↓, honokiol suppressed mTOR phosphorylation, leading to inhibition of P70S6K kinase activity,
p70S6↓,

2891- HNK,    Honokiol, an Active Compound of Magnolia Plant, Inhibits Growth, and Progression of Cancers of Different Organs
- Review, Var, NA
AntiCan↑, honokiol possesses anti-carcinogenic, anti-inflammatory, anti-oxidative, anti-angiogenic as well as inhibitory effect on malignant transformation of papillomas to carcinomas in vitro and in vivo animal models without any appreciable toxicity.
Inflam↓,
antiOx↑,
selectivity↑,
*toxicity↓,
cycD1↓, honokiol resulted in inhibition of UVB-induced expression levels of cyclins (cyclins D1, D2, and E) and CDKs in skin tumors
cycE↓,
CDK2↓,
CDK4↓,
TumMeta↓, Honokiol Inhibits Metastatic Potential of Melanoma Cells
NADPH↓, Honokiol not only reduces the NADPH oxidase activity
MMP2↓, honokiol treatment reduces the expression of MMP-2 and MMP-9
MMP9↓,
p‑mTOR↓, honokiol caused significant downregulation of mTOR phosphorylation
EGFR↓, honokiol decreases the expression levels of total EGFR
EMT↓, honokiol effectively inhibits EMT in breast cancer cells
SIRT1↑, onokiol increases the expressions of SIRT1 and SIRT3,
SIRT3↑,
EZH2↓, depletion of EZH2 by honokiol treatment inhibited cell proliferation
Snail↓, significantly down regulates Snail, vimentin, N-cadherin expression, and upregulates cytokeratin-18 and E-cadherin expression
Vim↓,
N-cadherin↓,
E-cadherin↑,
COX2↓, honokiol as an inhibitor of COX-2 expression
NF-kB↓, inhibited transcriptional activity of NF-jB,
*ROS↓, Inhibition of UVR-induced inflammatory mediators as well as ROS by honokiol treatment contributes to the prevention of UVR-induced skin tumor development
Ca+2↑, excessive influx of cytosolic calcium ion into the mitochondria triggers dysfunction of the mitochon- drial membrane permeabilization with mitochondrial ROS induction
ROS↑,

2868- HNK,    Honokiol: A review of its pharmacological potential and therapeutic insights
- Review, Var, NA - Review, Sepsis, NA
*P-gp↓, reduction in the expression of defective proteins like P-glycoproteins, inhibition of oxidative stress, suppression of pro-inflammatory cytokines (TNF-α, IL-10 and IL-6),
*ROS↓,
*TNF-α↓,
*IL10↓,
*IL6↓,
eIF2α↑, Bcl-2, phosphorylated eIF2α, CHOP,GRP78, Bax, cleaved caspase-9 and phosphorylated PERK
CHOP↑,
GRP78/BiP↑,
BAX↑,
cl‑Casp9↑,
p‑PERK↑,
ER Stress↑, endoplasmic reticulum stress and proteins in apoptosis in 95-D and A549 cells
Apoptosis↑,
MMPs↓, decrease in levels of matrix metal-mloproteinases, P-glycoprotein expression, the formation of mammosphere, H3K27 methyltransferase, c-FLIP, level of CXCR4 receptor,pluripotency-factors, Twist-1, class I histone deacetylases, steroid receptor co
cFLIP↓,
CXCR4↓,
Twist↓,
HDAC↓,
BMPs↑, enhancement in Bax protein, and (BMP7), as well as interference with an activator of transcription 3 (STAT3), (mTOR), (EGFR), (NF-kB) and Shh
p‑STAT3↓, secreased the phosphorylation of STAT3
mTOR↓,
EGFR↓,
NF-kB↓,
Shh↓,
VEGF↓, induce apoptosis, and regulate the vascular endothelial growth factor-A expression (VEGF-A)
tumCV↓, human glioma cell lines (U251 and U-87 MG) through inhibition of colony formation, glioma cell viability, cell migration, invasion, suppression of ERK and AKT signalling cascades, apoptosis induction, and reduction of Bcl-2 expression.
TumCMig↓,
TumCI↓,
ERK↓,
Akt↓,
Bcl-2↓,
Nestin↓, increased the Bax expression, lowered the CD133, EGFR, and Nesti
CD133↓,
p‑cMET↑, HKL through the downregulating the phosphorylation of c-Met phosphorylation and stimulation of Ras,
RAS↑,
chemoP↑, Cheng and coworker determined the chemopreventive role of HKL against the proliferation of renal cell carcinoma (RCC) 786‑0 cells through multiple mechanism
*NRF2↑, , HKL also effectively activate the Nrf2/ARE pathway and reverse this pancreatic dysfunction in in vivo and in vitro model
*NADPH↓, (HUVECs) such as inhibition of NADPH oxidase activity, suppression of p22 (phox) protein expression, Rac-1 phosphorylation, reactive oxygen species production, inhibition of degradation of Ikappa-B-alpha, and suppression of activity of of NF-kB
*p‑Rac1↓,
*ROS↓,
*IKKα↑,
*NF-kB↓,
*COX2↓, Furthermore, HKL treatment the inhibited cyclooxygenase (COX-2) upregulation, reduces prostaglandin E2 production, enhanced caspase-3 activity reduction
*PGE2↓,
*Casp3↓,
*hepatoP↑, compound also displayed hepatoprotective action against oxidative injury in tert-butyl hydroperoxide (t-BHP)-injured AML12 liver cells in in vitro model
*antiOx↑, compound reduces the level of acetylation on SOD2 to stimulate its antioxidative action, which results in reduced reactive oxygen species aggregation in AML12 cells
*GSH↑, HKL prevents oxidative damage induced by H2O2 via elevating antioxidant enzymes levels which includes glutathione and catalase and promotes translocation and activation transcription factor Nrf2
*Catalase↑,
*RenoP↑, imilarly, the compound protects renal reperfusion/i-schemia injury (IRI) in adult male albino Wistar rats via reducing theactivities of serum alkaline phosphatase (ALP), aspartate aminotrans- ferase (AST) and alanine aminotransferase (ALT)
*ALP↓,
*AST↓,
*ALAT↓,
*neuroP↑, Several reports and works have shown that HKL displays some neuroprotective properties
*cardioP↑, Cardioprotection
*HO-1↑, the expression level of heme oxygenase-1 (HO-1)was remarkably up-regulated and miR-218-5p was significantly down-regulated in septic mice treated with HKL
*Inflam↓, anti-inflammatory action of HKL at dose of 10 mg/kg in the muscle layer of mice

2180- itraC,    Repurposing Drugs in Oncology (ReDO)—itraconazole as an anti-cancer agent
- Review, Var, NA
Dose↝, generally it is used in the range 100 mg–600 mg daily, for between one to 30 days.
toxicity↝, ITZ is generally well-tolerated, though caution is advised with patients at high risk of heart failure or impaired hepatic function
BioAv↑, Bioavailability of ITZ is maximised by taking with food for the encapsulated form, or on an empty stomach for the oral solution.
Half-Life↝, produces an average peak plasma concentration of 239 ng/mL (0.34μM) within 4.5 hours
BioAv↑, mean absolute bioavailability is around 55%, and as a highly lipophilic molecule ITZ has a high affinity for tissues, achieving concentrations two to ten times higher than those in plasma
Dose↝, recommended, therefore, that for long-term treatment patients be regularly monitored for plasma levels
HH↓, identified ITZ as an inhibitor of the Hedgehog pathway at a clinically relevant concentration of 800 nM
TumAuto↑, Induction of autophagy is shown to be related to inhibition of the AKT-mTOR pathway, possibly related to ITZ-induced changes in cholesterol trafficking.
Akt↓,
mTOR↓,
angioG↓, Anti-angiogenic
MDR1↓, Reversal of multi-drug resistance
TumCP↓, ITZ inhibited proliferation, with an IC50 of 0.16 μM
eff↑, Combination therapy with cisplatin was superior to cisplatin monotherapy to a statistically significant extent (P ≤ 0.001 compared to ITZ or cisplatin alone) resulting in over 95% growth inhibition but no tumour regression.

2179- itraC,    Repurposing itraconazole for the treatment of cancer
- Review, Var, NA
HH↓, Figure 1
angioG↓,
TumCCA↑,
MDR1↓,
P-gp↓,
mTOR↓,
VEGF↓,
Smo↓,
Gli1↓,
OS↑, Itraconazole 400 mg daily was administered over 4 days every 2 weeks. A response rate of 44% was achieved, with a higher median overall survival time (1,047 days) compared with that previously reported in other studies, which ranged between 7-10mts
PSA↓, After the patient declined castration treatment, itraconazole was administered and the PSA level reduced by >50% in 3 months (300 mg twice daily)

1168- IVM,  SRF,    Ivermectin synergizes sorafenib in hepatocellular carcinoma via targeting multiple oncogenic pathways
- in-vitro, HCC, NA
TumMeta↓,
mTOR↓,
EMT↓,
CSCsMark↓,
STAT3↓,

1918- JG,    ROS -mediated p53 activation by juglone enhances apoptosis and autophagy in vivo and in vitro
- in-vitro, Liver, HepG2 - in-vivo, NA, NA
TumCG↓, JG significantly inhibited tumor growth in vivo
TumCP↓, JG effectively inhibited cell proliferation and induced apoptosis through extrinsic pathways
Apoptosis↑,
TumAuto↑, JG treatment induced autophagy flux
AMPK↑, activiting the AMPK-mTOR signaling pathway
mTOR↑,
P53↑, JG enhanced p53 activation
H2O2↑, JG enhanced the generation of hydrogen peroxide (H2O2)
ROS↑, JG caused apoptosis and autophagy via activating the ROS-mediated p53 pathway in human liver cancer cells in vitro and in vivo
toxicity↝, a slight loss in body weight was observed after JG injection (Fig. 1D), suggesting that JG might has slight side effects.
p62↓, rmarkable decrease of p62 level was observed after 30uM JG treatment
DR5↑,
Casp8↑,
PARP↑,
cl‑Casp3↑,

862- Lae,    Molecular mechanism of amygdalin action in vitro: review of the latest research
- Review, NA, NA
BAX↑,
Casp3↑,
Bcl-2↓,
Akt↓,
mTOR↓,
p19↑,
TumCCA↑, inhibition of cell transfer from G1-phase to S-phase
other↓, studies have shown that HCN is also released in normal cells, therefore it may not be safe for human organism

2919- LT,    Luteolin as a potential therapeutic candidate for lung cancer: Emerging preclinical evidence
- Review, Var, NA
RadioS↑, it can be used as an adjuvant to radio-chemotherapy and helps to ameliorate cancer complications
ChemoSen↑,
chemoP↑,
*lipid-P↓, ↓LPO, ↑CAT, ↑SOD, ↑GPx, ↑GST, ↑GSH, ↓TNF-α, ↓IL-1β, ↓Caspase-3, ↑IL-10
*Catalase↑,
*SOD↑,
*GPx↑,
*GSTs↑,
*GSH↑,
*TNF-α↓,
*IL1β↓,
*Casp3↓,
*IL10↑,
NRF2↓, Lung cancer model ↓Nrf2, ↓HO-1, ↓NQO1, ↓GSH
HO-1↓,
NQO1↓,
GSH↓,
MET↓, Lung cancer model ↓MET, ↓p-MET, ↓p-Akt, ↓HGF
p‑MET↓,
p‑Akt↓,
HGF/c-Met↓,
NF-kB↓, Lung cancer model ↓NF-κB, ↓Bcl-XL, ↓MnSOD, ↑Caspase-8, ↑Caspase-3, ↑PARP
Bcl-2↓,
SOD2↓,
Casp8↑,
Casp3↑,
PARP↑,
MAPK↓, LLC-induced BCP mouse model ↓p38 MAPK, ↓GFAP, ↓IBA1, ↓NLRP3, ↓ASC, ↓Caspase1, ↓IL-1β
NLRP3↓,
ASC↓,
Casp1↓,
IL6↓, Lung cancer model ↓TNF‑α, ↓IL‑6, ↓MuRF1, ↓Atrogin-1, ↓IKKβ, ↓p‑p65, ↓p-p38
IKKα↓,
p‑p65↓,
p‑p38↑,
MMP2↓, Lung cancer model ↓MMP-2, ↓ICAM-1, ↓EGFR, ↓p-PI3K, ↓p-Akt
ICAM-1↓,
EGFR↑,
p‑PI3K↓,
E-cadherin↓, Lung cancer model ↑E-cadherin, ↑ZO-1, ↓N-cadherin, ↓Claudin-1, ↓β-Catenin, ↓Snail, ↓Vimentin, ↓Integrin β1, ↓FAK
ZO-1↑,
N-cadherin↓,
CLDN1↓,
β-catenin/ZEB1↓,
Snail↓,
Vim↑,
ITGB1↓,
FAK↓,
p‑Src↓, Lung cancer model ↓p-FAK, ↓p-Src, ↓Rac1, ↓Cdc42, ↓RhoA
Rac1↓,
Cdc42↓,
Rho↓,
PCNA↓, Lung cancer model ↓Cyclin B1, ↑p21, ↑p-Cdc2, ↓Vimentin, ↓MMP9, ↑E-cadherin, ↓AIM2, ↓Pro-caspase-1, ↓Caspase-1 p10, ↓Pro-IL-1β, ↓IL-1β, ↓PCNA
Tyro3↓, Lung cancer model ↓TAM RTKs, ↓Tyro3, ↓Axl, ↓MerTK, ↑p21
AXL↓,
CEA↓, B(a)P induced lung carcinogenesis ↓CEA, ↓NSE, ↑SOD, ↑CAT, ↑GPx, ↑GR, ↑GST, ↑GSH, ↑Vitamin E, ↑Vitamin C, ↓PCNA, ↓CYP1A1, ↓NF-kB
NSE↓,
SOD↓,
Catalase↓,
GPx↓,
GSR↓,
GSTs↓,
GSH↓,
VitE↓,
VitC↓,
CYP1A1↓,
cFos↑, Lung cancer model ↓Claudin-2, ↑p-ERK1/2, ↑c-Fos
AR↓, ↓Androgen receptor
AIF↑, Lung cancer model ↑Apoptosis-inducing factor protein
p‑STAT6↓, ↓p-STAT6, ↓Arginase-1, ↓MRC1, ↓CCL2
p‑MDM2↓, Lung cancer model ↓p-PI3K, ↓p-Akt, ↓p-MDM2, ↑p-P53, ↓Bcl-2, ↑Bax
NOTCH1↓, Lung cancer model ↑Bax, ↑Cleaved-caspase 3, ↓Bcl2, ↑circ_0000190, ↓miR-130a-3p, ↓Notch-1, ↓Hes-1, ↓VEGF
VEGF↓,
H3↓, Lung cancer model ↑Caspase 3, ↑Caspase 7, ↓H3 and H4 HDAC activities
H4↓,
HDAC↓,
SIRT1↓, Lung cancer model ↑Bax/Bcl-2, ↓Sirt1
ROS↑, Lung cancer model ↓NF-kB, ↑JNK, ↑Caspase 3, ↑PARP, ↑ROS, ↓SOD
DR5↑, Lung cancer model ↑Caspase-8, ↑Caspase-3, ↑Caspase-9, ↑DR5, ↑p-Drp1, ↑Cytochrome c, ↑p-JNK
Cyt‑c↑,
p‑JNK↑,
PTEN↓, Lung cancer model 1/5/10/30/50/80/100 μmol/L ↑Cleaved caspase-3, ↑PARP, ↑Bax, ↓Bcl-2, ↓EGFR, ↓PI3K/Akt/PTEN/mTOR, ↓CD34, ↓PCNA
mTOR↓,
CD34↓,
FasL↑, Lung cancer model ↑DR 4, ↑FasL, ↑Fas receptor, ↑Bax, ↑Bad, ↓Bcl-2, ↑Cytochrome c, ↓XIAP, ↑p-eIF2α, ↑CHOP, ↑p-JNK, ↑LC3II
Fas↑,
XIAP↓,
p‑eIF2α↑,
CHOP↑,
LC3II↑,
PD-1↓, Lung cancer model ↓PD-L1, ↓STAT3, ↑IL-2
STAT3↓,
IL2↑,
EMT↓, Luteolin exerts anticancer activity by inhibiting EMT, and the possible mechanisms include the inhibition of the EGFR-PI3K-AKT and integrin β1-FAK/Src signaling pathways
cachexia↓, luteolin could be a potential safe and efficient alternative therapy for the treatment of cancer cachexi
BioAv↑, A low-energy blend of castor oil, kolliphor and polyethylene glycol 200 increases the solubility of luteolin by a factor of approximately 83
*Half-Life↝, ats administered an intraperitoneal injection of luteolin (60 mg/kg) absorbed it rapidly as well, with peak levels reached at 0.083 h (71.99 ± 11.04 μg/mL) and a prolonged half-life (3.2 ± 0.7 h)
*eff↑, Luteolin chitosan-encapsulated nano-emulsions increase trans-nasal mucosal permeation nearly 6-fold, drug half-life 10-fold, and biodistribution of luteolin in brain tissue 4.4-fold after nasal administration

1126- Lyco,    Lycopene Inhibits Epithelial–Mesenchymal Transition and Promotes Apoptosis in Oral Cancer via PI3K/AKT/m-TOR Signal Pathway
- vitro+vivo, Oral, NA
TumCP↓,
TumCMig↓,
TumCI↓,
Apoptosis↑,
EMT↓,
PI3K↓,
Akt↓,
mTOR↓,
E-cadherin↓,
BAX↑,
N-cadherin↓,
p‑PI3K↓,
p‑Akt↓,
p‑mTOR↓,
Bcl-2↓,

3275- Lyco,    Multifaceted Effects of Lycopene: A Boulevard to the Multitarget-Based Treatment for Cancer
- Review, Var, NA
TumCCA↑, lycopene impedes the progress of the cell cycle from the G1 to the S phase, primarily by diminishing the cyclin D and cyclin E levels.
cycD1↓,
cycE↓,
CDK2↓, causes a subsequent inactivation of CDK4 and CDK2 through a reduced phosphorylation of Rb
CDK4↓,
P21↑, lycopene elevates CDK inhibitor, p21, and p53 (tumor suppressor) levels
P53↑,
GSK‐3β↓, Finally, GSK3β, p21, p27, Bad, caspase 9, and p53 (via Mdm2) are inactivated
p27↓,
Akt↓, lycopene inhibits AKT (protein kinase B) and mTOR
mTOR↓,
ROS↓, ability of lycopene to minimize ROS formation and mitigate oxidative stress
MMPs↓, lycopene may decrease the activity of metalloproteinases of the matrix and prevent SK-Hep1 cellular adhesion, invasion, and migration
TumCI↓,
TumCMig↓,
NF-kB↓, well-documented that lycopene inhibits NF-kB binding activity
*iNOS↓, They also claimed that the lycopene caused a decline in the LPS-induced protein and mRNA expression of iNOS,
*COX2↓, Lycopene can therefore decrease the gene expression of iNOS and COX-2 as a non-toxic agent via controlling pro-inflammatory genes
lipid-P↓, suppress gastric cancer by multimodal mechanisms of reduction in lipid peroxidation, elevation in the levels of antioxidants, and enhanced GSH
GSH↑,
NRF2↑, Reportedly, lycopene is known to “upregulate” this ARE system via Nrf2 in vitro (HepG2 and MCF-7 cells)

3265- Lyco,    Lycopene inhibits pyroptosis of endothelial progenitor cells induced by ox-LDL through the AMPK/mTOR/NLRP3 pathway
- in-vitro, Nor, NA
*AMPK↑, through the activation of AMPK, which led to the inhibition of mTOR phosphorylation and subsequent downregulation of the downstream NLRP3 inflammasome.
*mTOR↓,
*NLRP3↓,
*Pyro↓, Suppression of pyroptosis in EPCs by lycopene

2540- M-Blu,    Alternative mitochondrial electron transfer for the treatment of neurodegenerative diseases and cancers: Methylene blue connects the dots
- Review, Var, NA - Review, AD, NA
*OCR↑, MB was found to increase oxygen consumption of normal tissues having aerobic glycolysis and of tumors
*Glycolysis↓, Methylene blue increases oxygen consumption, decrease glycolysis, and increases glucose uptake in vitro.
*GlucoseCon↑, Methylene blue enhances glucose uptake and regional cerebral blood flow in rats upon acute treatment.
neuroP↑, methylene blue provides protective effect in neuron and astrocyte against various insults in vitro and in rodent models of Alzheimer’s, Parkinson’s, and Huntington’s disease.
Warburg↓, In glioblastoma cells, methylene blue reverses Warburg effect by enhancing mitochondrial oxidative phosphorylation, arrests glioma cell cycle at s-phase, and inhibits glioma cell proliferation.
mt-OXPHOS↑,
TumCCA↑,
TumCP↓,
ROS⇅, MB has very unique redox property that exists in equilibrium between oxidized state in dark blue (MB) and colorless reduced state (leucomethylene blue), making it both prooxidant and antioxidant under different conditions.
*cognitive↑, Methylene blue feeding improved water-maze and bridge walking performance in 5 X FAD mice. MB enhances memory function in normal rodents potentially through neurometabolic mechanisms
*mTOR↓, MB has been demonstrated to induce autophagy and attenuate tauopathy through inhibition of mTOR signaling both in vitro and in vivo
*mt-antiOx↑, Secondly, the distinct redox property enables MB as a regenerable anti-oxidant in mitochondria that distinct from the traditional free radical scavenges
*memory↑, , MB has been found to improve various experimental memory tasks in rodents
*BBB↑, MB can cross BBB and reach brain at concentrations 10 times higher than that in the circulation
*eff↝, In fibroblast cells, MB has been shown to stimulate 2-deoxyglucose uptake (Louters et al., 2006; Roelofs et al., 2006). Using MRI and PET, we demonstrated that acute treatment of MB significantly enhance glucose uptake
*ECAR↓, MB increased oxygen consumption rate and decreased extracellular acidification rate in both neuronal cells and astrocytes
eff↑, MB has also been used as a tracer for cancer diagnosis and as a photosensitizer for cancer treatment
lactateProd↓, MB increase oxygen consumption rate, decrease lactic acid production and extracellular acidification rate, reduce NADPH, and inhibit proliferation
NADPH↓,
OXPHOS↑, increases oxidative phosphorylation, decreases glycolytic flux and metabolic intermediates, hence, exhausts the building brick for cancer cell proliferation.
AMPK↑, MB is capable of activating AMPK signal pathway
selectivity↑, with low toxicity, and the high affinity to both neuronal and cancer tissues

972- MAG,    Magnolol suppresses hypoxia-induced angiogenesis via inhibition of HIF-1α/VEGF signaling pathway in human bladder cancer cells
- vitro+vivo, Bladder, T24
angioG↓,
VEGF↓,
H2O2↓,
Hif1a↓,
VEGFR2↓,
Akt↓,
mTOR↓,
P70S6K↓,
4E-BP1↓,
TumCG↓,
CD31↓,
CA↓, carbonic anhydrase IX

2643- MCT,    Medium Chain Triglycerides enhances exercise endurance through the increased mitochondrial biogenesis and metabolism
- Review, Nor, NA
*Akt↑, increased mitochondrial biogenesis and metabolism is mediated through the activation of Akt and AMPK signaling pathways and inhibition of TGF-β signaling pathway.
*AMPK↓,
*TGF-β↓, MCT downregulates TGF-β signaling
eff↑, beneficial effect of dietary MCT in exercise performance through the increase of mitochondrial biogenesis and metabolism.
*BioEnh↑, Furthermore, addition of the combination of chilli and MCT to meals increased diet-induced thermogenesis by over 50% in heathy normal-weight humans
*ATP↑, a key regulator of energy metabolism and mitochondrial membrane ATP synthase (ATP5α) were significantly upregulated by MCT.
*PGC-1α↑, also observed a significant increase in protein level of PGC-1α and ATP5α
*p‑mTOR↑, increased levels in both total and phosphorylated Akt and mTOR
*SMAD3↓, a compensatory response of the huge reduction in Smad3.

