condition found tbRes List
Akt, PKB-Protein kinase B: Click to Expand ⟱
Source: HalifaxProj(inhibit)
Type:
Akt1 is involved in cellular survival pathways, by inhibiting apoptotic processes; Akt2 is an important signaling molecule in the insulin signaling pathway. It is required to induce glucose transport.

Inhibitors:
-Curcumin: downregulate AKT phosphorylation and signaling.
-Resveratrol
-Quercetin: inhibit the PI3K/AKT pathway.
-Epigallocatechin Gallate (EGCG)
-Luteolin and Apigenin: inhibit AKT phosphorylation


Scientific Papers found: Click to Expand⟱
3573-   Chronic diseases, inflammation, and spices: how are they linked?
- Review, Var, NA
NF-kB↓, Bladder cancer ↓NF-κB, ↓XIAP
XIAP↓,
PI3K↓, Cholangiocarcinoma ↓PI3K/Akt, ↓NF-κB
Akt↓,
STAT3↓, Gastric cancer ↓STAT3, ↓JAK2, ↓c-Src
JAK2↓,
cSrc↓,
PCNA↓, Lung cancer ↓PCNA, ↓CD1, ↓MMP-2, ↓ERK1/2
MMP2↓,
ERK↓,
Ki-67↓, Multiple myeloma ↓Ki-67, ↓VEGF, ↓Bcl-2, ↓p65
Bcl-2↓,
VEGF↓,
p65↓,
COX2↓, Myeloid leukemia ↓NF-κB, ↓CD1, ↓COX-2, ↓MMP-9
MMP9↓,

3423-   Epigenetic role of thymoquinone: impact on cellular mechanism and cancer therapeutics
- Review, Var, NA
AntiCan↑, Thymoquinone is a natural product with anticancer activity.
Inflam↓, Thymoquinone has been shown to exert anti-inflammatory, antidiabetic, antihypertensive, antimicrobial, analgesic, immunomodulatory