2386- MET,    Mechanisms of metformin inhibiting cancer invasion and migration
- Review, Var, NA
OS↑, Also, in Canada, a large retrospective study was conducted, and the results indicated a 20% reduction of cancer-specific mortality among metformin users compared to its non-users
AMPK↑, Metformin inhibits invasion and migration through the AMPK signaling pathway
EMT↓, Metformin inhibits invasion and migration through EMT signaling pathways
TGF-β↓, The invasive ability of pancreatic cancer cells is suppressed by metformin by blocking signaling in the autocrine TGF-β1 pathway
mTOR↓, Furthermore, TGF-β1-induced EMT in cervical carcinoma cells is abolished by metformin through inhibiting the mTOR/p70s6k signaling pathway to down-regulate PKM2 expression
P70S6K↓,
PKM2↓,
Hif1a↓, Subsequently, it was discovered that gastric cancer was inhibited by metformin via the inhibition of HIF1α/PKM2 signaling
ChemoSen↑, it increased the sensitivity of chemotherapy drugs to different types of cancer

2378- MET,    Metformin inhibits epithelial-mesenchymal transition of oral squamous cell carcinoma via the mTOR/HIF-1α/PKM2/STAT3 pathway
- in-vitro, SCC, CAL27 - in-vivo, NA, NA
TumCP↓, metformin abolished CoCl2-induced cell proliferation, migration, invasion and EMT.
TumCMig↓,
TumCI↓,
EMT↓,
mTOR↓, Moreover, metformin reversed EMT in OSCC by inhibiting the mTOR-associated HIF-1α/PKM2/STAT3 signaling pathway.
Hif1a↓,
PKM2↓,
STAT3↓,
E-cadherin↑, In the CoCl2 group, E-cadherin expression was decreased, while vimentin and Snial1 expression was increased, which all could be reversed by metformin
Vim↓,
Snail↓,
STAT3↓, STAT3 expression was significantly increased in the CoCl2 group, but was significantly decreased by the addition of metformin

2377- MET,    Metformin Inhibits TGF-β1-Induced Epithelial-to-Mesenchymal Transition via PKM2 Relative-mTOR/p70s6k Signaling Pathway in Cervical Carcinoma Cells
- in-vitro, Cerv, HeLa - in-vitro, Cerv, SiHa
EMT↓, metformin partially abolished TGF-β1-induced EMT cell proliferation
P70S6K↓, Metformin decreased the p-p70s6k expression and the blockade of mTOR/p70s6k signaling decreased PKM2 expression.
mTOR↓,
PKM2↓,
Warburg↓, PKM2 regulates in the cancer-specific Warburg effect, which is responsible for the final rate-limiting step of glycolysis.
AMPK↑, direct mechanisms involving activating AMP-activated protein kinase (AMPK), followed by inhibition of the mammalian target of the rapamycin (mTOR) pathway

2374- MET,    Metformin Induces Apoptosis and Downregulates Pyruvate Kinase M2 in Breast Cancer Cells Only When Grown in Nutrient-Poor Conditions
- in-vitro, BC, MCF-7 - in-vitro, BC, SkBr3 - in-vitro, BC, MDA-MB-231
eff↑, reduction of nutrient supply in tumors can increase metformin efficacy and that modulation of PKM2 expression/activity could be a promising strategy to boost metformin anti-cancer effect.
Apoptosis↑,
Glycolysis↓, Finally, we showed that, in nutrient-poor conditions, metformin was able to modulate the intracellular glycolytic equilibrium by downregulating PKM2 expression
PKM2↓,
mTOR↓, Glucose availability influences metformin effect on apoptosis without affecting its ability to downregulate the mTOR pathway
PARP↓, metformin ability to induce PARP inactivation

2243- MF,    Pulsed electromagnetic fields increase osteogenetic commitment of MSCs via the mTOR pathway in TNF-α mediated inflammatory conditions: an in-vitro study
- in-vitro, Nor, NA
*eff↑, PEMF exposure increased cell proliferation and adhesion
*mTOR↑, PEMFs contribute to activation of the mTOR pathway via upregulation of the proteins AKT, MAPP kinase, and RRAGA, suggesting that activation of the mTOR pathway is required for PEMF-stimulated osteogenic differentiation.
*Akt↑,
*PKA↑, PEMFs increase the activity of certain kinases belonging to known intracellular signaling pathways, such as the protein kinase A (PKA) and the MAPK ERK1/2
*MAPK↑,
*ERK↑,
*BMP2↑, PEMFs stimulation also upregulates BMP2 expression in association with increased differentiation in mesenchymal stem cells (MSCs
*Diff↑,
*PKCδ↓, Decrease in PKC protein (involved on Adipogenesis)
*VEGF↑, Increase on VEGF (involved on angiogenesis)
*IL10↑, PEMF induced a significant increase of in vitro expression of IL-10 (that exerts anti-inflammatory activity)

3480- MF,    Cellular and Molecular Effects of Magnetic Fields
- Review, NA, NA
ROS↑, 50 Hz, 1 mT for 24/48/72 h SH-SY5Y (neuroblastoma Significantly increased ROS levels
*Ca+2↑, There is experimental proof that extremely low-frequency (ELF-MF) magnetic fields interact with Ca2+ channels, leading to increased Ca2+ efflux
*Inflam↓, PEMF stimulates the anti-inflammatory response of mesenchymal stem cells.
*Akt↓, nasopharyngeal carcinoma cell line. Potentially, these alterations were caused by inhibition of the Akt/mTOR signaling pathway
*mTOR↓,
selectivity↑, Ashdown and colleagues observed disruptions in the human lung cancer cell line after PMF (20 mT) exposure; in comparison, normal cells were insensitive to PMF
*memory↑, Ahmed and colleagues proved that PMF has an impact on the hippocampus, the brain region responsible for spatial orientation and memory acquisition.
*MMPs↑, In wound closure, epithelial cells, connective tissue cells, and immune cells, which promote collagen production, matrix metalloproteinase activity, growth factor release (e.g., VEGF, FGF, PDGF, TNF, HGF, and IL-1), and inflammatory environment pro
*VEGF↑,
*FGF↑,
*PDGF↑,
*TNF-α↑,
*HGF/c-Met↑,
*IL1↑,

486- MF,    mTOR Activation by PI3K/Akt and ERK Signaling in Short ELF-EMF Exposed Human Keratinocytes
- in-vitro, Nor, HaCaT
*mTOR↑,
*PI3K↑, HaCaT cells exposed for 1h to 50Hz/1mT showed an increased percentage of cells in the S phase, through a significantly activation of the PI3K, JNK and ERK pathways
*Akt↑,
*p‑ERK↑,
*other↑, increases in the percentage of cells in the S phase and decrease in the percentage of cells in G0/G1 phase
*p‑JNK↑,
*p‑P70S6K↑,

3488- MFrot,    Rotating magnetic field improves cognitive and memory impairments in APP/PS1 mice by activating autophagy and inhibiting the PI3K/AKT/mTOR signaling pathway
- in-vivo, AD, NA
*cognitive↑, RMF treatment significantly ameliorated their cognitive and memory impairments, attenuated neuronal damage, and reduced amyloid deposition.
*memory↑,
*neuroP↑,
*Aβ↓,
*PI3K↓, RMF improves cognitive and memory dysfunction in APP/PS1 mice by activating autophagy and inhibiting the PI3K/AKT/mTOR signaling pathway, thus highlighting the potential of RMF as a clinical treatment for hereditary AD.
*Akt↓,
*mTOR↓,

1807- NarG,    A Systematic Review of the Preventive and Therapeutic Effects of Naringin Against Human Malignancies
- Review, NA, NA
AntiTum↑, antitumor ability of naringin
TumCP↓,
tumCV↓,
TumCCA↑,
Mcl-1↓,
RAS↓,
e-Raf↓, suppressing the Ras/Raf/extracellular
VEGF↓,
AntiAg↑,
MMP2↓,
MMP9↓,
TIMP2↑,
TIMP1↑,
p38↓,
Wnt↓,
β-catenin/ZEB1↑,
Casp↑,
P53↑,
BAX↑,
COX2↓,
GLO-I↓,
CYP1A1↑,
lipid-P↓,
p‑Akt↓,
p‑mTOR↓,
VCAM-1↓,
P-gp↓,
survivin↓,
Bcl-2↓,
ROS↑, ↑oxidative stress, Prostate DU145 cell line 50–250 μM
ROS↑, ↑ROS, Stomach (Gastric) AGS cell line, 1–3 mM
MAPK↑,
STAT3↓,
chemoP↑, flavonoids have excellent radical scavenging and iron-chelating properties (Kaiserová et al., 2007), and they can act as an effective modulator for DOX-induced toxicity

1803- NarG,    Naringin and naringenin as anticancer agents and adjuvants in cancer combination therapy: Efficacy and molecular mechanisms of action, a comprehensive narrative review
- Review, Var, NA
JAK↓,
STAT↓,
PI3K↓,
Akt↓,
mTOR↓,
NF-kB↓,
COX2↓,
NOTCH↓,
TumCCA↑,

1799- NarG,    Naringenin as potent anticancer phytocompound in breast carcinoma: from mechanistic approach to nanoformulations based therapeutics
- Review, NA, NA
TumCCA↑, inhibition of the cell cycle
BioAv↑, oral bioavailability was determined to be 5.81%.Novel delivery strategies such as nanoparticles, liposomes, and micelles have been investigated to improve their bioavailability
Half-Life∅, researchers recorded a maximum concentration (Cmax) of 2009.51 ng/mL in 3.67 h after administration. elimination half-life was found to be 2.31 h.
TNF-α↓,
Casp8↑,
BAX↑,
Bak↑,
EGF↓,
mTOR↓,
PI3K↓,
ERK↓,
Akt↓,
NF-kB↓,
VEGF↓,
angioG↓,
antiOx↑,
EMT↓, Naringenin reduces the metastatic efficacy of breast cancer cells by EMT suppression
OS↑, Oral administration of naringenin dramatically reduced the number of metastatic tumor cells in the lungs and prolonged the lifespan of mice that had their tumors removed
MAPK↓, Naringenin inhibited the MAPK and PI3K pathways
ChemoSen↑, In MCF-7 breast cancer cells, combination therapy using NGE and tamoxifen was more effective than either drug alone
MMP9↓, downregulating the expression of MMP-9 and MMP-2
MMP2↓,
ROS↑, combination treatment increases ROS generation
ROS↑, demonstrated the antitumor effects of naringenin nanoparticles through increased ROS levels, GSH attenuation, and caspase-3 activation, which ultimately induced apoptosis
GSH↓,
Casp3↑,
ROS↑, This review concludes that naringenin can reduce carcinogenesis through pleiotropic processes such as antioxidative, apoptotic-inducing ROS generation, and cell cycle arrest

1271- NCL,    Niclosamide inhibits ovarian carcinoma growth by interrupting cellular bioenergetics
- vitro+vivo, Ovarian, SKOV3
Wnt/(β-catenin)↓,
mTOR↓,
STAT3↓,
NF-kB↓,
NOTCH↓,
TumCG↓,
Apoptosis↑,
MEK↓, inactivating MEK1/2-ERK1/2
ERK↓,
mitResp↓,
Glycolysis↓, aerobic glycolysis
ROS↑, abolishment of the excess ROS production with NAC (10 mM) abrogated the Niclosamide-induced cell apoptosis under glucose deprivation
JNK↑,

1993- Part,    Parthenolide induces apoptosis and autophagy through the suppression of PI3K/Akt signaling pathway in cervical cancer
- in-vitro, Cerv, HeLa
tumCV↓, Parthenolide inhibits HeLa cell viability in a dose dependent-manner and was confirmed by MTT assay.
TumAuto↑, Parthenolide (6 µM) induces mitochondrial-mediated apoptosis and autophagy by activation of caspase-3, upregulation of Bax, Beclin-1, ATG5, ATG3
Casp3↑,
BAX↑,
Beclin-1↑,
ATG3↑,
ATG5↑,
Bcl-2↓, and down-regulation of Bcl-2 and mTOR
mTOR↓,
PI3K↓, inhibits PI3K and Akt expression through activation of PTEN expression.
Akt↓,
PTEN↑,
ROS↑, parthenolide induces generation of reactive oxygen species that leads to the loss of mitochondrial membrane potential
MMP↓,

1678- PBG,  5-FU,  sericin,    In vitro and in vivo anti-colorectal cancer effect of the newly synthesized sericin/propolis/fluorouracil nanoplatform through modulation of PI3K/AKT/mTOR pathway
- in-vitro, CRC, Caco-2 - in-vivo, NA, NA
PI3K↓, mechanism of action of the prepared nanoformula revealed that it acts through the inhibition of the PI3K/AKT/mTOR signaling pathway and consequently inhibiting cancerous cells proliferation.
Akt↓,
mTOR↓,
TumCP↓,
Bcl-2↓, downregulated BCL2 (B-cell lymphoma 2) and activated BAX, Caspase 9 and Caspase 3 expression
BAX↑,
Casp3↑,
Casp9↑,
ROS↓, prepared nanoformula decreased the ROS (Reactive Oxygen Species) production in vivo owing to PI3K/AKT/mTOR pathway inhibition and FOXO-1 (Forkhead Box O1) activation
FOXO1↑,
*toxicity∅, LD50 of the prepared nanoformula reached 1 mg/Kg upon oral administration.
eff↑, It is well known that propolis and sericin inhibit PI3K/AKT and ERK pathway

2970- PL,    Piperlongumine induces apoptosis and autophagy in leukemic cells through targeting the PI3K/Akt/mTOR and p38 signaling pathways
- in-vitro, AML, NA
AntiAg↑, antiplatelet aggregation
TumCG↓, cell growth of leukemic cells was completely inhibited following treatment with piperlongumine, and marked apoptosis was also induced
Apoptosis↑,
PI3K↓, Phosphoinositide 3-kinase (PI3K)/Akt/mTOR signaling was suppressed by treatment with piperlongumine, while p38 signaling and caspase-3 activity were induced by treatment with piperlongumine.
Akt↓,
mTOR↓,
p38↑,
Casp3↑,

2948- PL,    The promising potential of piperlongumine as an emerging therapeutics for cancer
- Review, Var, NA
tumCV↓, inhibit different hallmarks of cancer such as cell survival, proliferation, invasion, angiogenesis, epithelial-mesenchymal-transition, metastases,
TumCP↓,
TumCI↓,
angioG↓,
EMT↓,
TumMeta↓,
*hepatoP↑, A study demonstrated the hepatoprotective effects of P. longum via decreasing the rate of lipid peroxidation and increasing glutathione (GSH) levels
*lipid-P↓,
*GSH↑,
cardioP↑, cardioprotective effect
CycB↓, downregulated the mRNA expression of the cell cycle regulatory genes such as cyclin B1, cyclin D1, cyclin-dependent kinases (CDK)-1, CDK4, CDK6, and proliferating cell nuclear antigen (PCNA)
cycD1↓,
CDK2↓,
CDK1↓,
CDK4↓,
CDK6↓,
PCNA↓,
Akt↓, suppression of the Akt/mTOR pathway by PL was also associated with the partial inhibition of glycolysis
mTOR↓,
Glycolysis↓,
NF-kB↓, Suppression of the NF-κB signaling pathway and its related genes by PL was reported in different cancers
IKKα↓, inactivation of the inhibitor of NF-κB kinase subunit beta (IKKβ)
JAK1↓, PL efficiently inhibited cell proliferation, invasion, and migration by blocking the JAK1,2/STAT3 signaling pathway
JAK2↓,
STAT3↓,
ERK↓, PL also negatively regulates ERK1/2 signaling pathways, thereby suppressing the level of c-Fos in CRC cells
cFos↓,
Slug↓, PL was found to downregulate slug and upregulate E-cadherin and inhibited epithelial-mesenchymal transition (EMT) in breast cancer cells
E-cadherin↑,
TOP2↓, ↓topoisomerase II, ↑p53, ↑p21, ↓Bcl-2, ↑Bax, ↑Cyt C, ↑caspase-3, ↑caspase-7, ↑caspase-8
P53↑,
P21↑,
Bcl-2↓,
BAX↑,
Casp3↑,
Casp7↑,
Casp8↑,
p‑HER2/EBBR2↓, ↓p-HER1, ↓p-HER2, ↓p-HER3
HO-1↑, ↑Apoptosis, ↑HO-1, ↑Nrf2
NRF2↑,
BIM↑, ↑BIM, ↑cleaved caspase-9 and caspase-3, ↓p-FOXO3A, ↓p-Akt
p‑FOXO3↓,
NA↓,
Sp1/3/4↓, ↑apoptosis, ↑ROS, ↓Sp1, ↓Sp3, ↓Sp4, ↓cMyc, ↓EGFR, ↓survivin, ↓cMET
cMyc↓,
EGFR↓,
survivin↓,
cMET↓,
NQO1↑, G2/M phase arrest, ↑apoptosis, ↑ROS, ↓p-Akt, ↑Bad, ↓Bcl-2, ↑NQO1, ↑HO-1, ↑SOD2, ↑p21, ↑p-ERK, ↑p-JNK,
SOD2↑,
TrxR↓, G2/M cell cycle arrest, ↑apoptosis, ↑ROS, ↓GSH, ↓TrxR
MDM2↓, ↑ROS, ↓MDM-2, ↓cyclin B1, ↓Cdc2, G2/M phase arrest, ↑p-eIF2α, ↑ATF4, KATO III ↑CHOP, ↑apoptosis
p‑eIF2α↑,
ATF4↑,
CHOP↑,
MDA↑, ↑ROS, ↓TrxR1, ↑cleaved caspase-3, ↑CHOP, ↑MDA
Ki-67↓, ↓Ki-67, ↓MMP-9, ↓Twist,
MMP9↓,
Twist↓,
SOX2↓, ↓SOX2, ↓NANOG, ↓Oct-4, ↑E-cadherin, ↑CK18, ↓N-cadherin, ↓vimentin, ↓snail, ↓slug
Nanog↓,
OCT4↓,
N-cadherin↓,
Vim↓,
Snail↓,
TumW↓, ↓Tumor weight, ↓tumor growth
TumCG↓,
HK2↓, ↓HK2
RB1↓, ↓Rb
IL6↓, ↓IL-6, ↓IL-8,
IL8↓,
SOD1↑, ↑SOD1
RadioS↑, ombination with PL, very low intensity of radiation is found to be effective in cancer cells
ChemoSen↑, PL as a chemosensitizer which sensitized the cancer cells towards the commercially available chemotherapeutics
toxicity↓, PL does not have any adverse effect on the normal functioning of the liver and kidney.
Sp1/3/4↓, In vitro SKBR3 ↓Sp1, ↓Sp3, ↓Sp4
GSH↓, In vitro MCF-7 ↓CDK1, G2/M phase arrest ↓CDK4, ↓CDK6, ↓PCNA, ↓p-CDK1, ↑cyclin B1, ↑ROS, ↓GSH, ↓p-IκBα,
SOD↑, In vitro PANC-1, MIA PaCa-2 ↑ROS, ↑SOD1, ↑GSTP1, ↑HO-1

2946- PL,    Piperlongumine, a potent anticancer phytotherapeutic: Perspectives on contemporary status and future possibilities as an anticancer agent
- Review, Var, NA
ROS↑, piperlongumine inhibits cancer growth by resulting in the accumulation of intracellular reactive oxygen species, decreasing glutathione and chromosomal damage, or modulating key regulatory proteins, including PI3K, AKT, mTOR, NF-kβ, STATs, and cycD
GSH↓, reduced glutathione (GSH) levels in mouse colon cancer cells
DNAdam↑,
ChemoSen↑, combined treatment with piperlongumine potentiates the anticancer activity of conventional chemotherapeutics and overcomes resistance to chemo- and radio- therapy
RadioS↑, piperlongumine treatment enhances ROS production via decreasing GSH levels and causing thioredoxin reductase inhibition
BioEnh↑, Moreover, the bioavailability is significantly improved after oral administration of piperlongumine
selectivity↑, It shows selectivity toward human cancer cells over normal cells and has minimal side effects
BioAv↓, ts low aqueous solubility affects its anti-cancer activity by limiting its bioavailability during oral administration
eff↑, encapsulation of piperlongumine in another biocompatible natural polymer, chitosan, has been found to result in pH-dependent piperlongumine release and to enhance cytotoxicity via efficient intracellular ROS accumulation against human gastric carcin
p‑Akt↓, Fig 2
mTOR↓,
GSK‐3β↓,
β-catenin/ZEB1↓,
HK2↓, iperlongumine treatment decreases cell proliferation, single-cell colony-formation ability, and HK2-mediated glycolysis in NSCLC cells via inhibiting the interaction between HK2 and voltage-dependent anion channel 1 (VDAC1)
Glycolysis↓,
Cyt‑c↑,
Casp9↑,
Casp3↑,
Casp7↑,
cl‑PARP↑,
TrxR↓, piperlongumine (4 or 12 mg/kg/day for 15 days) administration significantly inhibits increase in tumor weight and volume with less TrxR1 activity in SGC-7901 cell
ER Stress↑,
ATF4↝,
CHOP↑, activating the downstream ER-MAPK-C/EBP homologous protein (CHOP) signaling pathway
Prx4↑, piperlongumine kills high-grade glioma cells via oxidative inactivation of PRDX4 mediated ROS induction, thereby inducing intracellular ER stress
NF-kB↓, piperlongumine treatment (2.5–5 mg/ kg body weight) decreases the growth of lung tumors via inhibition of NF-κB
cycD1↓, decreases expression of cyclin D1, cyclin- dependent kinase (CDK)-4, CDK-6, p- retinoblastoma (p-Rb)
CDK4↓,
CDK6↓,
p‑RB1↓,
RAS↓, piperlongumine downregulates the expression of Ras protein
cMyc↓, inhibiting the activity of other related proteins, such as Akt/NF-κB, c-Myc, and cyclin D1 in DMH + DSS induced colon tumor cells
TumCCA↑, by arresting colon tumor cells in the G2/M phase of the cell cycle
selectivity↑, hows more selective cytotoxicity against human breast cancer MCF-7 cells than human breast epithelial MCF-10A cells
STAT3↓, thus inducing inhibition of the STAT3 signaling pathway in multiple myeloma cells
NRF2↑, Nrf2) activation has been found to mediate the upregulation of heme oxygenase-1 (HO-1) in piperlongumine treated MCF-7 and MCF-10A cells
HO-1↑,
PTEN↑, stimulates ROS accumulation; p53, p27, and PTEN overexpression
P-gp↓, P-gp, MDR1, MRP1, survivin, p-Akt, NF-κB, and Twist downregulation;
MDR1↓,
MRP1↓,
survivin↓,
Twist↓,
AP-1↓, iperlongumine significantly suppresses the expression of transcription factors, such as AP-1, MYC, NF-κB, SP1, STAT1, STAT3, STAT6, and YY1.
Sp1/3/4↓,
STAT1↓,
STAT6↓,
SOX4↑, increased expression of p21, SOX4, and XBP in B-ALL cells
XBP-1↑,
P21↑,
eff↑, combined use of piperlongumine with cisplatin enhances the sensitivity toward cisplatin by inhibiting Akt phosphorylation
Inflam↓, inflammation (COX-2, IL6); invasion and metastasis, such as ICAM-1, MMP-9, CXCR-4, VEGF;
COX2↓,
IL6↓,
MMP9↓,
TumMeta↓,
TumCI↓,
ICAM-1↓,
CXCR4↓,
VEGF↓,
angioG↓,
Half-Life↝, The analysis of the plasma of piperlongumine treated mice (50 mg/kg) after intraperitoneal administration, 1511.9 ng/ml, 418.2 ng/ml, and 41.9 ng/ml concentrations ofplasma piperlongumine were found at 30 minutes, 3 hours, and 24 hours, respecti
BioAv↑, Moreover, the bioavailability is significantly improved after oral administration of piperlongumine

2944- PL,    Piperlongumine, a Potent Anticancer Phytotherapeutic, Induces Cell Cycle Arrest and Apoptosis In Vitro and In Vivo through the ROS/Akt Pathway in Human Thyroid Cancer Cells
- in-vitro, Thyroid, IHH4 - in-vitro, Thyroid, 8505C - in-vivo, NA, NA
ROS↑, it is selectively toxic to cancer cells by generating reactive oxygen species (ROS)
selectivity↑,
tumCV↓, Cell viability, colony formation, cell cycle, apoptosis, and cellular ROS induction.
TumCCA↑,
Apoptosis↑,
ERK↑, activation of Erk and the suppression of the Akt/mTOR pathways through ROS induction were seen in cells treated with PL
Akt↓,
mTOR↓,
neuroP↑, neuroprotective, and anticancer properties
Bcl-2↓, induces the downregulation of Bcl2 expression and the activation of caspase-3, poly (ADP-ribose) polymerase (PARP), and JNK
Casp3↑,
PARP↑,
JNK↑,
*toxicity↓, several whole-animal models, and it is highly safe when used in vivo
eff↓, Pre-treatment with N-acetylcysteine (NAC; a selective ROS scavenger) significantly reduced PL-mediated ROS activation
TumW↓, tumor weight in the PL (10 mg/kg) treatment group significantly decreased when compared with that in the control group

1946- PL,  PI,    Piperlonguminine and Piperine Analogues as TrxR Inhibitors that Promote ROS and Autophagy and Regulate p38 and Akt/mTOR Signaling
- in-vitro, Liver, NA
eff↑, Among these, compound 9m exerted the most potent antiproliferative activity against drug-resistant Bel-7402/5-FU human liver cancer 5-FU resistant cells (IC50 = 0.8 μM), which was approximately 10-fold lower than piperlongumine (IC50 = 8.4 μM).
toxicity↓, Further, 9m showed considerably lower cytotoxicity against LO2 human normal liver epithelial cells compared to Bel-7402/5-FU.
TrxR↓, Mechanistically, compound 9m inhibited thioredoxin reductase (TrxR) activity, increased ROS levels, reduced mitochondrial transmembrane potential (MTP
ROS↑,
MMP↓,
p38↑, Finally, 9m activated significantly the p38 signaling pathways and suppressed the Akt/mTOR signaling pathways.
Akt↓,
mTOR↓,

2651- Plum,    Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical Evidence
- Review, Var, NA
ROS↑, Various studies have shown that plumbagin is a potent inducer of ROS
TrxR↓, The mechanism underlying ROS induction by plumbagin has predominantly been attributed to inhibition of the antioxidant enzymes TrxR
GSR↓, and glutathione reductase
ER Stress↓, mediates its anticancer effect by inducing ER stress-mediated apoptosis
TumCCA↑, S/G2 and G2/M cell cycle arrest
MMP↓, and mitochondrial membrane depolarization in an ROS-dependent manner
NF-kB↓, plumbagin was found to inhibit the NF-κB [57], PI3K/AKT/mTOR [58] and MKP1/2 [59] pathways in non-small cell lung cancer, bladder cancer, and lymphoma,
PI3K↓,
Akt↓,
mTOR↓,
MKP1↓,
MKP2↓,
ChemoSen↑, improve the efficacy of existing chemotherapeutic strategies

1237- PS,    Pterostilbene induces cell apoptosis and inhibits lipogenesis in SKOV3 ovarian cancer cells by activation of AMPK-induced inhibition of Akt/mTOR signaling cascade
- in-vitro, Ovarian, SKOV3
TumCMig↓,
TumCI↓,
MDA↑,
ROS↑,
BAX↑,
Casp3↑,
Bcl-2↓,
SREBP1↓,
FASN↓,
AMPK↓,
p‑AMPK↑,
p‑P53↑,
p‑TSC2↑,
p‑Akt↓,
p‑mTOR↓,
p‑S6K↓, p-S6K1
p‑4E-BP1↓,

63- QC,    Quercetin facilitates cell death and chemosensitivity through RAGE/PI3K/AKT/mTOR axis in human pancreatic cancer cells
- in-vitro, Pca, NA
RAGE↓, Silencing RAGE expression by suppressing the PI3K/AKT/mTOR axis
PI3K↓,
mTOR↓,
Akt↓,
Apoptosis↑,
TumAuto↑,

39- QC,    A Comprehensive Analysis and Anti-Cancer Activities of Quercetin in ROS-Mediated Cancer and Cancer Stem Cells
- Analysis, NA, NA
ROS↑, production of ROS in both cancer, and cancer stem cells,
GSH↓, By directly reducing the intracellular pool of glutathione (GSH), QC can influence ROS metabolism
IL6↓, QC is its ability to inhibit inflammatory mediators including IFN-γ, IL-6, COX-2, IL-8, iNOS, TNF-α, and many other cancer inflammatory mechanisms
COX2↓,
IL8↓,
iNOS↓,
TNF-α↓,
MAPK↑, quercetin-3-methyl ether stopped the growth of cancer in the esophagus by blocking the Akt/mTOR/P70S6k and MAPK pathways, which are important for the growth of cancer
ERK↑,
SOD↑,
ATP↓,
Casp↑,
PI3K/Akt↓,
mTOR↓,
NOTCH1↓,
Bcl-2↓,
BAX↑,
IFN-γ↓,
TumCP↓, QC directly involves inducing apoptosis and/or the cell cycle arrest process, and also inhibits the propagation of rapidly proliferating cells
TumCCA↑,
Akt↓, quercetin-3-methyl ether stopped the growth of cancer in the esophagus by blocking the Akt/mTOR/P70S6k and MAPK pathways, which are important for the growth of cancer
P70S6K↓,
*Keap1↓,
*GPx↑, inhibiting its negative regulator, Keap1, resulting in Nrf-2 nuclear translocation [86]. This results in the production and activation of enzymes namely GPX, CAT, heme oxygenase 1 (HO-1), peroxiredoxin (PRX)
*Catalase↑,
*HO-1↑,
*NRF2↑,
NRF2↑, The effect of QC on nuclear translocation of Nrf-2 in a time-dependent manner, and increased expression level in HepG2, MgM (malignant mesothelioma) MSTO-211H, and H2452 cells at mRNA and protein quantity has been reported recently
eff↑, quercetin coupled with gold nanoparticles promoted apoptosis by inhibiting the EGFR/P13K/Akt-mediated pathway
HIF-1↓, Quercetin has been shown to suppress the Akt-mTOR pathway and hypoxia-induced factor 1 signaling pathway in gastric cancer cells, resulting in preventative autophagy

92- QC,    Quercetin Inhibits Angiogenesis Mediated Human Prostate Tumor Growth by Targeting VEGFR- 2 Regulated AKT/mTOR/P70S6K Signaling Pathways
- vitro+vivo, Pca, HUVECs - vitro+vivo, Pca, PC3
VEGF↓, VEGF-R2
HemoG↓,
Akt↓, AKT/mTOR/P70S6K↓
mTOR↓,
P70S6K↓,

916- QC,    Quercetin and cancer: new insights into its therapeutic effects on ovarian cancer cells
- Review, Ovarian, NA
COX2↓,
CRP↓,
ER Stress↑, Quercetin can result in stimulate the ER stress pathway that lead to the cause of cell death and apoptosis
Apoptosis↑,
GRP78/BiP↑,
CHOP↑,
p‑STAT3↓, quercetin suppresses STAT3 and PI3K/AKT/mTOR pathways
PI3K↓,
Akt↓,
mTOR↓,
cMyc↓, leading to downregulate the prosurvival cellular proteins expression, including cMyc, cyclin D1, and c-FLIP
cycD1↓,
cFLIP↓,
IL6↓, decreased the IL-6 and IL-10 release
IL10↓,

919- QC,    Quercetin Regulates Sestrin 2-AMPK-mTOR Signaling Pathway and Induces Apoptosis via Increased Intracellular ROS in HCT116 Colon Cancer Cells
- in-vitro, CRC, HCT116
Apoptosis↑,
ROS↑,
SESN2↑,
P53↑,
AMPKα↑,
mTOR↓,

923- QC,    Quercetin as an innovative therapeutic tool for cancer chemoprevention: Molecular mechanisms and implications in human health
- Review, Var, NA
ROS↑, decided by the availability of intracellular reduced glutathione (GSH),
GSH↓, extended exposure with high concentration of quercetin causes a substantial decline in GSH levels
Ca+2↝,
MMP↓,
Casp3↑, activation of caspase-3, -8, and -9
Casp8↑,
Casp9↑,
other↓, when p53 is inhibited, cancer cells become vulnerable to quercetin-induced apoptosis
*ROS↓, Quercetin (QC), a plant-derived bioflavonoid, is known for its ROS scavenging properties and was recently discovered to have various antitumor properties in a variety of solid tumors.
*NRF2↑, Moreover, the therapeutic efficacy of QC has also been defined in rat models through the activation of Nrf-2/HO-1 against high glucose-induced damage
HO-1↑,
TumCCA↑, QC increases cell cycle arrest via regulating p21WAF1, cyclin B, and p27KIP1
Inflam↓, QC-mediated anti-inflammatory and anti-apoptotic properties play a key role in cancer prevention by modulating the TLR-2 (toll-like receptor-2) and JAK-2/STAT-3 pathways and significantly inhibit STAT-3 tyrosine phosphorylation within inflammatory ce
STAT3↓,
DR5↑, several studies showed that QC upregulated the death receptor (DR)
P450↓, it hinders the activity of cytochrome P450 (CYP) enzymes in hepatocytes
MMPs↓, QC has also been shown to suppress metastatic protein expression such as MMPs (matrix metalloproteases)
IFN-γ↓, QC is its ability to inhibit inflammatory mediators including IFN-γ, IL-6, COX-2, IL-8, iNOS, TNF-α,
IL6↓,
COX2↓,
IL8↓,
iNOS↓,
TNF-α↓,
cl‑PARP↑, Induced caspase-8, caspase-9, and caspase-3 activation, PARP cleavage, mitochondrial membrane depolarization,
Apoptosis↑, increased apoptosis and p53 expression
P53↑,
Sp1/3/4↓, HT-29 colon cancer cells: decreased the expression of Sp1, Sp3, Sp4 mrna, and survivin,
survivin↓,
TRAILR↑, H460 Increased the expression of TRAILR, caspase-10, DFF45, TNFR 1, FAS, and decreased the expression of NF-κb, ikkα
Casp10↑,
DFF45↑,
TNFR 1↑,
Fas↑,
NF-kB↓,
IKKα↓,
cycD1↓, SKOV3 Reduction in cyclin D1 level
Bcl-2↓, MCF-7, HCC1937, SK-Br3, 4T1, MDA-MB-231 Decreased Bcl-2 expression, increasedBax expression, inhibition of PI3K-Akt pathway
BAX↑,
PI3K↓,
Akt↓,
E-cadherin↓, MDA-MB-231 Induced the expression of E-cadherin and downregulated vimentin levels, modulation of β-catenin target genes such as cyclin D1 and c-Myc
Vim↓,
β-catenin/ZEB1↓,
cMyc↓,
EMT↓, MCF-7 Suppressed the epithelial–mesenchymal transition process, upregulated E-cadherin expression, downregulated vimentin and MMP-2 expression, decreased Notch1 expression
MMP2↓,
NOTCH1↓,
MMP7↓, PANC-1, PATU-8988 Decreased the secretion of MMP and MMP7, blocked the STAT3 signaling pathway
angioG↓, PC-3, HUVECs Reduced angiogenesis, increased TSP-1 protein and mrna expression
TSP-1↑,
CSCs↓, PC-3 and LNCaP cells Activated capase-3/7 and inhibit the expression of Bcl-2, surviving and XIAP in CSCs.
XIAP↓,
Snail↓, inhibiting the expression of vimentin, slug, snail and nuclear β-catenin, and the activity of LEF-1/TCF responsive reporter
Slug↓,
LEF1↓,
P-gp↓, MCF-7 and MCF-7/dox cell lines Downregulation of P-gp expression
EGFR↓, MCF-7 and MDA-MB-231 cells Suppressed EGFR signaling and inhibited PI3K/Akt/mTOR/GSK-3β
GSK‐3β↓,
mTOR↓,
RAGE↓, IA Paca-2, BxPC3, AsPC-1, HPAC and PANC1 Silencing RAGE expression
HSP27↓, Breast cancer In vivo NOD/SCID mice Inhibited the overexpression of Hsp27
VEGF↓, QC significantly reversed an elevation in profibrotic markers (VEGF, IL-6, TGF, COL-1, and COL-3)
TGF-β↓,
COL1↓,
COL3A1↓,

910- QC,    The Anti-Cancer Effect of Quercetin: Molecular Implications in Cancer Metabolism
tumCV↓,
Apoptosis↑,
PI3k/Akt/mTOR↓, QUE induces cell death by inhibiting PI3K/Akt/mTOR and STAT3 pathways in PEL cells
Wnt/(β-catenin)↓, reducing β-catenin
MAPK↝,
ERK↝, ERK1/2
TumCCA↑, cell cycle arrest at the G1 phase
H2O2↑,
ROS↑,
TumAuto↑,
MMPs↓, Consistently, QUE was able to reduce the protein levels of MMP-2, MMP-9, VEGF and mTOR, and p-Akt in breast cancer cell lines
P53↑,
Casp3↑,
Hif1a↓, by inactivating the Akt-mTOR pathway [64,74] and HIF-1α
cFLIP↓,
IL6↓, QUE decreased the release of interleukin-6 (IL-6) and IL-10
IL10↓,
lactateProd↓,
Glycolysis↓, It is suggested that QUE alters glucose metabolism by inhibiting monocarboxylate transporter (MCT) activity
PKM2↓,
GLUT1↓,
COX2↓,
VEGF↓,
OCR↓,
ECAR↓,
STAT3↓,
MMP2↓, Consistently, QUE was able to reduce the protein levels of MMP-2, MMP-9, VEGF and mTOR, and p-Akt in breast cancer cell lines
MMP9:TIMP1↓,
mTOR↓,

2342- QC,    Quercetin Inhibits the Proliferation of Glycolysis-Addicted HCC Cells by Reducing Hexokinase 2 and Akt-mTOR Pathway
- in-vitro, HCC, Bel-7402 - in-vitro, HCC, SMMC-7721 cell - in-vivo, NA, NA
TumCP↓, In the present study, we reported that QUE inhibited the proliferation of HCC cells that relied on aerobic glycolysis.
HK2↓, QUE could decrease the protein levels of HK2 and suppress the AKT/mTOR pathway in HCC cells
Akt↓,
mTOR↓,
GlucoseCon↓, glucose uptake and lactate production of SMMC-7721 and Bel-7402 decreased in a dose-dependent manner after QUE treatment
lactateProd↓,
Glycolysis↓, QUE can inhibit the glycolysis of cancer cells, thereby inhibiting the progression of multiple cancers

2341- QC,    Quercetin suppresses the mobility of breast cancer by suppressing glycolysis through Akt-mTOR pathway mediated autophagy induction
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
MMP2↓, quercetin treatment down-regulated the expression of cell migration marker proteins, such as matrix metalloproteinase 2 (MMP-2), MMP-9 and vascular endothelial growth factor (VEGF).
MMP9↓, level of MMP-2, MMP-9 and VEGF was all strongly cut down by quercetin treatment compared with control group
VEGF↓,
Glycolysis↓, quercetin successfully blocked cell glycolysis by inhibiting the level of glucose uptake and the production of lactic acid
lactateProd↓,
PKM2↓, and also decreased the level of glycolysis-related proteins Pyruvate kinase M2 (PKM2), Glucose transporter1(GLUT1) and Lactate dehydrogenase A (LDHA).
GLUT1↓,
LDHA↓,
TumAuto↑, quercetin induced obvious autophagy via inactivating the Akt-mTOR pathway
Akt↓,
mTOR↓,
TumMeta↓, Quercetin suppressed the progression of breast cancer by inhibiting tumor metastasis and glycolysis in vivo
MMP3↓, quercetin effectively suppressed the invasion and migration ability of breast cancer cells through suppressing the expression of MMP-3, MMP-9 and VEGF,
eff↓, down-regulating the expression of PKM2, which regulated the final step of glycolysis, could effectively enhance the chemotherapeutic effect of THP
GlucoseCon↓, we found that quercetin effectively suppressed the level of glucose uptake and the production of lactic acid, and also down-regulated the expression of glycolysis-related proteins PKM2, LDHA and GLUT1,
lactateProd↓,
TumAuto↑, quercetin treatment induced obvious autophagy in MCF-7 and MDA-MB-231 cells via inactivating the Akt-mTOR pathway
LC3B-II↑, showing obvious conversion of LC3B-I to LC3B-II

3354- QC,    Quercetin: Its Main Pharmacological Activity and Potential Application in Clinical Medicine
- Review, Var, NA
*ROS↓, quercetin is the most effective free radical scavenger in the flavonoid family
*IronCh↓, Chelating metal ions: related studies have confirmed that quercetin can induce Cu2+ and Fe2+ to play an antioxidant role through catechol in its structure.
*lipid-P↓, quercetin could inhibit Fe2+-induced lipid peroxidation by binding Fe2+ a
*GSH↑, regulation of glutathione levels to enhance antioxidant capacity.
*NRF2↑, quercetin upregulates the expression of Nrf2 and nuclear transfer by activating the intracellular p38 MAPK pathway, increasing the level of intracellular GSH
TumCCA↑, human leukaemia U937 cells, quercetin induces cell cycle arrest at G2 (late DNA synthesis phase)
ER Stress↑, quercetin can induce ER stress and promote the release of p53, thereby inhibiting the activities of CDK2, cyclin A, and cyclin B, thereby causing MCF-7 breast cancer cells to stagnate in the S phase.
P53↑,
CDK2↓,
cycA1↓,
CycB↓,
cycE↓, downregulation of cyclins E and D, PNCA, and Cdk-2 protein expression and increased expressions of p21 and p27
cycD1↓,
PCNA↓,
P21↑,
p27↑,
PI3K↓, quercetin inhibited the PI3K/AKT/mTOR and STAT3 pathways in PEL, which downregulated the expression of survival cell proteins such as c-FLIP, cyclin D1, and cMyc.
Akt↓,
mTOR↓,
STAT3↓, in excess of 20 μM by inhibiting STAT3 signalling
cFLIP↓,
cMyc↓,
survivin↓, Lung cancer [27] ↓ Survivin ↑DR5
DR5↓,
*Inflam↓, Quercetin has been confirmed to be a long-acting anti-inflammatory substance in flavonoids
*IL6↓, inhibit IL-8 is stronger and can inhibit IL-6 and increase cytosolic calcium levels
*IL8↓,
COX2↓, inhibit the enzymes that produce inflammation (cyclooxygenase (COX) and lipoxygenase (LOX))
5LO↓,
*cardioP↑, The protective mechanism of quercetin on the cardiovascular system
*FASN↓, 25 μM, within 30 minutes could inhibit the synthesis of fatty acids.
*AntiAg↑, quercetin helps reduce lipid peroxidation, platelet aggregation, and capillary permeability
*MDA↓, quercetin can decrease the levels of malondialdehyde (MDA)

3369- QC,    Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects
- Review, Pca, NA
FAK↓, Quercetin can inhibit HGF-induced melanoma cell migration by inhibiting the activation of c-Met and its downstream Gabl, FAK and PAK [84]
TumCCA↑, stimulation of cell cycle arrest at the G1 stage
p‑pRB↓, mediated through regulation of p21 CDK inhibitor and suppression of pRb phosphorylation resulting in E2F1 sequestering.
CDK2↑, low dose of quercetin has brought minor DNA injury and Chk2 induction
CycB↓, quercetin has a role in the reduction of cyclin B1 and CDK1 levels,
CDK1↓,
EMT↓, quercetin suppresses epithelial to mesenchymal transition (EMT) and cell proliferation through modulation of Sonic Hedgehog signaling pathway
PI3K↓, quercetin on other pathways such as PI3K, MAPK and WNT pathways have also been validated in cervical cancer
MAPK↓,
Wnt↓,
ROS↑, colorectal cancer, quercetin has been shown to suppress carcinogenesis through various mechanisms including affecting cell proliferation, production of reactive oxygen species and expression of miR-21
miR-21↑,
Akt↓, Figure 1 anti-cancer mechanisms
NF-kB↓,
FasL↑,
Bak↑,
BAX↑,
Bcl-2↓,
Casp3↓,
Casp9↑,
P53↑,
p38↑,
MAPK↑,
Cyt‑c↑,
PARP↓,
CHOP↑,
ROS↓,
LDH↑,
GRP78/BiP↑,
ERK↑,
MDA↓,
SOD↑,
GSH↑,
NRF2↑,
VEGF↓,
PDGF↓,
EGF↓,
FGF↓,
TNF-α↓,
TGF-β↓,
VEGFR2↓,
EGFR↓,
FGFR1↓,
mTOR↓,
cMyc↓,
MMPs↓,
LC3B-II↑,
Beclin-1↑,
IL1β↓,
CRP↓,
IL10↓,
COX2↓,
IL6↓,
TLR4↓,
Shh↓,
HER2/EBBR2↓,
NOTCH↓,
DR5↑, quercetin has enhanced DR5 expression in prostate cancer cells
HSP70/HSPA5↓, Quercetin has also suppressed the upsurge of hsp70 expression in prostate cancer cells following heat treatment and enhanced the quantity of subG1 cells
CSCs↓, Quercetin could also suppress cancer stem cell attributes and metastatic aptitude of isolated prostate cancer cells through modulating JNK signaling pathway
angioG↓, Quercetin inhibits angiogenesis-mediated of human prostate cancer cells through negatively modulating angiogenic factors (TGF-β, VEGF, PDGF, EGF, bFGF, Ang-1, Ang-2, MMP-2, and MMP-9)
MMP2↓,
MMP9↓,
IGFBP3↑, Quercetin via increasing the level of IGFBP-3 could induce apoptosis in PC-3 cells
uPA↓, Quercetin through decreasing uPA and uPAR expression and suppressing cell survival protein and Ras/Raf signaling molecules could decrease prostate cancer progression
uPAR↓,
RAS↓,
Raf↓,
TSP-1↑, Quercetin through TSP-1 enhancement could effectively inhibit angiogenesis

3368- QC,    The potential anti-cancer effects of quercetin on blood, prostate and lung cancers: An update
- Review, Var, NA
*Inflam↓, quercetin is known for its anti-inflammatory, antioxidant, and anticancer properties.
*antiOx↑,
*AntiCan↑,
Casp3↓, Quercetin increases apoptosis and autophagy in cancer by activating caspase-3, inhibiting the phosphorylation of Akt, mTOR, and ERK, lessening β-catenin, and stabilizing the stabilization of HIF-1α.
p‑Akt↓,
p‑mTOR↓,
p‑ERK↓,
β-catenin/ZEB1↓,
Hif1a↓,
AntiAg↓, Quercetin have revealed an anti-tumor effect by reducing development of blood vessels. I
VEGFR2↓, decrease tumor growth through targeting VEGFR-2-mediated angiogenesis pathway and suppressing the downstream regulatory component AKT in prostate and breast malignancies.
EMT↓, effects of quercetin on inhibition of EMT, angiogenesis, and invasiveness through the epidermal growth factor receptor (EGFR)/VEGFR-2-mediated pathway in breast cancer
EGFR↓,
MMP2↓, MMP2 and MMP9 are two remarkable compounds in metastatic breast cancer (28–30). quercetin on breast cancer cell lines (MDA-MB-231) and showed that after treatment with this flavonoid, the expression of these two proteinases decreased
MMP↓,
TumMeta↓, head and neck (HNSCC), the inhibitory effect of quercetin on the migration of tumor cells has been shown by regulating the expression of MMPs
MMPs↓,
Akt↓, quercetin by inhibiting the Akt activation pathway dependent on Snail, diminishing the expression of N-cadherin, vimentin, and ADAM9 and raising the expression of E-cadherin and proteins
Snail↓,
N-cadherin↓,
Vim↓,
E-cadherin↑,
STAT3↓, inhibiting STAT3 signaling
TGF-β↓, reducing the expression of TGF-β caused by vimentin and N-cadherin, Twist, Snail, and Slug and increasing the expression of E-cadherin in PC-3 cells.
ROS↓, quercetin exerted an anti-proliferative role on HCC cells by lessening intracellular ROS independently of p53 expression
P53↑, increasing the expression of p53 and BAX in hepatocellular carcinoma (HepG2) cell lines through the reduction of PKC, PI3K, and cyclooxygenase (COX-2)
BAX↑,
PKCδ↓,
PI3K↓,
COX2↓,
cFLIP↓, quercetin by inhibiting PI3K/AKT/mTOR and STAT3 pathways, decreasing the expression of cellular proteins such as c-FLIP, cyclin D1, and c-Myc, as well as reducing the production of IL-6 and IL-10 cytokines, leads to the death of PEL cells
cycD1↓,
cMyc↓,
IL6↓,
IL10↓,
Cyt‑c↑, In addition, quercetin induced c-cytochrome-dependent apoptosis and caspase-3 almost exclusively in the HSB2 cell line
TumCCA↑, Exposure of K562 cells to quercetin also significantly raised the cells in the G2/M phase, which reached a maximum peak in 24 hours
DNMTs↓, pathway through DNA demethylation activity, histone deacetylase (HDAC) repression, and H3ac and H4ac enrichment
HDAC↓,
ac‑H3↑,
ac‑H4↑,
Diablo↑, SMAC/DIABLO exhibited activation
Casp3↑, enhanced levels of activated caspase 3, cleaved caspase 9, and PARP1
Casp9↑,
PARP1↑,
eff↑, green tea and quercetin as monotherapy caused the reduction of levels of anti-apoptotic proteins, CDK6, CDK2, CYCLIN D/E/A, BCL-2, BCL-XL, and MCL-1 and an increase in expression of BAX.
PTEN↑, Quercetin upregulates the level of PTEN as a tumor suppressor, which inhibits AKT signaling
VEGF↓, Quercetin had anti-inflammatory and anti-angiogenesis effects, decreasing VGEF-A, NO, iNOS, and COX-2 levels
NO↓,
iNOS↓,
ChemoSen↑, quercetin and chemotherapy can potentiate their effect on the malignant cell
eff↑, combination with hyperthermia, Shen et al. Quercetin is a method used in cancer treatment by heating, and it was found to reduce Doxorubicin hydrochloride resistance in leukemia cell line K562
eff↑, treatment with ellagic acid, luteolin, and curcumin alone showed excellent anticancer effects.
eff↑, co-treatment with quercetin and curcumin led to a reduction of mitochondrial membrane integrity, promotion of cytochrome C release, and apoptosis induction in CML cells
uPA↓, A-549 cells were shown to have reduced mRNA expressions of urokinase plasminogen activator (uPA), Upar, protein expression of CXCR-4, CXCL-12, SDF-1 when quercetin was applied at 20 and 40 mM/ml by real-time PCR.
CXCR4↓,
CXCL12↓,
CLDN2↓, A-549 cells, indicated that quercetin could reduce mRNA and protein expression of Claudin-2 in A-549 cell lines without involving Akt and ERK1/2,
CDK6↓, CDK6, which supports the growth and viability of various cancer cells, was hampered by the dose-dependent manner of quercetin (IC50 dose of QR for A-549 cells is 52.35 ± 2.44 μM).
MMP9↓, quercetin up-regulated the rates of G1 phase cell cycle and cellular apoptotic in both examined cell lines compared with the control group, while it declined the expressions of the PI3K, AKT, MMP-2, and MMP-9 proteins
TSP-1↑, quercetin increased TSP-1 mRNA and protein expression to inhibit angiogenesis,
Ki-67↓, significant reductions in Ki67 and PCNA proliferation markers and cell survival markers in response to quercetin and/or resveratrol.
PCNA↓,
ROS↑, Also, quercetin effectively causes intracellular ROS production and ER stress
ER Stress↑,

1490- RES,    Anticancer Potential of Resveratrol, β-Lapachone and Their Analogues
- Review, Var, NA
TumCCA↑, lapachone and its iodine derivatives induce cell cycle arrest in G2/M in human oral squamous cell carcinoma cells
ROS↑, The primary mechanism of action of β-lapachone and its derivatives is the formation of ROS [92] through its processing by NAD(P)H quinone oxidoreductase 1 (NQO1).
Ca+2↑, abnormal production of ROS leads to an increase in Ca++
MMP↓, depolarization of the mitochondrial membrane
ATP↓, decrease in ATP synthesis
TOP1?, β-lapachone inhibits the catalytic activity of topoisomerase I
P53↑, including upregulation of the p53 tumor suppressor protein
p53 Wildtype∅,
Akt↓, inactivation of the Akt/mTOR pathway was again attributed to β-lapachone, promoting the inhibition of EMT transition in NQO1-positive cells.
mTOR↓,
EMT↓,
*BioAv↓, β-lapachone is a promising anticancer drug, its low bioavailability represents a limitation for clinical use due to low solubility in water and gastrointestinal fluids

2328- RES,    Resveratrol Inhibits Cancer Cell Metabolism by Down Regulating Pyruvate Kinase M2 via Inhibition of Mammalian Target of Rapamycin
- in-vitro, Cerv, HeLa - in-vitro, Liver, HepG2 - in-vitro, BC, MCF-7
PKM2↓, resveratrol down-regulated PKM2 expression by inhibiting mTOR signaling and suppressed cancer metabolism
mTOR↓,
GlucoseCon↓, decreased glucose uptake, lactate production (aerobic glycolysis) and reduced anabolism (macromolecule synthesis) in various cancer cell lines
lactateProd↓,

2332- RES,    Resveratrol’s Anti-Cancer Effects through the Modulation of Tumor Glucose Metabolism
- Review, Var, NA
Glycolysis↓, Resveratrol reduces glucose uptake and glycolysis by affecting Glut1, PFK1, HIF-1α, ROS, PDH, and the CamKKB/AMPK pathway.
GLUT1↓, resveratrol reduces glycolytic flux and Glut1 expression by targeting ROS-mediated HIF-1α activation in Lewis lung carcinoma tumor-bearing mice
PFK1↓,
Hif1a↓, Resveratrol specifically suppresses the nuclear β-catenin protein by inhibiting HIF-1α
ROS↑, Resveratrol increases ROS production
PDH↑, leading to increased PDH activity, inhibiting HK and PFK, and downregulating PKM2 activity
AMPK↑, esveratrol elevated NAD+/NADH, subsequently activated Sirt1, and in turn activated the AMP-activated kinase (AMPK),
TumCG↓, inhibits cell growth, invasion, and proliferation by targeting NF-kB, Sirt1, Sirt3, LDH, PI-3K, mTOR, PKM2, R5P, G6PD, TKT, talin, and PGAM.
TumCI↓,
TumCP↓,
p‑NF-kB↓, suppressing NF-κB phosphorylation
SIRT1↑, Resveratrol activates the target subcellular histone deacetylase Sirt1 in various human tissues, including tumors
SIRT3↑,
LDH↓, decreases glycolytic enzymes (pyruvate kinase and LDH) in Caco2 and HCT-116 cells
PI3K↓, Resveratrol also targets “classical” tumor-promoting pathways, such as PI3K/Akt, STAT3/5, and MAPK, which support glycolysis
mTOR↓, AMPK activation further inhibits the mTOR pathway
PKM2↓, inhibiting HK and PFK, and downregulating PKM2 activity
R5P↝,
G6PD↓, G6PDH knockdown significantly reduced cell proliferation
TKT↝,
talin↓, induces apoptosis by targeting the pentose phosphate and talin-FAK signaling pathways
HK2↓, Resveratrol downregulates glucose metabolism, mainly by inhibiting HK2;
GRP78/BiP↑, resveratrol stimulates GRP-78, and decreases glucose uptake,
GlucoseCon↓,
ER Stress↑, resveratrol-induced ER-stress leads to apoptosis of CRC cells
Warburg↓, Resveratrol reverses the Warburg effect
PFK↓, leading to increased PDH activity, inhibiting HK and PFK, and downregulating PKM2 activity

2334- RES,    Glut 1 in Cancer Cells and the Inhibitory Action of Resveratrol as A Potential Therapeutic Strategy
- Review, Var, NA
GLUT1↓, resveratrol and other natural products as GLUT1 inhibitors
GlucoseCon↓, Inhibition of Glucose Uptake by Resveratrol
lactateProd↓, RSV were able to inhibit glucose uptake, lactate production, Akt, and mTOR signaling
Akt↓,
mTOR↓,
Dose↝, results suggest that RSV can behave differently according to the dose used and the cell type and the metabolic state
SIRT6↑, RSV induces the expression of silent information regulator-6 (SIRT6) in hypopharyngeal carcinoma FaDu cell line
PKM2↓, observed that RSV down-regulate pyruvate kinase 2 (PKM2) expression by inhibiting mTOR signaling and suppressed cancer metabolism
HK2↓, RSV showed a decrease in mRNA and protein levels of GLUT1, HK2, PFK1, and PKM2 which finally caused inhibition of aerobic glycolysis in a study of VEGF-angiogenesis in human umbilical vein endothelial cells
PFK1↓,
ChemoSen↑, combinatorial strategies that could use GLUT1 inhibitors such as RSV with anticancer conventional drugs for therapy are promising

3071- RES,    Resveratrol and Its Anticancer Effects
- Review, Var, NA
chemoP↑, In this review, the effects of resveratrol are emphasized on chemopreventive, therapeutic, and anticancer.
SIRT1↑, RSV can directly activate Sirt1 expression and induce autophagy independently or dependently on the mammalian target of rapamycin (mTOR)
Hif1a↓, RSV suppresses tumor angiogenesis by inhibiting HIF-1a and VEGF protein
VEGF↓,
STAT3↓, RSV effectively prevents cancer by inhibiting STAT3 expression
NF-kB↓, also has an inhibitory effect on antiapoptotic mediators such as NF-kB, COX-2, phosphatidylinositol 3-kinase (PI3K), and mTOR (52).
COX2↓,
PI3K↓,
mTOR↓,
NRF2↑, Activation of the Nrf2/antioxidant response element (ARE) pathway by endogenous or exogenous stimuli under normal physiological conditions has the potential to inhibit cancer and/or cancer cell survival, growth, and proliferation
NLRP3↓, RSV downregulates the NLRP3 gene by activating the Sirt1 protein, thereby inducing autophagy
H2O2↑, RSV mediates cytotoxicity in cancer cells by increasing intracellular hydrogen peroxide (H2O2) and oxidative stress levels that will cause cell death
ROS↑,
P53↑, RSV activates p53, increases the expression of PUMA and BAX
PUMA↑,
BAX↑,

3096- RES,    Identification of potential target genes of non-small cell lung cancer in response to resveratrol treatment by bioinformatics analysis
- in-vitro, Lung, A549 - in-vitro, Lung, H1299
TumCP↓, resveratrol might inhibit proliferation but induce apoptosis and autophagy via inhibiting Akt/mTOR pathway and activating p38-MAPK pathway in A549 and H1299 NSCLC cells [7]
Apoptosis↑,
Akt↓,
mTOR↓,
p38↑,
MAPK↑,
STAT3↓, inhibiting the messenger RNA (mRNA) and protein expression of signal transducer and activator of transcription 3 (STAT3) in A549 cells
ROS↑, by leading to mitochondrial dysfunction and increasing of reactive oxygen species (ROS)
SIRT1↑, suggested that resveratrol inhibited age-dependent spontaneous tumorigenesis by increasing the expression of SIRT1 and activating its downstream targets
SOX2↓, resveratrol treatment promoted EGFR and inhibited SOX2.

3092- RES,    Resveratrol in breast cancer treatment: from cellular effects to molecular mechanisms of action
- Review, BC, MDA-MB-231 - Review, BC, MCF-7
TumCP↓, The anticancer mechanisms of RES in regard to breast cancer include the inhibition of cell proliferation, and reduction of cell viability, invasion, and metastasis.
tumCV↓,
TumCI↓,
TumMeta↓,
*antiOx↑, antioxidative, cardioprotective, estrogenic, antiestrogenic, anti-inflammatory, and antitumor properties it has been used against several diseases, including diabetes, neurodegenerative diseases, coronary diseases, pulmonary diseases, arthritis, and
*cardioP↑,
*Inflam↑,
*neuroP↑,
*Keap1↓, RES administration resulted in a downregulation of Keap1 expression, therefore, inducing Nrf2 signaling, and leading to a decrease in oxidative damage
*NRF2↑,
*ROS↓,
p62↓, decrease the severity of rheumatoid arthritis by inducing autophagy via p62 downregulation, decreasing the levels of interleukin-1β (IL-1β) and C-reactive protein as well as mitigating angiopoietin-1 and vascular endothelial growth factor (VEGF) path
IL1β↓,
CRP↓,
VEGF↓,
Bcl-2↓, RES downregulates the levels of Bcl-2, MMP-2, and MMP-9, and induces the phosphorylation of extracellular-signal-regulated kinase (ERK)/p-38 and FOXO4
MMP2↓,
MMP9↓,
FOXO4↓,
POLD1↓, The in vivo experiment involving a xenograft model confirmed the ability of RES to reduce tumor growth via POLD1 downregulation
CK2↓, RES reduces the expression of casein kinase 2 (CK2) and diminishes the viability of MCF-7 cells.
MMP↓, Furthermore, RES impairs mitochondrial membrane potential, enhances ROS generation, and induces apoptosis, impairing BC progression
ROS↑,
Apoptosis↑,
TumCCA↑, RES has the capability of triggering cell cycle arrest at S phase and reducing the number of 4T1 BC cells in G0/G1 phase
Beclin-1↓, RES administration promotes cytotoxicity of DOX against BC cells by downregulating Beclin-1 and subsequently inhibiting autophagy
Ki-67↓, Reducing the Ki-67
ATP↓, RES’s administration is responsible for decreasing ATP production and glucose metabolism in MCF-7 cells.
GlutMet↓,
PFK↓, RES decreased PFK activity, preventing glycolysis and glucose metabolism in BC cells and decreasing cellular growth rate
TGF-β↓, RES (12.5–100 µM) inhibited TGF-β signaling and reduced the expression levels of its downstream targets that include Smad2 and Smad3 and as a result impaired the progression of BC cells.
SMAD2↓,
SMAD3↓,
Vim?, a significant decrease in the levels of vimentin, Snail1 and Slug occurred, while E-cadherin levels increased to suppress EMT and metastasis of BC cells.
Snail↓,
Slug↓,
E-cadherin↑,
EMT↓,
Zeb1↓, a significant decrease in the levels of vimentin, Snail1 and Slug occurred, while E-cadherin levels increased to suppress EMT and metastasis of BC cells.
Fibronectin↓,
IGF-1↓, RES administration (10 and 20 µM) impaired the migration and invasion of BC cells via inhibiting PI3K/Akt and therefore decreasing IGF-1 expression and preventing the upregulation of MMP-2
PI3K↓,
Akt↓,
HO-1↑, The activation of heme oxygenase-1 (HO-1) signaling by RES reduced MMP-9 expression and prevented metastasis of BC cells
eff↑, RES-loaded gold nanoparticles were found to enhance RES’s ability to reduce MMP-9 expression as compared to RES alone
PD-1↓, RES inhibited PD-1 expression to promote CD8+ T cell activity and enhance Th1 immune responses.
CD8+↑,
Th1 response↑,
CSCs↓, RES has the ability to target CSCs in various tumors
RadioS↑, RES in reversing drug resistance and radio resistance.
SIRT1↑, RES administration (12.5–200 µmol/L) promotes sensitivity of BC cells to DOX by increasing Sirtuin 1 (SIRT1) expression
Hif1a↓, downregulating HIF-1α expression, an important factor in enhancing radiosensitivity
mTOR↓, mTOR suppression

3027- RosA,    Rosmarinic acid inhibits proliferation and invasion of hepatocellular carcinoma cells SMMC 7721 via PI3K/AKT/mTOR signal pathway
- in-vitro, HCC, SMMC-7721 cell
TumCP↓, RosA significantly inhibited the proliferation of SMMC-7721 cells and induced G1 arrest and apoptosis in a dose-dependent manner
TumCCA↑,
Apoptosis↑,
EMT↓, RosA might inhibit cell invasion by regulating epithelial-mesenchymal transition
TumCI↓,
PI3K↓, IGF-1 could reverse the inhibition of PI3K/AKT/mTOR signal pathway by RosA
Akt↓,
mTOR↓,
TumCMig↓, inhibition effect of migration and invasion by regulation MMPs, Vimentin and EMT.
MMPs↓,
Vim↓,

3010- RosA,    Exploring the mechanism of rosmarinic acid in the treatment of lung adenocarcinoma based on bioinformatics methods and experimental validation
- in-vitro, Lung, A549 - in-vivo, NA, NA
TumCG↓, RosA could inhibit the growth of transplanted tumors in nude mice bearing tumors of lung cancer cells, reduce the positive expression of Ki67 in lung tumor tissue, and hinder the proliferation of lung tumor cells.
Ki-67↓,
FABP4↑, Upregulated expression of PPARG and FABP4 by activating the PPAR signaling pathway increases the level of ROS in lung tumor tissues and promotes apoptosis of lung tumor cells.
PPARα↑,
ROS↑, RosA increases ROS levels in lung tumor tissues and induces apoptosis
Apoptosis↑,
MMP9↓, In addition, RosA can also reduce the expression of MMP-9 and IGFBP3, inhibit the migration and invasion of lung tumor tissue cells.
IGFBP3↓,
MMP2↓, In addition, RosA down-regulated the expression of MMP-9 and MMP2, regulated epithelial-mesenchymal transition to inhibit cell invasion, and slow down tumor development.
EMT↓,
TumCI↓,
PI3K↓, his study also confirmed that RosA down-regulated the expression of the PI3K/AKT/mTOR pathway-related proteins
Akt↓,
mTOR↓,
Gli1↓, Xiang Zhou et al. [28] reported that RosA inhibited the growth of PDAC tumors by inhibiting Gli1.
PPARγ↑, Upregulated expression of PPARG
Cyt‑c↑, figure 7

3002- RosA,    Anticancer Effects of Rosemary (Rosmarinus officinalis L.) Extract and Rosemary Extract Polyphenols
- Review, Var, NA
TumCG↓, SW480 colon cancer cells and found RE to significantly decrease cell growth at a concentration of 31.25 µg/mL (48 h),
TumCP↓, Cell proliferation was dramatically decreased and cell cycle arrest was induced in HT-29 and SW480 c
TumCCA↑,
ChemoSen↑, RE enhanced the inhibitory effects of the chemotherapeutic drug 5-fluorouracil (5-FU) on proliferation and sensitized 5-FU resistant cells
NRF2↑, HCT116 ↑ Nrf2, ↑ PERK, ↑ sestrin-2, ↑ HO-1, ↑ cleaved-casp 3
PERK↑,
SESN2↑,
HO-1↑,
cl‑Casp3↑,
ROS↑, HT-29 ↑ ROS accumulation, ↑ UPR, ↑ ER-stress
UPR↑,
ER Stress↑,
CHOP↑, HT-29: ↑ ROS levels, ↑ HO-1 and CHOP
HER2/EBBR2↓, SK-BR-3: ↑ FOS levels, ↑ PARP cleavage, ↓ HER2, ↓ ERBB2, ↓ ERα receptor.
ER-α36↓,
PSA↓, LNCaP : ↑ CHOP, ↓ PSA production, ↑ Bax, ↑ cleaved-casp 3, ↓ androgen receptor expression
BAX↑,
AR↓,
P-gp↓, A2780: ↓ P-glyco protein, ↑ cytochrome c gene, ↑ hsp70 gene
Cyt‑c↑,
HSP70/HSPA5↑,
eff↑, This study noted that the rosemary essential oil was more potent than its individual components (α-pinene, β-pinene, 1,8-cineole) when tested alone at the same concentrations.
p‑Akt↓, A549: ↓ p-Akt, ↓ p-mTOR, ↓ p-P70S6K, ↑ PARP cleavage
p‑mTOR↓,
p‑P70S6K↓,
cl‑PARP↑,
eff↑, RE containing 10 µM equivalent of CA, or 10 µM CA alone (96 h) potentiated the ability of vitamin D derivatives to inhibit cell viability and proliferation, induce apoptosis and cell cycle arrest and increase differentiation of WEHI-3BD murine leukem

3003- RosA,    Comprehensive Insights into Biological Roles of Rosmarinic Acid: Implications in Diabetes, Cancer and Neurodegenerative Diseases
- Review, Var, NA - Review, AD, NA - Review, Park, NA
*Inflam↓, anti-inflammatory and antioxidant properties and its roles in various life-threatening conditions, such as cancer, neurodegeneration, diabetes,
*antiOx↑,
*neuroP↑,
*IL6↓, diabetic rat model treated with RA, there is an anti-inflammatory activity reported. This activity is achieved through the inhibition of the expression of various proinflammatory factors, including in IL-6, (IL-1β), tumour
*IL1β↓,
*NF-kB↓, inhibiting NF-κB activity and reducing the production of prostaglandin E2 (PGE2), nitric oxide (NO), and cyclooxygenase-2 (COX-2) in RAW 264.7 cells.
*PGE2↓,
*COX2↓,
*MMP↑, RA inhibits cytotoxicity in tumour patients by maintaining the mitochondrial membrane potential
*memory↑, amyloid β(25–35)-induced AD in rats was treated with RA, which mitigated the impairment of learning and memory disturbance by reducing oxidative stress
*ROS↓,
*Aβ↓, daily consumption of RA diminished the effect of neurotoxicity of Aβ25–35 in mice
*HMGB1↓, SH-SY5Y in vitro and ischaemic diabetic stroke in vivo, and the studies revealed that a 50 mg/kg dose of RA decreased HMGB1 expression
TumCG↓, Rosemary and its extracts have been shown to exhibit potential in inhibiting the growth of cancer cells and the development of tumours in various cancer types, including colon, breast, liver, and stomach cancer
MARK4↓, Another study reported the inhibition of Microtubule affinity regulating kinase 4 (MARK4) by RA
Zeb1↓, Fig 4 BC:
MDM2↓,
BNIP3↑,
ASC↑, Skin Cancer
NLRP3↓,
PI3K↓,
Akt↓,
Casp1↓,
E-cadherin↑, Colon Cancer
STAT3↓,
TLR4↓,
MMP↓,
ICAM-1↓,
AMPK↓,
IL6↑, PC and GC
MMP2↓,
Warburg↓,
Bcl-xL↓, CRC: Apoptosis induction caspases ↑, Bcl-XL ↓, BCL-2 ↓, Induces cell cycle arrest, Inhibition of EMT and invasion, Reduced metastasis
Bcl-2↓,
TumCCA↑,
EMT↓,
TumMeta↓,
mTOR↓, Inhibits mTOR/S6K1 pathway to induce apoptosis in cervical cancer
HSP27↓, Glioma ↓ expression of HSP27 ↑ caspase-3
Casp3↑,
GlucoseCon↓, GC: Inhibited the signs of the Warburg effect, such as high glucose consumption/anaerobic glycolysis, lactate production/cell acidosis, by inhibiting the IL-6/STAT3 pathway
lactateProd↓,
VEGF↓, ↓ angiogenic factors (VEGF) and phosphorylation of p65
p‑p65↓,
GIT1↓, PC: Increased degradation of Gli1
Foxm1↓, inhibiting FOXM1
cycD1↓, RA treatment in CRC cells inhibited proliferation-induced cell cycle arrest of the G0/G1 phase by reducing the cyclin D1 and CDK4 levels,
CDK4↓,
MMP9↓, CRC cells, and it led to a decrease in the expressions of matrix metalloproteinase (MMP)-2 and MMP-9.
HDAC2↓, PCa cells through the inhibition of HDAC2

3007- RosA,    Hepatoprotective effects of rosmarinic acid: Insight into its mechanisms of action
- Review, NA, NA
*ROS↓, antioxidant properties as a ROS scavenger and lipid peroxidation inhibitor, anti-inflammatory, neuroprotective and antiangiogenic among others.
*lipid-P↓,
*Inflam↓,
*neuroP↑,
*angioG↓,
*eff↑, The hepatoprotective effects of RA alone and in combination with caffeic acid (CA) was reported in t-BHP-induced oxidative liver damage
*AST↓, significant reduction of indicators of hepatic toxicity, such as AST, ALT, GSSG, lipid peroxidation.
*ALAT↓,
*GSSG↓,
*eNOS↓, It also reduced the liver content of eNOS/iNOS and NO, attenuated NF-κB activation
*iNOS↓,
*NO↓,
*NF-kB↓,
*MMP2↓, It inhibited MMP-2 activity and suppressed ROS generation and lipid peroxidation.
*MDA↓, It also decreased malondialdehyde (MDA) and TNF-α levels while increasing GSH levels as well as SOD and GSH-Px activities in the livers and kidneys.
*TNF-α↓,
*GSH↑,
*SOD↑,
*IL6↓, RA decreased the hepatic level of IL-6, TNF-Alpha, and PGE2, as well as the activity of COX-2 It also decreased hepatic RAGE and sorbitol levels, and GLO-1 activity
*PGE2↓,
*COX2↓,
*mTOR↑, In the study, it was observed that RA stimulated hepatocyte proliferation. Specifically activated the mTOR signaling pathway during liver regeneration and rescued PH-impaired liver functions

3186- SFN,    A pharmacological inhibitor of NLRP3 inflammasome prevents non-alcoholic fatty liver disease in a mouse model induced by high fat diet
- in-vivo, Nor, NA
*NLRP3↓, suppression of NLRP3 inflammasome activation in the liver by SFN as evidenced by decrease in mRNA levels of ASC and caspase-1, caspase-1 enzyme activity, and IL-1β levels.
*ASC↓,
*Casp1↓,
*IL1β↓,
*ALAT↓, SFN treatment resulted in a reduction of the serum levels of ALT and AST increased by HFD
*AST↓,
*AMPK↑, Sulforaphane induces activation of the AMPK-autophagy axis in mouse primary hepatocytes
*mTOR↓, SFN reduced the phosphorylation of mTOR(Ser2448) in primary mouse hepatocytes (Fig. 4D), suggesting that SFN inhibited mTOR activation
*P70S6K↓, SFN suppression of mTOR activation was confirmed by a decrease in p70S6K1 phosphorylation, which is a downstream substrate of mTOR

1726- SFN,    Sulforaphane: A Broccoli Bioactive Phytocompound with Cancer Preventive Potential
- Review, Var, NA
Dose↝, Most clinical trials utilize doses of GFN ranging from 25 to 800 μmol , translating to about 65–2105 g raw broccoli or 3/4 to 23 cups of raw broccoli.
eff↝, SFN-rich powders have been made by drying out broccoli sprout
IL1β↓,
IL6↓,
IL12↓,
TNF-α↓,
COX2↓,
CXCR4↓,
MPO↓,
HSP70/HSPA5↓,
HSP90↓,
VCAM-1↓,
IKKα↓,
NF-kB↓,
HO-1↑,
Casp3↑,
Casp7↑,
Casp8↑,
Casp9↑,
cl‑PARP↑,
Cyt‑c↑,
Diablo↑,
CHOP↑,
survivin↓,
XIAP↓,
p38↑,
Fas↑,
PUMA↑,
VEGF↓,
Hif1a↓,
Twist↓,
Zeb1↓,
Vim↓,
MMP2↓,
MMP9↓,
E-cadherin↑,
N-cadherin↓,
Snail↓,
CD44↓,
cycD1↓,
cycA1↓,
CycB↓,
cycE↓,
CDK4↓,
CDK6↓,
p50↓,
P53↑,
P21↑,
GSH↑,
SOD↑,
GSTs↑,
mTOR↓,
Akt↓,
PI3K↓,
β-catenin/ZEB1↓,
IGF-1↓,
cMyc↓,

1458- SFN,    Sulforaphane Impact on Reactive Oxygen Species (ROS) in Bladder Carcinoma
- Review, Bladder, NA
HDAC↓, SFN’s role as a natural HDAC-inhibitor is highly relevant
eff↓, SFN exerts stronger anti-proliferative effects on bladder cancer cell lines under hypoxia, compared to normoxic conditions
TumW↓, mice, SFN (52 mg/kg body weight) for 2 weeks reduced tumor weight by 42%
TumW↓, In another study a 63% inhibition was noted when tumor bearing mice were treated with SFN (12 mg/kg body weight) for 5 weeks
angioG↓,
*toxicity↓, In both investigations, the administration of SFN did not evoke apparent toxicity
GutMicro↝, SFN may protect against chemical-induced bladder cancer by normalizing the composition of gut microbiota and repairing pathophysiological destruction of the gut barrier,
AntiCan↑, A prospective study involving nearly 50,000 men indicated that high cruciferous vegetable consumption may reduce bladder cancer risk
ROS↑, Evidence shows that SFN upregulates the ROS level in T24 bladder cancer cells to induce apoptosis
MMP↓,
Cyt‑c↑,
Bax:Bcl2↑,
Casp3↑,
Casp9↑,
Casp8∅,
cl‑PARP↑,
TRAIL↑, ROS generation promotes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) sensitivity
DR5↑,
eff↓, Blockade of ROS generation inhibited apoptotic activity and prevented Nrf2 activation in cells treated with SFN, pointing to a direct effect of ROS on apoptosis
NRF2↑, SFN potently inhibits carcinogenesis via activation of the Nrf2 pathway
ER Stress↑, endoplasmic reticulum stress evoked by SFN
COX2↓, downregulates COX-2 in T24 cells
EGFR↓, downregulation of both the epidermal growth factor receptor (EGFR) and the human epidermal growth factor receptor 2 (HER2/neu
HER2/EBBR2↓,
ChemoSen↑, gemcitabine/cisplatin and SFN triggered pathway alterations in bladder cancer may open new therapeutic strategies, including a combined treatment regimen to cause additive effects.
NF-kB↓,
TumCCA?, cell cycle at the G2/M phase
p‑Akt↓,
p‑mTOR↓,
p70S6↓,
p19↑, p19 and p21, are elevated under SFN
P21↑,
CD44↓, CD44s expression correlates with induced intracellular levels of ROS in bladder cancer cells variants v3–v7 on bladder cancer cells following SFN exposure

1475- SFN,  Form,    Combination of Formononetin and Sulforaphane Natural Drug Repress the Proliferation of Cervical Cancer Cells via Impeding PI3K/AKT/mTOR Pathway
- in-vitro, Cerv, HeLa
TumCP↓,
PI3K↓,
Akt↓,
mTOR↓,
eff↑, cytotoxicity of FN and SFN was determined to be around 23.7 µM and 26.92 µM, respectively. Combining FN and SFN causes considerable cytotoxicity in HeLa cells, with an IC50 of 21.6 µM
ROS↑, considerable ROS generation

1479- SFN,    Sulforaphane triggers Sirtuin 3-mediated ferroptosis in colorectal cancer cells via activating the adenosine 5'-monophosphate (AMP)-activated protein kinase/ mechanistic target of rapamycin signaling pathway
- in-vitro, CRC, HCT116
Ferroptosis↑, sulforaphane triggered the ferroptosis of HCT-116 cells by activating the SIRT3/AMPK/mTOR axis
SIRT3↑,
AMPK↑,
mTOR↑,
tumCV↓, SIRT3 overexpression reduced cell viability and increased intracellular levels of ROS, MDA, and iron
ROS↑,
MDA↑,
Iron↑,

1513- SFN,  acetaz,    Next-generation multimodality of nutrigenomic cancer therapy: sulforaphane in combination with acetazolamide actively target bronchial carcinoid cancer in disabling the PI3K/Akt/mTOR survival pathway and inducing apoptosis
- in-vitro, BrCC, H720 - in-vivo, BrCC, NA - in-vitro, BrCC, H727
eff↑, Combining AZ+SFN reduced tumor cell survival compared to each agent alone, both in vitro and in vivo xenograft tissues.
tumCV↓,
Apoptosis↑,
P21↑,
PI3K↓,
Akt↓,
mTOR↓,
5HT↓, significantly reducing 5-HT secretion in carcinoid syndrome.
NRF2↑, AZ and SFN increased the expression of Nrf2 by 61% and 104%, respectively. Combination treatment further increased expression by 127%

109- SIL,    Silibinin induces apoptosis through inhibition of the mTOR-GLI1-BCL2 pathway in renal cell carcinoma
- vitro+vivo, RCC, 769-P - in-vitro, RCC, 786-O - in-vitro, RCC, ACHN - in-vitro, RCC, OS-RC-2
HH↓,
Gli1↓,
GLI2↓,
mTOR↓,
Bcl-2↓,

3288- SIL,    Silymarin in cancer therapy: Mechanisms of action, protective roles in chemotherapy-induced toxicity, and nanoformulations
- Review, Var, NA
Inflam↓, Silymarin, a milk thistle extract, has anti-inflammatory, immunomodulatory, anti-lipid peroxidative, anti-fibrotic, anti-oxidative, and anti-proliferative properties.
lipid-P↓,
TumMeta↓, Silymarin exhibits not only anti-cancer functions through modulating various hallmarks of cancer, including cell cycle, metastasis, angiogenesis, apoptosis, and autophagy, by targeting a plethora of molecules
angioG↓,
chemoP↑, but also plays protective roles against chemotherapy-induced toxicity, such as nephrotoxicity,
EMT↓, Figure 2, Metastasis
HDAC↓,
HATs↑,
MMPs↓,
uPA↓,
PI3K↓,
Akt↓,
VEGF↓, Angiogenesis
CD31↓,
Hif1a↓,
VEGFR2↓,
Raf↓,
MEK↓,
ERK↓,
BIM↓, apoptosis
BAX↑,
Bcl-2↓,
Bcl-xL↓,
Casp↑,
MAPK↓,
P53↑,
LC3II↑, Autophagy
mTOR↓,
YAP/TEAD↓,
*BioAv↓, Additionally, the oral bioavailability of silymarin in rats is only 0.73 %
MMP↓, silymarin treatment reduced mitochondrial transmembrane potential, leading to an increase in cytosolic cytochrome c (Cyt c), downregulating proliferation-associated proteins (PCNA, c-Myc, cyclin D1, and β-catenin)
Cyt‑c↑,
PCNA↓,
cMyc↓,
cycD1↓,
β-catenin/ZEB1↓,
survivin↓, and anti-apoptotic proteins (survivin and Bcl-2), and upregulating pro-apoptotic proteins (caspase-3, Bax, APAF-1, and p53)
APAF1↑,
Casp3↑,
MDSCs↓, ↓MDSCs, ↓IL-10, ↑IL-2 and IFN-γ
IL10↓,
IL2↑,
IFN-γ↑,
hepatoP↑, Moreover, in a randomized clinical trial, silymarin attenuated hepatoxicity in non-metastatic breast cancer patients undergoing a doxorubicin/cyclophosphamide-paclitaxel regimen
cardioP↑, For example, Rašković et al. studied the hepatoprotective and cardioprotective effects of silymarin (60 mg/kg orally) in rats following DOX
GSH↑, silymarin could protect the kidney and heart from ADR toxicity by protecting against glutathione (GSH) depletion and inhibiting lipid peroxidation
neuroP↑, silymarin attenuated the neurotoxicity of docetaxel by reducing apoptosis, inflammation, and oxidative stress

3289- SIL,    Silymarin: a promising modulator of apoptosis and survival signaling in cancer
- Review, Var, NA
*BioAv↝, silymarin’s poor bioavailability and limited thérapeutic efficacy have been overcome by encapsulation of silymarin into nanoparticles
*BioAv↓, Silymarin is barely 20–50% absorbed by the GIT cells and has an absolute oral bioavailability of 0.95%
Fas↑, silibinin, enhances the Fas pathway in most cancers cells by upregulating the Fas and Fas L
FasL↑,
FADD↑, silymarin triggered apoptosis via upregulating the expression of FADD (Fig. 2b), a downstream component of the death receptor pathway, subsequently leading to the cleavage of procaspase 8 and initiation of apoptotic cell death
pro‑Casp8↑,
Apoptosis↑,
DR5↑, silymarin promotes apoptosis through the death receptor-mediated pathway, contributing to its anticancer effects
Bcl-2↑, Bcl-2, an anti-apoptotic protein, was decreased
BAX↑, Bax is also upregulated and leads to the activation of caspase-3.
Casp3↑,
PI3K↓, Silibinin inhibits the PI3K activity, leading to the reduction of FoxM1 (Forkhead box M1) and the subsequent activation of the mitochondrial apoptotic pathway
Foxm1↓,
p‑mTOR↓, inhibiting phosphorylation of several key components in this pathway, such as mTOR, p70S6K and 4E-BP1
p‑P70S6K↓,
Hif1a↓, mTOR pathway signaling in turn may result in low levels of HIF-1α due to the unfavorable conditions of hypoxia.
Akt↑, silibinin activates the Akt pathway in cervical cancer cells. This activation of Akt could have some bearing on the overall antitumor activity of silibinin in cervical cancer cells.
angioG↓, silibinin inhibited STAT3, HIF-1α, and NF-κB, thereby reducing the population of lung macrophages and limiting angiogenesis
STAT3↓,
NF-kB↓,
lipid-P↓, silibinin delays the progression of endometrial carcinoma via inhibiting STAT3 activation and lowering lipid accumulation, which is regulated by SREBP1
eff↑, Sorafenib and silibinin work together to target both liver cancer cells and cancer stem cells. This combination operates by suppressing the STAT3/ERK/AKT pathways and decreasing the production of Mcl-1 and Bcl-2 proteins
CDK1↓, reducing the expression of CDK1, survivin, Bcl-xL, cyclinB1 and Mcl- 1 and simultaneously activate caspases 3 and 9
survivin↓,
CycB↓,
Mcl-1↓,
Casp9↑,
AP-1↓, hindered the activation of transcription factors NF-κB and AP-1
BioAv↑, Liang et al., created a chitosan-based lipid polymer hybrid nanoparticles that boosted the bioavailability of silymarin by 14.38-fold

3318- SIL,    Pharmaceutical prospects of Silymarin for the treatment of neurological patients: an updated insight
- Review, AD, NA - Review, Park, NA
*hepatoP↑, widely studied as a hepatoprotective drug for various liver disorders.
*neuroP↑, research studies have shown its putative neuroprotective nature against various brain disorders, including psychiatric, neurodegenerative, cognitive, metabolic and other neurological disorders
*TLR4↓, Silymarin treatment has shown anti-inflammatory action in AD models by suppressing toll-like receptor 4 (TLR4) pathways and decreasing the increased mRNA levels of TNF-α, IL-1β and NF-κB
*TNF-α↓,
*IL1β↓,
*NF-kB↓,
*memory↑, improvement in memory los
*cognitive↑, finally leading to normal cognitive functions
*NRF2↑, upregulating the Nrf-2/HO-1 signaling in mice model
*HO-1↑,
*ROS↓, inhibition of oxidative stress in the brain
*Akt↑, Figure 4
*mTOR↑,
*SOD↑,
*Catalase↑,
*GSH↑,
*IL10↑,
*IL6↑,
*NO↓,
*MDA↓,
*AChE↓,
*MAPK↓,

2355- SK,    Pharmacological properties and derivatives of shikonin-A review in recent years
- Review, Var, NA
AntiCan↑, anticancer effects on various types of cancer by inhibiting cell proliferation and migration, inducing apoptosis, autophagy, and necroptosis.
TumCP↓,
TumCMig↓,
Apoptosis↑,
TumAuto↑,
Necroptosis↑,
ROS↑, Shikonin also triggers Reactive Oxygen Species (ROS) generation
TrxR1↓, inhibiting the activation of TrxR1, PKM2, RIP1/3, Src, and FAK
PKM2↓,
RIP1↓,
RIP3↓,
Src↓,
FAK↓,
PI3K↓, modulating the PI3K/AKT/mTOR and MAPKs signaling;
Akt↓, shikonin induced a dose-dependent reduction of miR-19a to inhibit the activity of PI3K/AKT/mTOR pathway
mTOR↓,
GRP58↓, shikonin induced apoptosis in human myeloid cell line HL-60 cells through downregulating the expression of ERS protein ERP57 (42).
MMPs↓, hikonin suppressed cell migration through inhibiting the NF-κB pathway and reducing the expression of MMP-2 and MMP-9
ATF2↓, shikonin inhibited cell proliferation and tumor growth through suppressing the ATF2 pathway
cl‑PARP↑, shikonin significantly upregulated the expression of apoptosis-related proteins cleaved PARP and caspase-3 and increased cell apoptosis through increasing the phosphorylation of p38 MAPK and JNK, and inhibiting the phosphorylation of ERK
Casp3↑,
p‑p38↑,
p‑JNK↑,
p‑ERK↓,

2232- SK,    Shikonin Induces Autophagy and Apoptosis in Esophageal Cancer EC9706 Cells by Regulating the AMPK/mTOR/ULK Axis
- in-vitro, ESCC, EC9706
tumCV↓, Shikonin exposure repressed cell viability and migration and invasion capabilities and caused EC9706 cell autophagy and apoptosis by activating the AMPK/mTOR/ULK axis.
TumCMig↓,
TumCI↓,
TumAuto↑,
Apoptosis↑,
Bcl-2↓, Bcl-2 protein expressions were decreased; nevertheless, the protein expression of Bax, cleaved caspase3, cleaved caspase-8, and cleaved PARP were elevated with increasing concentrations of shikonin
BAX↑,
cl‑Casp3↑,
cl‑Casp8↑,
cl‑PARP↑,
AMPK↑, Shikonin-Induced Autophagy and Apoptosis Through Activation of AMPK/mTOR/ULK Pathway
mTOR↑,
TumVol↓, The tumor diameter is reduced by more than 25%, the response rate is 37%, and the 1-year survival rate is 47%
OS↑,
LC3I↑, Similarly, shikonin can upregulate the protein expression of LC3 in EC9706 cells

2224- SK,    Shikonin induces apoptosis and autophagy via downregulation of pyrroline-5-carboxylate reductase1 in hepatocellular carcinoma cells
- in-vitro, HCC, SMMC-7721 cell - in-vitro, HCC, HUH7 - in-vitro, HCC, HepG2
PYCR1↓, SK may induce apoptosis and autophagy by reducing the expression of PYCR1 and suppressing PI3K/Akt/mTOR
PI3K↓,
Akt↓,
mTOR↓,
eff↑, SK reinforces its anti-tumor effects by downregulating PYCR1 in HCC cells

2415- SK,    Shikonin induces programmed death of fibroblast synovial cells in rheumatoid arthritis by inhibiting energy pathways
- in-vivo, Arthritis, NA
Apoptosis?, shikonin induced apoptosis and autophagy in RA-FLSs by activating the production of reactive oxygen species (ROS) and inhibiting intracellular ATP levels, glycolysis-related proteins, and the PI3K-AKT-mTOR signaling pathway.
TumAuto↑,
ROS↑,
ATP↓,
Glycolysis↓, shikonin can inhibit RA-glycolysis in FLSs
PI3K↓,
Akt↓,
mTOR↓,
*Apoptosis↓, Shikonin can significantly reduce the expression of apoptosis-related proteins, paw swelling in rat arthritic tissues, and the levels of inflammatory factors in peripheral blood, such as TNF-α, IL-6, IL-8, IL-10, IL-17A, and IL-1β while showing less
*Inflam↓,
*TNF-α↓,
*IL6↓,
*IL8↓,
*IL10↓,
*IL17↓,
*hepatoP↑, while showing less toxicity to the liver and kidney.
*RenoP↑,
PKM2↓, The expression of glycogen proteins PKM2, GLUT1, and HK2 decreased with increasing concentrations of shikonin
GLUT1↓,
HK2↓,

2199- SK,    Induction of Ferroptosis by Shikonin in Gastric Cancer via the DLEU1/mTOR/GPX4 Axis
- in-vitro, GC, NA
ROS↑, Shikonin could induce reactive oxygen species (ROS), lipid ROS, intracellular ferrous iron (Fe2+), and malondialdehyde (MDA) in GC.
lipid-P↑,
Iron↑,
MDA↑,
GPx4↓, shikonin decreased the expression of GPX4 by suppressing GPX4 synthesis and decreasing ferritin.
Ferritin↓,
DLEU1↓, shikonin decreased DLEU1 expression in GC cells
mTOR↓, shikonin might decrease GPX4 levels by inhibiting the DLEU1/mTOR pathway.
Ferroptosis↑, shikonin-induced ferroptosis

2197- SK,    Shikonin derivatives for cancer prevention and therapy
- Review, Var, NA
ROS↑, This compound accumulates in the mitochondria, which leads to the generation of reactive oxygen species (ROS), and deregulates intracellular Ca2+ levels.
Ca+2↑,
BAX↑, shikonin alone by increasing the expression of the pro-apoptotic Bax protein and decreasing the expression of the anti-apoptotic Bcl2 protein
Bcl-2↓,
MMP9↓, This treatment also inhibited metastasis by decreasing the expression of MMP-9 and NF-kB p65 without affecting MMP-2 expression.
NF-kB↓,
PKM2↓, Figure 4
Hif1a↓,
NRF2↓,
P53↑,
DNMT1↓,
MDR1↓,
COX2↓,
VEGF↓,
EMT↓,
MMP7↓,
MMP13↓,
uPA↓,
RIP1↑,
RIP3↑,
Casp3↑,
Casp7↑,
Casp9↑,
P21↓,
DFF45↓,
TRAIL↑,
PTEN↑,
mTOR↓,
AR↓,
FAK↓,
Src↓,
Myc↓,
RadioS↑, shikonin acted as a radiosensitizer because of the high ROS production it induced.

965- SK,    Shikonin suppresses proliferation and induces cell cycle arrest through the inhibition of hypoxia-inducible factor-1α signaling
- in-vitro, CRC, HCT116 - in-vitro, CRC, SW-620
Hif1a↓, shikonin inhibited HIF-1α protein synthesis without affecting the expression of HIF-1α mRNA or degrading HIF-1α protein
ROS↓, shikonin resulted in a significant decrease of hypoxia-induced ROS production in HCT116 and SW620 cells
mTOR↓,
p70S6↓,
4E-BP1↓,
eIF2α↓,
TumCCA↑, HCT116 cells
TumCP↓, HCT116 and SW620
Half-Life↝, shikonin-treated cells (Fig. S1), showing the half-life was around 50 min in HCT116 and SW620 cells.

318- SNP,    Silver nanoparticles regulate autophagy through lysosome injury and cell hypoxia in prostate cancer cells
- in-vitro, Pca, PC3
lysoM↓, decline of lysosomal membrane integrity
lysosome↓, decrease of lysosomal quantity
AMPKα↑,
TumAuto↑, autophagy activation
mTOR↑,

385- SNP,    Probiotic-derived silver nanoparticles target mTOR/MMP-9/BCL-2/dependent AMPK activation for hepatic cancer treatment
- in-vitro, Hepat, HepG2 - in-vitro, Hepat, WI38
TNF-α↑, AgNPs induce an upregulation in the synthesis of inflammation-associated cytokines, including (TNF-α and IL-33), within HepG2 cells.
IL33↑,
mTOR↓,
MMP9↓,
Bcl-2↓,
ROS↑,
Apoptosis↑,

2127- TQ,    Therapeutic Potential of Thymoquinone in Glioblastoma Treatment: Targeting Major Gliomagenesis Signaling Pathways
- Review, GBM, NA
chemoP↑, TQ can specifically sensitize tumor cells towards conventional cancer treatments and minimize therapy-associated toxic effects in normal cells
ChemoSen↑,
BioAv↑, TQ adds another advantage in overcoming blood-brain barrier
PTEN↑, TQ upregulates PTEN signaling [72, 73], interferes with PI3K/Akt signaling and promotes G(1) arrest, downregulates PI3K/Akt
PI3K↓,
Akt↓,
TumCCA↓,
NF-kB↓, and NF-κB and their regulated gene products, such as p-AKT, p65, XIAP, Bcl-2, COX-2, and VEGF, and attenuates mTOR activity
p‑Akt↓,
p65↓,
XIAP↓,
Bcl-2↓,
COX2↓,
VEGF↓,
mTOR↓,
RAS↓, Studies in colorectal cancer have demonstrated that TQ inhibits the Ras/Raf/MEK/ERK signaling
Raf↓,
MEK↓,
ERK↓,
MMP2↓, Multiple studies have reported that TQ downregulates FAC and reduces the secretion of MMP-2 and MMP-9 and thereby reduces GBM cells migration, adhesion, and invasion
MMP9↓,
TumCMig↓,
TumCI↓,
Casp↑, caspase activation and PARP cleavage
cl‑PARP↑,
ROS⇅, TQ is hypothesized to act as an antoxidant at lower concentrations and a prooxidant at higher concentrations depending on its environment [89]
ROS↑, In tumor cells specifically, TQ generates ROS production that leads to reduced expression of prosurvival genes, loss of mitochondrial potential,
MMP↓,
eff↑, elevated level of ROS generation and simultaneous DNA damage when treated with a combination of TQ and artemisinin
Telomerase↓, inhibition of telomerase by TQ through the formation of G-quadruplex DNA stabilizer, subsequently leads to rapid DNA damage which can eventually induce apoptosis in cancer cells specifically
DNAdam↑,
Apoptosis↑,
STAT3↓, TQ has shown to suppress STAT3 in myeloma, gastric, and colon cancer [86, 171, 172]
RadioS↑, TQ might enhance radiation therapeutic benefit by enhancing the cytotoxic efficacy of radiation through modulation of cell cycle and apoptosis [31]

2084- TQ,    Thymoquinone, as an anticancer molecule: from basic research to clinical investigation
- Review, Var, NA
*ROS↓, An interesting study reported that thymoquinone is actually a potent apoptosis inducer in cancer cells, but it exerts antiapoptotic effect through attenuating oxidative stress in other types of cell injury
*chemoP↑, antioxidant activity of thymoquinone is responsible for its chemopreventive activities
ROS↑, other studies reported thymoquinone induce apoptosis in cancer cells by exerting oxidative damage
ROS⇅, Another hypothesis states that thymoquinone acts as an antioxidant at lower concentrations and a prooxidant at higher concentrations
MUC4↓, Torres et al. [17] revealed that thymoquinone down-regulates glycoprotein mucin 4 (MUC4)
selectivity↑, thymoquinone was found to inhibit DNA synthesis, proliferation, and viability of cancerous cells, such as LNCaP, C4-B, DU145, and PC-3, but not noncancerous BPH-1 prostate epithelial cells [20].
AR↓, Down-regulation of androgen receptor (AR) and cell proliferation regulator E2F-1 was indicated as the mechanism behind thymoquinone’s action in prostate cancer
cycD1↓, expression of STAT3-regulated gene products, such as cyclin D1, Bcl-2, Bcl-xL, survivin, Mcl-1 and vascular endothelial growth factor (VEGF), was inhibited by thymoquinone, which ultimately increased apoptosis and killed cancer cells
Bcl-2↓,
Bcl-xL↓,
survivin↓,
Mcl-1↓,
VEGF↓,
cl‑PARP↑, induction of the cleavage of poly-(ADP-ribose) polymerase (PARP
ROS↑, In ALL cell line CEM-ss, thymoquinone treatment generated reactive oxygen species (ROS) and HSP70
HSP70/HSPA5↑,
P53↑, thymoquinone can induce apoptosis in MCF-7 breast cancer cells via the up-regulation of p53 expression
miR-34a↑, Thymoquinone significantly increased the expression of miR-34a via p53, and down-regulated Rac1 expression
Rac1↓,
TumCCA↑, In hepatic carcinoma, thymoquinone induced cell cycle arrest and apoptosis by repressing the Notch signaling pathway
NOTCH↓,
NF-kB↓, Evidence revealed that thymoquinone suppresses tumor necrosis factor (TNF-α)-induced NF-kappa B (NF-κB) activation
IκB↓, consequently inhibits the activation of I kappa B alpha (I-κBα) kinase, I-κBα phosphorylation, I-κBα degradation, p65 phosphorylation
p‑p65↓,
IAP1↓, down-regulated the expression of NF-κB -regulated antiapoptotic gene products, like IAP1, IAP2, XIAP Bcl-2, Bcl-xL;
IAP2↑,
XIAP↓,
TNF-α↓, It also inhibited monocyte chemo-attractant protein-1 (MCP-1), TNF-α, interleukin (IL)-1β and COX-2, ultimately reducing the NF-κB activation in pancreatic ductal adenocarcinoma cells
COX2↓,
Inflam↓, indicating its role as an inhibitor of proinflammatory pathways
α-tubulin↓, Without affecting the tubulin levels in normal human fibroblast, thymoquinone induces degradation of α and β tubulin proteins in human astrocytoma U87 cells and in T lymphoblastic leukaemia Jurkat cells, and thus exerts anticancer activity
Twist↓, thymoquinone treatment inhibits TWIST1 promoter activity and decreases its expression in breast cancer cell lines; leading to the inhibition of epithelial-mesenchymal transition (EMT)
EMT↓,
mTOR↓, thymoquinone also attenuated mTOR activity, and inhibited PI3K/Akt signaling in bladder cancer
PI3K↓,
Akt↓,
BioAv↓, Thymoquinone is chemically hydrophobic, which causes its poor solubility, and thus bioavailability. bioavailability of thymoquinone was reported ~58% with a lag time of ~23 min
ChemoSen↑, Some studies revealed that thymoquinone in combination with other chemotherapeutic drugs can show better anticancer activities
BioAv↑, Thymoquinone-loaded liposomes (TQ-LP) and thymoquinone loaded in liposomes modified with Triton X-100 (XLP) with diameters of about 100 nm were found to maintain stability, improve bioavailability and maintain thymoquinone’s anticancer activity
PTEN↑, Thymoquinone also induces apoptosis by up-regulating PTEN
chemoP↑, A recent study showed that thymoquinone can potentiate the chemopreventive effect of vitamin D during the initiation phase of colon cancer in rat model
RadioS↑, thymoquinone also mediates radiosensitization and cancer chemo-radiotherapy
*Half-Life↝, Thymoquinone-loaded nanostructured lipid carrier (TQ-NLC) has been developed to improve its bioavailability (elimination half-life ~5 hours)
*BioAv↝, calculated absolute bioavailability of thymoquinone was reported ~58% with a lag time of ~23 min by Alkharfy et al.

3422- TQ,    Thymoquinone, as a Novel Therapeutic Candidate of Cancers
- Review, Var, NA
selectivity↑, TQ selectively inhibits the cancer cells’ proliferation in leukemia [9], breast [10], lungs [11], larynx [12], colon [13,14], and osteosarcoma [15]. However, there is no effect against healthy cells
P53↑, It also re-expressed tumor suppressor genes (TSG), such as p53 and Phosphatase and tensin homolog (PTEN) in lung cancer
PTEN↑,
NF-kB↓, antitumor properties by regulating different targets, such as nuclear factor kappa B (NF-Kb), peroxisome proliferator-activated receptor-γ (PPARγ), and c-Myc [1], which resulted in caspases protein activation
PPARγ↓,
cMyc↓,
Casp↑,
*BioAv↓, Due to hydrophobicity, there are limitations in the bioavailability and drug formation of TQ.
BioAv↝, TQ is sensitive to light; a short period of exposure results in severe degradation, regardless of the solution’s acidity and solvent type [27]. It is also unstable in alkaline solutions because TQ’s stability decreases with rising pH
eff↑, Encapsulating TQ with CS improves the uptake and bioavailability of TQ but has low encapsulation efficiency (35%)
survivin↓, TQ showed antiproliferative and pro-apoptotic potency on breast cancer through the suppression of anti-apoptotic proteins, such as survivin, Bcl-xL, and Bcl-2
Bcl-xL↓,
Bcl-2↓,
Akt↓, treating doxorubicin-resistant MCF-7/DOX cells with TQ inhibited Akt and Bcl2 phosphorylation and increased the expression of PTEN and apoptotic regulators such as Bax, cleaved PARP, cleaved caspases, p53, and p21 [
BAX↑,
cl‑PARP↑,
CXCR4↓, inhibited metastasis with significant inhibition of chemokine receptor Type 4 (CXCR4), which is considered a poor prognosis indicator, matrix metallopeptidase 9 (MMP9), vascular endothelial growth factor Receptor 2 (VEGFR2), Ki67, and COX2
MMP9↓,
VEGFR2↓,
Ki-67↓,
COX2↓,
JAK2↓, TQ at 25, 50 and 75 µM inhibited JAK2 and c-Src activity and induced apoptosis by inhibiting the phosphorylation of STAT3 and STAT3 downstream genes, such as Bcl-2, cyclin D, survivin, and VEGF, and upregulating caspases-3, caspases-7, and caspases-9
cSrc↓,
Apoptosis↑,
p‑STAT3↓,
cycD1↓,
Casp3↑,
Casp7↑,
Casp9↑,
N-cadherin↓, downregulated the mesenchymal genes expression N-cadherin, vimentin, and TWIST, while upregulating epithelial genes like E-cadherin and cytokeratin-19.
Vim↓,
Twist↓,
E-cadherin↑,
ChemoSen↑, The combined treatment of 5 μM TQ and 2 μg/mL cisplatin was more effective in cancer growth and progression than either agent alone in a xenograft tumor mouse model.
eff↑, TQ–artemisinin hybrid therapy (2.6 μM) showed an enhanced ROS generation level and concomitant DNA damage induction in human colon cancer cells, while not affecting nonmalignant colon epithelial at 100 μM
EMT↓, TQ inhibits the survival signaling pathways to reduce carcinogenesis progress rate, and decreases cancer metastasis through regulation of epithelial to mesenchymal transition (EMT).
ROS↑, Apoptosis is induced by TQ in cancer cells through producing ROS, demethylating and re-expressing the TSG
DNMT1↓, inhibits DNMT1, figure 2
eff↑, TQ–vitamin D3 combination significantly reduced pro-cancerous molecules (Wnt, β-catenin, NF-κB, COX-2, iNOS, VEGF and HSP-90) a
EZH2↓, reduced angiogenesis by downregulating significant angiogenic genes such as versican (VCAN), the growth factor receptor-binding protein 2 (Grb2), and enhancer of zeste homolog 2 (EZH2), which participates in histone methylatio
hepatoP↑, Moreover, TQ improved liver function as well as reduced hepatocellular carcinoma progression
Zeb1↓, TQ decreases the Twist1 and Zeb1 promoter activities,
RadioS↑, TQ combined with radiation inhibited proliferation and induced apoptosis more than a TQ–cisplatin combination against SCC25 and CAL27 cell lines
HDAC↓, TQ has inhibited the histone deacetylase (HDAC) enzyme and reduced its total activity.
HDAC1↓, as well as decreasing the expression of HDAC1, HDAC2, and HDAC3 by 40–60%
HDAC2↓,
HDAC3↓,
*NAD↑, In non-cancer cells, TQ can increase cellular NAD+
*SIRT1↑, An increase in the levels of intracellular NAD+ led to the activation of the SIRT1-dependent metabolic pathways
SIRT1↓, On the other hand, TQ induced apoptosis by downregulating SIRT1 and upregulating p73 in the T cell leukemia Jurkat cell line
*Inflam↓, TQ treatment of male Sprague–Dawley rats has reduced the inflammatory markers (CRP, TNF-α, IL-6, and IL-1β) and anti-inflammatory cytokines (IL-10 and IL-4) triggered by sodium nitrite
*CRP↓,
*TNF-α↓,
*IL6↓,
*IL1β↓,
*eff↑, The TQ–piperin combination has also decreased the oxidative damage triggered by microcystin in liver tissue and reduced malondialdehyde (MDA) and NO, while inducing glutathione (GSH) levels and superoxide dismutase (SOD), catalase (CAT), and glutathi
*MDA↓,
*NO↓,
*GSH↑,
*SOD↑,
*Catalase↑,
*GPx↑,
PI3K↓, repressing the activation of vital pathways, such as JAK/STAT and PI3K/AKT/mTOR.
mTOR↓,

3425- TQ,    Advances in research on the relationship between thymoquinone and pancreatic cancer
Apoptosis↑, TQ can inhibit cell proliferation, promote cancer cell apoptosis, inhibit cell invasion and metastasis, enhance chemotherapeutic sensitivity, inhibit angiogenesis, and exert anti-inflammatory effects.
TumCP↓,
TumCI↓,
TumMeta↓,
ChemoSen↑,
angioG↓,
Inflam↓,
NF-kB↓, These anticancer effects predominantly involve the nuclear factor (NF)-κB, phosphoinositide 3 kinase (PI3K)/Akt, Notch, transforming growth factor (TGF)-β, c-Jun N-terminal kinase (JNK)
PI3K↓,
Akt↓,
TGF-β↓,
Jun↓,
p38↑, and p38 mitogen-activated protein kinase (MAPK) signaling pathways as well as the regulation of the cell cycle, matrix metallopeptidase (MMP)-9 expression, and pyruvate kinase isozyme type M2 (PKM2) activity.
MAPK↑, activation of the JNK and p38 MAPK
MMP9↓,
PKM2↓, decrease in PKM2 activity
ROS↑, ROS-mediated activation
JNK↑, activation of the JNK and p38 MAPK
MUC4↓, downregulation of MUC4;
TGF-β↑, TQ led to the activation of the TGF-β pathway and subsequent downregulation of MUC4
Dose↝, Q acts as an antioxidant (free radical scavenger) at low concentrations and as a pro-oxidant at high concentrations.
FAK↓, TQ can inhibit several key molecules such as FAK, Akt, NF-κB, and MMP-9 and that these molecules interact in a cascade to affect the metastasis of pancreatic cancer
NOTCH↓, TQ involved in increasing chemosensitivity consist of blocking the Notch1/PTEN, PI3K/Akt/mTOR, and NF-κB signaling pathways, reducing PKM2 expression, and inhibiting the Warburg effect.
PTEN↑, it also restored the PTEN protein that had been inhibited by GEM
mTOR↓,
Warburg↓, reducing PKM2 expression, and inhibiting the Warburg effect.
XIAP↓,
COX2↓,
Casp9↑,
Ki-67↓,
CD34↓,
VEGF↓,
MCP1↓,
survivin↓,
Cyt‑c↑,
Casp3↑,
H4↑,
HDAC↓,

3427- TQ,    Chemopreventive and Anticancer Effects of Thymoquinone: Cellular and Molecular Targets
ROS⇅, It appears that the cellular and/or physiological context(s) determines whether TQ acts as a pro-oxidant or an anti-ox- idant in vivo
Fas↑, Figure 2, cell death
DR5↑,
TRAIL↑,
Casp3↑,
Casp8↑,
Casp9↑,
P53↑,
mTOR↓,
Bcl-2↓,
BID↓,
CXCR4↓,
JNK↑,
p38↑,
MAPK↑,
LC3II↑,
ATG7↑,
Beclin-1↑,
AMPK↑,
PPARγ↑, cell survival
eIF2α↓,
P70S6K↓,
VEGF↓,
ERK↓,
NF-kB↓,
XIAP↓,
survivin↓,
p65↓,
DLC1↑, epigenetic
FOXO↑,
TET2↑,
CYP1B1↑,
UHRF1↓,
DNMT1↓,
HDAC1↓,
IL2↑, inflammation
IL1↓,
IL6↓,
IL10↓,
IL12↓,
TNF-α↓,
iNOS↓,
COX2↓,
5LO↓,
AP-1↓,
PI3K↓, invastion
Akt↓,
cMET↓,
VEGFR2↓,
CXCL1↓,
ITGA5↓,
Wnt↓,
β-catenin/ZEB1↓,
GSK‐3β↓,
Myc↓,
cycD1↓,
N-cadherin↓,
Snail↓,
Slug↓,
Vim↓,
Twist↓,
Zeb1↓,
MMP2↓,
MMP7↓,
MMP9↓,
JAK2↓, cell proliferiation
STAT3↓,
NOTCH↓,
cycA1↓,
CDK2↓,
CDK4↓,
CDK6↓,
CDC2↓,
CDC25↓,
Mcl-1↓,
E2Fs↓,
p16↑,
p27↑,
P21↑,
ChemoSen↑, Such chemo-potentiating effects of TQ in different cancer cells have been observed with 5-fluorouracil in gastric cancer and colorectal cancer models

3397- TQ,    Thymoquinone: A Promising Therapeutic Agent for the Treatment of Colorectal Cancer
- Review, CRC, NA
ChemoSen↑, TQ can be used synergistically with chemotherapeutic agents to enhance their anticancer effects and to influence the expression of signaling pathways and other genes important in cancer development.
*Half-Life↝, These parameters remained associated with an elimination half-life (t1/2) of 63.43 ± 10.69 and 274.61 ± 8.48 min for intravenous and oral administration, respectively
*BioAv↝, TQ is characterized by slow absorption, rapid metabolism, rapid elimination and low physicochemical stability, which limits its pharmaceutical applications
*antiOx↑, Biologically active compounds from Nigella sativa have been shown to have antioxidant, antimicrobial, anti-inflammatory, antidiabetic, hepatoprotective, antiproliferative, proapoptotic, antiepileptic and immunomodulatory activities,
*Inflam↓,
*hepatoP↑,
TumCP↓, TQ exerts tumorigenic effects in a variety of ways, including modulation of the epigenetic machinery and effects on proliferation, the cell cycle, apoptosis, angiogenesis, carcinogenesis and metastasis
TumCCA↑,
Apoptosis↑,
angioG↑,
selectivity↑, TQ has low toxicity to normal cells, as confirmed by several studies, including studies on normal mouse kidney cells, normal human lung fibroblasts and normal human intestinal cells.
JNK↑, activation of c-Jun N-terminal kinases (JNK) and p38, as well as the phosphorylation of nuclear factor-?B (NF-?B) and the reduction of extracellular signal-regulated kinase 1/2 (ERK1/2) and phosphatidylinositol 4,5-bisphosphate 3-kinase (PI3K) activi
p38↑,
p‑NF-kB↑,
ERK↓,
PI3K↓,
PTEN↑, showing higher expression of p21/p27/PTEN/BAX/Cyto-C/Casp-3
Akt↓, TQ has also been shown to downregulate the PI3K/PTEN/Akt/mTOR and WNT/?-catenin pathways, which are critical for tumorigenesis
mTOR↓,
EMT↓, downregulating the epithelial to mesenchymal transition (EMT) transcription factors twist-related protein 1 (TWIST1) and E-cadherin
Twist↓,
E-cadherin↓,
ROS⇅, TQ has been shown to act as an antioxidant at low concentrations. Higher concentrations, however, induce apoptosis of cancer cells through the induction of oxidative stress
*Catalase↑, Thymoquinone upregulates the expression of genes encoding specific enzymes, such as catalase, superoxide dismutase, glutathione reductase, glutathione S-transferase and glutathione peroxidase, whose role is to protect against reactive oxygen species
*SOD↑,
*GSTA1↑,
*GPx↑,
*PGE2↓, TQ has the ability to downregulate NF-?B, interleukin-1?, tumor necrosis factor alpha, cyclooxygenase-2 (COX-2,) matrix metalloproteinase 13 (MMP-13), prostaglandin E2 (PGE2), the interferon regulatory factor, which are associated with inflammation a
*IL1β↓,
*COX2↓,
*MMP13↓,
MMPs↓, Figure 2
TumMeta↓,
VEGF↓,
STAT3↓, TQ affects the induction of apoptosis in cancer cells by blocking the signal transducer and activator of transcription 3 (STAT3) signaling
BAX↑, upregulation of Bax and inhibition of Bcl-2 and B-cell lymphoma-extra large (Bcl-xl) expression, as well as activated caspase-9, -7 and -3, and induced cleavage of poly (ADP-ribose) polymerase (PARP).
Bcl-2↑,
Casp9↑,
Casp7↑,
Casp3↑,
cl‑PARP↑,
survivin↓, TQ also attenuated the expression of STAT3 target gene products, such as survivin, c-Myc and cyclin-D1, -D2, and enhanced the expression of cell cycle inhibitory proteins p27 and p21
cMyc↓,
cycD1↓,
p27↑,
P21↑,
GSK‐3β↓, TQ reduces the levels of p-PI3K, p-Akt, p-glycogen synthase kinase 3 (p-GSK3?) and ?-catenin, thereby inhibiting downstream COX-2 expression, which in turn leads to a reduction in PGE2
β-catenin/ZEB1↓,
chemoP↑, results support the potential use of thymoquinone in colorectal cancer chemoprevention, as TQ is effective in protecting and treating the DMH-initiated early phase of colorectal cancer.

3405- TQ,  doxoR,    Protective effect of thymoquinone against doxorubicin-induced cardiotoxicity and the underlying mechanism
- vitro+vivo, NA, NA
*cardioP↑, thymoquinone can alleviate doxorubicin-induced cardiac toxicity in mice.
*NRF2↑, alleviate iron death in mouse cardiomyocytes by activating the Nrf2/HO-1 signaling pathway
*HO-1↑,
*ROS↓, Thymoquinone can also alleviate oxidative stress in mouse cardiomyocytes
*NQO1↑, similar effects on the expression levels of NQO1, COX-2, and NOX4
*COX2↓, implied
*NOX4↓, implied
*GPx4↑,
*FTH1↑, Reduces free iron, limiting ferroptosis
*p‑mTOR↓,
*TGF-β↓,

3411- TQ,    Anticancer and Anti-Metastatic Role of Thymoquinone: Regulation of Oncogenic Signaling Cascades by Thymoquinone
- Review, Var, NA
p‑STAT3↓, Thymoquinone inhibited the JAK2-mediated phosphorylation of STAT3 on the 727th serine residue in SK-MEL-28 cells
cycD1↓, levels of cyclin D1, D2, and D3 were reported to be reduced in STAT3-depleted SK-MEL-28 cells
JAK2↓, The JAK2/STAT3 pathway is inactivated by thymoquinone in B16-F10 melanoma cells
β-catenin/ZEB1↓, Levels of β-catenin and Wnt/β-catenin target genes, such as c-Myc, matrix metalloproteinase-7, and Met, were found to be reduced in thymoquinone-treated bladder cancer cells.
cMyc↓,
MMP7↓,
MET↓,
p‑Akt↓, Thymoquinone dose-dependently reduced the levels of p-AKT (threonine-308), p-AKT (serine-473), p-mTOR1, and p-mTOR2 in gastric cancer cells.
p‑mTOR↓,
CXCR4↓, Thymoquinone decreased the surface expression of CXCR4 on multiple myeloma cells
Bcl-2↓, Thymoquinone time-dependently decreased BCL-2 levels and simultaneously enhanced BAX levels
BAX↑,
ROS↑, Thymoquinone-mediated ROS accumulation triggered conformational changes in BAX that sequentially resulted in the activation of the mitochondrial apoptotic pathway
Cyt‑c↑, Thymoquinone effectively increased the release of cytochrome c into the cytosol
Twist↓, Thymoquinone downregulated TWIST1 and ZEB1 and simultaneously upregulated E-cadherin in SiHa and CaSki cell lines [82].
Zeb1↓,
E-cadherin↑,
p‑p38↑, Thymoquinone-induced ROS enhanced the phosphorylation of p38-MAPK in MCF-7 cells.
p‑MAPK↑,
ERK↑, The thymoquinone-induced activation of ERK1/2
eff↑, FR180204 (ERK inhibitor) significantly reduced the viability of thymoquinone and docetaxel-treated cancer cells [
ERK↓, Thymoquinone inhibited the proliferation, migration, and invasion of A549 cells by inactivating the ERK1/2 signaling cascade
TumCP↓,
TumCMig↓,
TumCI↓,

3145- VitC,    Vitamin C inhibits the growth of colorectal cancer cell HCT116 and reverses the glucose‐induced oncogenic effect by downregulating the Warburg effect
- in-vitro, CRC, HCT116
Warburg↓, Notably, as a potential Warburg effect inhibitor, VC suppressed cancer growth in a concentration-dependent manner and further reversed the glucose-induced oncogenic effect.
TumCG↓,
Glycolysis↓,
GlucoseCon↓, 1 h-exposure to 5 mM VC led to an almost 50% reduction in glucose consumption, ATP and lactate contents in cancer cells, with mild impact on normal cells
ATP↓,
lactateProd↓,
selectivity↑, Meanwhile, normal cell had little apparent change
GLUT1↓, (GLUT1, PKM2, and LDHA) were significantly decreased, with p-AMPK/AMPK increased and p-mTOR/mTOR decreased, consistent with the cytotoxicity on 3 kinds of cancer cells
PKM2↓,
LDHA↓,
mTOR↓,

2366- VitD3,    Vitamin D3 decreases glycolysis and invasiveness, and increases cellular stiffness in breast cancer cells
- in-vitro, BC, MCF-7
Glycolysis↓, We find that VD3 treatment significantly down-regulates glycolytic enzymes and genes and decreases glucose uptake - for both lowly metastatic MCF-7 and highly metastatic MDA-MB-231 (MB231) breast cancer cells.
tumCV↓, VD3 also significantly decreases cell viability by inducing apoptosis
Apoptosis↑,
mTOR↓, consistent with decreased expression of mammalian target of rapamycin (mTOR),
AMPK↑, increases 5' adenosine monophosphate-activated protein kinase (AMPK) activation
EMT↓, presumably a consequence of reversal of the epithelial to mesenchymal transition
E-cadherin↑, increased E-cadherin, and F-actin, and reduced vimentin expression
F-actin↑,
Vim↓,

2365- VitD3,    Vitamin D Affects the Warburg Effect and Stemness Maintenance of Non- Small-Cell Lung Cancer Cells by Regulating the PI3K/AKT/mTOR Signaling Pathway
- in-vitro, Lung, A549 - in-vitro, Lung, H1975 - in-vivo, NA, NA
Glycolysis↓, vitamin D inhibited glycolysis and stemness maintenance in A549 and NCI-H1975 cells.
Warburg↓, vitamin D attenuated the expression of metabolism-related enzymes associated with the Warburg effect (GLUT1, LDHA, HK2, and PKM2).
GLUT1↓,
LDHA↓,
HK2↓,
PKM2↓,
OCT4↓, In addition, vitamin D down-regulated the expression of stemness-related genes (Oct-4, SOX-2, and Nanog) and the expression of PI3K, AKT, and mTOR.
SOX2↓,
Nanog↓,
PI3K↓,
Akt↓,
mTOR↓,

2425- γ-Toc,    Anticancer Effects of γ-Tocotrienol Are Associated with a Suppression in Aerobic Glycolysis
- in-vitro, NA, MCF-7 - in-vivo, NA, NA
TumCG↓, Treatment with γ-tocotrienol resulted in a dose-responsive inhibition of both +SA and MCF-7 mammary tumor cell growth
GlucoseCon↓, induced a relatively large reduction in glucose utilization, intracellular ATP production and extracellular lactate excretion.
ATP↓,
lactateProd↓,
Glycolysis↓, These effects were also associated with a large decrease in enzyme expression levels involved in regulating aerobic glycolysis
HK2↓, including hexokinase-II, phosphofructokinase, pyruvate kinase M2, and lactate dehydrogenase A
PFK↓,
PKM2↓,
LDHA↓,
Akt↓, γ-Tocotrienol treatment was also associated with a corresponding reduction in the levels of phosphorylated (active) Akt, phosphorylated (active) mTOR, and c-Myc
p‑mTOR↓,
cMyc↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 209

Results for Effect on Cancer/Diseased Cells:
12LOX↓,1,   4E-BP1↓,2,   p‑4E-BP1↓,2,   5HT↓,1,   5LO↓,3,   ACC↑,3,   p‑ACC-α↑,1,   ACLY↓,3,   adiP↑,1,   AIF↑,5,   Akt↓,103,   Akt↑,4,   Akt↝,1,   p‑Akt↓,34,   p‑Akt↝,1,   ALAT↓,1,   ALDH↓,1,   ALP↓,1,   AMP↓,2,   AMPK↓,3,   AMPK↑,38,   AMPK↝,1,   p‑AMPK↑,6,   AMPKα↑,4,   angioG↓,29,   angioG↑,1,   AntiAg↓,1,   AntiAg↑,2,   AntiCan↑,6,   antiOx↓,1,   antiOx↑,4,   AntiTum↑,5,   AP-1↓,7,   AP-1↝,1,   APAF1↑,2,   Apoptosis?,1,   Apoptosis↑,62,   Apoptosis↝,2,   AQPs↓,1,   AR↓,9,   AR↝,1,   ASC↓,1,   ASC↑,1,   ASK1↑,2,   ATF2↓,1,   ATF4↓,1,   ATF4↑,6,   ATF4↝,1,   ATF6↑,2,   ATFs↑,1,   ATG3↑,3,   ATG5↑,5,   ATG7↑,4,   ATM↑,1,   p‑ATM↑,1,   ATP↓,12,   mt-ATP↓,1,   p‑ATR↑,1,   AXL↓,1,   BAD↓,1,   BAD↑,3,   Bak↑,4,   BAX↑,47,   BAX↝,1,   Bax:Bcl2↑,5,   BBB↓,1,   BBB↑,2,   Bcl-2↓,50,   Bcl-2↑,2,   Bcl-2↝,1,   cl‑Bcl-2↓,1,   Bcl-xL↓,14,   Bcl-xL↝,1,   Beclin-1↓,2,   Beclin-1↑,8,   BG↓,3,   BID↓,1,   BID↑,2,   BIM↓,1,   BIM↑,6,   BioAv↓,13,   BioAv↑,14,   BioAv↝,4,   BioEnh↑,1,   BMI1↓,2,   BMPs↑,2,   BNIP3↑,2,   BOK↑,1,   CA↓,1,   Ca+2↓,3,   Ca+2↑,14,   Ca+2↝,1,   i-Ca+2?,1,   cachexia↓,1,   CAFs/TAFs↓,2,   CAIX↓,1,   cal2↓,1,   CaMKII ↓,2,   cardioP↑,4,   Casp↑,12,   Casp1↓,2,   Casp10↑,1,   Casp2↑,1,   Casp3↓,3,   Casp3↑,59,   Casp3↝,1,   cl‑Casp3↓,1,   cl‑Casp3↑,7,   proCasp3↓,1,   Casp7↑,8,   Casp8↑,18,   Casp8∅,1,   cl‑Casp8↑,2,   pro‑Casp8↑,1,   Casp9↑,33,   cl‑Casp9↓,1,   cl‑Casp9↑,3,   Catalase↓,1,   Cav1↓,1,   CD133↓,2,   CD24↓,2,   CD31↓,2,   CD34↓,2,   CD4+↓,1,   CD44↓,5,   CD8+↑,1,   CDC2↓,4,   cDC2↓,1,   CDC25↓,8,   Cdc42↓,1,   CDK1↓,7,   CDK1↑,1,   p‑CDK1↓,1,   CDK2↓,17,   CDK2↑,2,   CDK4↓,20,   CDK4↑,3,   CDK4/6↓,1,   CDK6↓,11,   CDK6↑,3,   CEA↓,1,   cFLIP↓,6,   cFos↓,6,   cFos↑,1,   chemoP↑,13,   ChemoSen↑,39,   ChemoSideEff↓,3,   p‑CHK1↑,1,   p‑Chk2↑,1,   CHOP↑,15,   cJun↓,5,   CK2↓,1,   CLDN1↓,2,   CLDN2↓,1,   cMET↓,3,   p‑cMET↑,1,   cMyc↓,21,   COL1↓,1,   COL3A1↓,1,   Copper↑,1,   COX2↓,39,   COX2↑,2,   COX2↝,1,   CREBBP↓,1,   CRP↓,3,   CSCs↓,7,   CSCsMark↓,1,   cSrc↓,2,   CXCL1↓,1,   CXCL12↓,1,   CXCR4↓,10,   Cyc↓,1,   Cyc↝,1,   cycA1↓,6,   cycA1↑,1,   CycB↓,10,   cycD1↓,33,   cycD1↝,1,   cycE↓,11,   cycE1↓,2,   CYP1A1↓,1,   CYP1A1↑,1,   CYP1B1↑,1,   Cyt‑c↑,35,   Cyt‑c↝,1,   DFF45↓,1,   DFF45↑,1,   Diablo↑,8,   Diff↑,1,   DLC1↑,1,   DLEU1↓,1,   DNAdam↑,19,   DNMT1↓,4,   DNMTs↓,1,   Dose?,1,   Dose↑,2,   Dose↝,7,   Dose∅,2,   DR4↑,1,   DR5↓,1,   DR5↑,14,   E-cadherin↓,6,   E-cadherin↑,22,   E2Fs↓,1,   E6↓,3,   E7↓,3,   ECAR↓,4,   eff↓,14,   eff↑,59,   eff↝,4,   eff∅,1,   EGF↓,4,   EGF↑,1,   EGFR↓,25,   EGFR↑,1,   EGFR↝,1,   EGR4↓,1,   eIF2α↓,2,   eIF2α↑,2,   p‑eIF2α↑,3,   EIF4E↓,1,   EMT↓,40,   EMT↑,2,   eNOS↓,1,   ER Stress↓,2,   ER Stress↑,24,   ER-α36↓,1,   ERK↓,22,   ERK↑,5,   ERK↝,1,   p‑ERK↓,5,   p‑ERK↑,1,   ERα↓,1,   EZH2↓,3,   F-actin↑,1,   FABP4↑,1,   FADD↑,2,   FAK↓,8,   p‑FAK↓,1,   Fap1↓,1,   Fas↑,8,   FasL↑,5,   FASN↓,2,   FASN↑,1,   FBPase↑,1,   FDG↓,1,   Fenton↑,2,   Ferritin↓,2,   Ferroptosis↑,8,   FGF↓,1,   FGFR1↓,2,   Fibronectin↓,4,   Foxm1↓,4,   FOXO↑,1,   FOXO1↑,1,   FOXO3↑,1,   p‑FOXO3↓,1,   FOXO4↓,1,   FTH1↓,2,   Furin↓,1,   G6PD↓,1,   GAPDH↓,1,   GIT1↓,1,   Gli1↓,8,   GLI2↓,3,   GLO-I↓,1,   GLS↓,1,   glucoNG↑,1,   GlucoseCon↓,16,   GLUT1↓,17,   GlutMet↓,2,   glyC↓,1,   Glycolysis↓,30,   GPx↓,2,   GPx4↓,3,   GRP58↓,1,   GRP78/BiP↓,1,   GRP78/BiP↑,10,   p‑GS3Kβ↓,1,   GSH↓,14,   GSH↑,4,   GSK‐3β↓,8,   GSK‐3β↑,1,   p‑GSK‐3β↑,1,   GSR↓,2,   GSTP1/GSTπ↓,1,   GSTs↓,2,   GSTs↑,2,   GutMicro↑,3,   GutMicro↝,1,   H2O2↓,1,   H2O2↑,4,   H3↓,1,   ac‑H3↑,1,   H4↓,1,   H4↑,1,   ac‑H4↑,1,   Half-Life↓,2,   Half-Life↝,7,   Half-Life∅,1,   HATs↑,1,   HDAC↓,11,   HDAC∅,1,   HDAC1↓,3,   HDAC10↓,1,   HDAC10↑,1,   HDAC2↓,2,   HDAC3↓,1,   HDAC8↓,1,   HemoG↓,1,   hepatoP↑,2,   HER2/EBBR2↓,7,   p‑HER2/EBBR2↓,1,   HGF/c-Met↓,1,   HH↓,6,   HIF-1↓,5,   Hif1a↓,34,   HK2↓,15,   HO-1↓,5,   HO-1↑,12,   HR↓,1,   HSF1↓,2,   HSP27↓,4,   HSP27↝,1,   HSP70/HSPA5↓,5,   HSP70/HSPA5↑,3,   HSP70/HSPA5↝,1,   HSP90↓,4,   hTERT↓,1,   hyperG↓,1,   IAP1↓,3,   IAP2↓,1,   IAP2↑,1,   ICAD↓,1,   ICAM-1↓,3,   IFN-γ↓,2,   IFN-γ↑,1,   IGF-1↓,8,   IGF-1R↓,2,   IGFBP1↑,2,   IGFBP3↓,1,   IGFBP3↑,1,   IGFBP7↑,1,   IKKα↓,7,   IKKα↑,1,   p‑IKKα↓,2,   IL1↓,3,   IL10↓,7,   IL12↓,2,   IL1α↓,1,   IL1β↓,8,   IL2↓,1,   IL2↑,4,   IL33↑,1,   IL6↓,21,   IL6↑,1,   IL6↝,1,   IL8↓,3,   Inflam↓,12,   iNOS↓,7,   IRE1↑,4,   Iron↑,6,   i-Iron↓,1,   ITGA5↓,1,   ITGB1↓,1,   ITGB1↑,1,   IκB↓,1,   IκB↑,1,   p‑IκB↓,1,   JAK↓,2,   JAK1↓,3,   JAK2↓,8,   p‑JAK2↓,1,   JNK↑,10,   JNK↝,1,   p‑JNK↑,3,   Jun↓,1,   KDR/FLK-1↓,1,   Keap1↓,1,   Ki-67↓,9,   KLF2↓,1,   KLF5↓,1,   lactateProd↓,15,   LC3‑Ⅱ/LC3‑Ⅰ↑,5,   LC3A↑,1,   LC3B↓,1,   LC3B↑,1,   LC3B-II↑,4,   LC3I↓,1,   LC3I↑,1,   LC3II↑,9,   LDH↓,5,   LDH↑,2,   LDHA↓,8,   LDL↓,1,   LEF1↓,1,   Let-7↑,1,   lipid-P↓,5,   lipid-P↑,7,   LOX1↓,1,   lysoM↓,1,   LysoPr↑,1,   lysosome↓,1,   M2 MC↓,1,   MAOA↓,1,   MAPK↓,9,   MAPK↑,7,   MAPK↝,1,   p‑MAPK↑,1,   MARK4↓,1,   Mcl-1↓,16,   MCP1↓,2,   MCT1↓,1,   MCU↓,1,   MDA↓,1,   MDA↑,7,   MDM2↓,4,   p‑MDM2↓,1,   MDR1↓,4,   MDSCs↓,1,   MEK↓,4,   MET↓,3,   p‑MET↓,1,   MIP2↓,1,   miR-139-5p↑,1,   miR-21↓,1,   miR-21↑,1,   miR-34a↑,2,   mitResp↓,3,   MKP1↓,1,   MKP2↓,1,   MMP↓,29,   MMP↑,1,   MMP-10↓,1,   MMP1↓,3,   MMP13↓,2,   MMP2↓,40,   MMP2↑,1,   MMP2↝,1,   MMP3↓,4,   MMP7↓,8,   MMP9↓,43,   MMP9↑,1,   MMP9:TIMP1↓,1,   MMPs↓,13,   MPO↓,1,   MRP1↓,1,   mtDam↑,3,   mTOR↓,150,   mTOR↑,12,   mTOR⇅,1,   mTOR↝,2,   mTOR∅,1,   p‑mTOR↓,32,   p‑mTOR↑,2,   mTORC1↓,4,   mTORC2↓,2,   mTORC2↑,1,   MUC4↓,2,   Myc↓,4,   N-cadherin↓,16,   NA↓,2,   NA↑,1,   NAD↓,1,   NAD↑,1,   NADH:NAD↓,1,   NADPH↓,3,   NADPH/NADP+↓,1,   NAIP↓,1,   Nanog↓,3,   NBR2↑,1,   NCAM↑,1,   NCOA4↑,2,   Necroptosis↑,1,   necrosis↑,1,   NEDD9↓,1,   Nestin↓,1,   neuroP↑,5,   NF-kB↓,54,   NF-kB↑,1,   NF-kB↝,1,   p‑NF-kB↓,1,   p‑NF-kB↑,1,   NLRP3↓,3,   NO↓,3,   NO↑,1,   NO↝,1,   NOTCH↓,8,   NOTCH1↓,5,   NOTCH1↑,2,   NOTCH3↓,1,   NQO1↓,1,   NQO1↑,2,   NRF2↓,10,   NRF2↑,15,   NRF2↝,1,   p‑NRF2↓,1,   NSE↓,1,   OCR↓,4,   OCR↑,1,   OCT4↓,4,   oncosis↑,2,   OS↑,5,   other↓,3,   OXPHOS↓,2,   OXPHOS↑,1,   OXPHOS↝,1,   mt-OXPHOS↑,1,   P-gp↓,8,   p16↑,3,   p19↑,2,   P21↓,1,   P21↑,27,   P21↝,1,   p27↓,1,   p27↑,12,   p38↓,3,   p38↑,10,   p‑p38↑,3,   P450↓,1,   p50↓,1,   P53?,1,   P53↓,1,   P53↑,38,   P53↝,1,   p‑P53↑,1,   p53 Wildtype∅,1,   p62↓,9,   p62↑,4,   p65↓,3,   p‑p65↓,3,   p70S6↓,5,   p‑p70S6↓,1,   P70S6K↓,6,   P70S6K↑,1,   p‑P70S6K↓,5,   p‑P70S6K↑,1,   p73↑,1,   p85S6K↓,1,   p‑P90RSK↑,1,   PARK2↑,1,   PARP↓,2,   PARP↑,6,   cl‑PARP↑,28,   PARP1↑,1,   PCNA↓,8,   PD-1↓,3,   PD-L1↓,5,   PDGF↓,1,   PDH↑,2,   PDK1↓,5,   PDK3↑,1,   PERK↑,3,   p‑PERK↑,1,   PFK↓,4,   PFK1↓,3,   PFK2↓,1,   PFKP↓,1,   PGE2↓,11,   PI3K↓,69,   PI3K↑,3,   PI3K↝,1,   p‑PI3K↓,3,   PI3K/Akt↓,5,   PI3k/Akt/mTOR↓,3,   PINK1↑,1,   PKA↓,1,   PKCδ↓,3,   PKM2↓,25,   PKM2:PKM1↓,1,   POLD1↓,1,   PPARα↓,1,   PPARα↑,1,   PPARγ↓,2,   PPARγ↑,3,   p‑pRB↓,1,   PRKCG↑,1,   Prx4↑,1,   PSA↓,2,   PSA↝,1,   PTCH1↓,2,   PTEN↓,1,   PTEN↑,19,   PTEN↝,1,   PUMA↑,2,   PYCR1↓,2,   Pyruv↓,1,   QoL↑,1,   R5P↝,1,   Rac1↓,2,   RAD51↓,1,   radioP↑,1,   RadioS↑,19,   Raf↓,3,   e-Raf↓,1,   RAGE↓,2,   RAS↓,8,   RAS↑,1,   RB1↓,1,   RB1↑,1,   p‑RB1↓,2,   RenoP↑,4,   Rho↓,3,   Rho↑,1,   RIP1↓,1,   RIP1↑,1,   RIP3↓,1,   RIP3↑,1,   Risk↓,1,   ROCK1↓,4,   ROCK1↑,1,   ROS↓,16,   ROS↑,110,   ROS⇅,6,   ROS↝,1,   i-ROS↑,1,   mt-ROS↑,1,   RPS6KA1↓,1,   p‑S6↓,2,   p‑S6K↓,2,   Securin↓,1,   selectivity↑,28,   Sepsis↓,1,   SESN2↑,2,   Shh↓,4,   SIRT1↓,2,   SIRT1↑,8,   SIRT3↑,4,   SIRT6↑,1,   Slug↓,5,   SMAD2↓,1,   p‑SMAD2↓,1,   SMAD3↓,2,   p‑SMAD4↓,1,   Smo↓,4,   Snail↓,17,   SOD↓,3,   SOD↑,6,   SOD1↑,2,   SOD2↓,2,   SOD2↑,1,   SOX2↓,4,   SOX4↑,1,   SOX9↓,1,   Sp1/3/4↓,5,   Src↓,2,   p‑Src↓,1,   SREBP1↓,1,   STAT↓,2,   STAT1↓,1,   STAT3↓,33,   p‑STAT3↓,7,   p‑STAT3↑,1,   STAT6↓,2,   p‑STAT6↓,1,   Sufu↓,1,   survivin↓,24,   talin↓,1,   TAp63α↑,1,   TCA↑,1,   TCF↑,1,   TCF-4↓,2,   Telomerase↓,3,   TET1↓,1,   TET1↑,1,   TET2↑,1,   Tf↑,1,   TfR1/CD71↓,1,   TGF-β↓,11,   TGF-β↑,2,   Th1 response↑,1,   TIMP1↓,1,   TIMP1↑,1,   TIMP2↓,1,   TIMP2↑,2,   TKT↝,1,   TLR4↓,3,   TNF-α↓,17,   TNF-α↑,2,   TNF-α↝,1,   TNFR 1↑,1,   TOP1?,1,   TOP1↓,3,   TOP2↓,4,   toxicity↓,4,   toxicity↝,2,   toxicity∅,1,   TRAIL↑,5,   TRAILR↑,2,   TRPV1↑,2,   TrxR↓,5,   TrxR1↓,1,   TSC1↑,1,   TSC2↑,3,   p‑TSC2↑,1,   TSP-1↑,3,   TumAuto↓,1,   TumAuto↑,31,   TumCA↓,1,   TumCCA?,1,   TumCCA↓,1,   TumCCA↑,55,   TumCD↑,1,   TumCG↓,28,   TumCG↑,1,   TumCI?,1,   TumCI↓,34,   TumCMig↓,28,   TumCMig↑,1,   TumCP↓,48,   tumCV↓,19,   TumMeta↓,18,   TumVol↓,4,   TumW↓,7,   Twist↓,15,   Tyro3↓,1,   UHRF1↓,1,   uPA↓,15,   uPAR↓,1,   UPR↑,3,   VCAM-1↓,2,   VEGF↓,47,   VEGF↑,1,   VEGF↝,1,   VEGFR2↓,7,   Vim?,1,   Vim↓,21,   Vim↑,1,   VitC↓,1,   VitE↓,1,   Warburg↓,11,   Wnt?,1,   Wnt↓,15,   Wnt/(β-catenin)↓,6,   Wnt/(β-catenin)↑,1,   XBP-1↓,1,   XBP-1↑,1,   XIAP↓,12,   YAP/TEAD↓,1,   Zeb1↓,7,   ZO-1↑,2,   α-tubulin↓,1,   ac‑α-tubulin↑,1,   β-catenin/ZEB1↓,23,   β-catenin/ZEB1↑,1,   β-catenin/ZEB1↝,1,   β-TRCP↑,1,  
Total Targets: 747

Results for Effect on Normal Cells:
5LO↓,1,   Ach↑,1,   AChE↓,1,   Akt↓,3,   Akt↑,4,   ALAT↓,4,   ALP↓,2,   AMPK↓,1,   AMPK↑,4,   p‑AMPK↑,1,   angioG↓,1,   AntiAg↑,2,   AntiCan↓,1,   AntiCan↑,1,   antiOx?,1,   antiOx↓,1,   antiOx↑,14,   mt-antiOx↑,1,   Apoptosis↓,2,   ASC↓,1,   AST↓,5,   ATF4↑,1,   ATP↑,1,   Aβ↓,3,   BBB↑,2,   Beclin-1↑,2,   BG↓,1,   BioAv↓,9,   BioAv↑,3,   BioAv↝,5,   BioEnh↑,2,   BMP2↑,1,   Ca+2↑,1,   cardioP↑,8,   Casp1↓,1,   Casp12↓,1,   Casp3↓,3,   Casp3∅,1,   Catalase↑,11,   ChAT↑,1,   chemoP↑,2,   CHOP↓,2,   p‑cMyc↑,1,   cognitive↑,4,   COX1↓,1,   COX2↓,9,   CRP↓,1,   Cyt‑c∅,1,   Diff↑,1,   DNArepair↑,1,   Dose↑,1,   ECAR↓,1,   eff↑,5,   eff↝,1,   eNOS↓,1,   ER Stress↓,2,   ERK↓,1,   ERK↑,2,   p‑ERK↑,1,   FASN↓,1,   FGF↑,1,   FGF21↑,1,   FTH1↑,1,   GlucoseCon↑,3,   GLUT4↑,1,   Glycolysis↓,1,   Glycolysis↑,1,   GPx↑,8,   GPx4↑,1,   GRP78/BiP↓,1,   GSH↑,10,   GSSG↓,1,   GSTA1↑,1,   GSTs↑,1,   GutMicro↑,1,   H2O2↓,1,   H2S↑,1,   Half-Life↓,1,   Half-Life↝,5,   Half-Life∅,2,   hepatoP↑,7,   HGF/c-Met↑,1,   HK2↑,1,   HMGB1↓,1,   HO-1↑,7,   IGF-1↓,1,   IKKα↑,1,   IL1↑,1,   IL10↓,2,   IL10↑,5,   IL17↓,1,   IL18↓,1,   IL1β↓,9,   IL6↓,10,   IL6↑,1,   IL8↓,3,   Inflam↓,19,   Inflam↑,1,   iNOS↓,4,   IronCh↓,1,   IronCh↑,1,   JNK↓,1,   p‑JNK↓,1,   p‑JNK↑,1,   Keap1↓,2,   Keap1↑,1,   LC3‑Ⅱ/LC3‑Ⅰ↑,1,   LC3II↑,1,   lipid-P↓,5,   MAPK↓,2,   MAPK↑,1,   MDA↓,6,   memory↑,7,   MMP↑,1,   MMP∅,1,   MMP13↓,1,   MMP2↓,1,   MMP3↓,1,   MMPs↑,1,   mTOR↓,7,   mTOR↑,5,   p‑mTOR↓,2,   p‑mTOR↑,1,   NAD↑,1,   NADPH↓,1,   neuroP↑,13,   NF-kB↓,8,   NLRP3↓,2,   NO↓,5,   NO↑,1,   NOX4↓,1,   NQO1↑,2,   NRF2↑,14,   OCR↑,1,   OS↑,1,   other↓,1,   other↑,1,   other↝,1,   P-gp↓,1,   p16↓,1,   P21↓,1,   p38↓,1,   P53↓,1,   p62↓,1,   P70S6K↓,2,   p‑P70S6K↑,1,   PDGF↑,1,   PFK↑,1,   PGC-1α↑,2,   PGE2↓,5,   PGE2↑,1,   PI3K↓,2,   PI3K↑,1,   PKA↑,1,   PKCδ↓,1,   PKM2↑,1,   PPARα↑,1,   PPARγ↑,1,   p‑PPARγ↓,1,   Pyro↓,1,   p‑Rac1↓,1,   RAS↓,1,   RenoP↑,3,   Rho↓,1,   ROS↓,23,   mt-ROS↓,1,   SIRT1↑,1,   SIRT3↑,1,   SMAD3↓,1,   SOD↑,10,   TGF-β↓,2,   TGF-β1↓,1,   Th1 response↓,1,   Th2↑,2,   TLR2↓,1,   TLR4↓,1,   TNF-α↓,9,   TNF-α↑,1,   toxicity↓,8,   toxicity↑,1,   toxicity∅,2,   VEGF↑,2,   α-SMA↓,1,  
Total Targets: 183

Scientific Paper Hit Count for: mTOR, mammalian target of rapamycin
13 Curcumin
12 Fisetin
12 Quercetin
10 Berberine
9 Baicalein
8 Apigenin (mainly Parsley)
8 Thymoquinone
7 Alpha-Lipoic-Acid
7 EGCG (Epigallocatechin Gallate)
7 Honokiol
7 Resveratrol
7 Shikonin
6 Artemisinin
6 diet FMD Fasting Mimicking Diet
6 Sulforaphane (mainly Broccoli)
5 Piperlongumine
5 Rosmarinic acid
4 Chemotherapy
4 Magnetic Fields
4 Citric Acid
4 Metformin
4 Silymarin (Milk Thistle) silibinin
3 Ashwagandha
3 Capsaicin
3 Chrysin
3 Lycopene
3 Naringin
2 Allicin (mainly Garlic)
2 Betulinic acid
2 Boswellia (frankincense)
2 Propolis -bee glue
2 Deguelin
2 Ellagic acid
2 itraconazole
2 Silver-NanoParticles
2 Vitamin D3
1 Andrographis
1 2-DeoxyGlucose
1 Astragalus
1 Baicalin
1 Butyrate
1 Carnosic acid
1 Trastuzumab
1 Ursolic acid
1 Dichloroacetate
1 diet Methionine-Restricted Diet
1 Emodin
1 Ferulic acid
1 flavonoids
1 Gambogic Acid
1 Garcinol
1 Hydrogen Gas
1 HydroxyCitric Acid
1 Ivermectin
1 Sorafenib (brand name Nexavar)
1 Juglone
1 Laetrile B17 Amygdalin
1 Luteolin
1 Methylene blue
1 Magnolol
1 MCToil
1 Magnetic Field Rotating
1 Niclosamide (Niclocide)
1 Parthenolide
1 5-fluorouracil
1 sericin
1 Piperine
1 Plumbagin
1 Pterostilbene
1 Formononetin
1 acetazolamide
1 doxorubicin
1 Vitamin C (Ascorbic Acid)
1 γ-Tocotrienol
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:%  Target#:209  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page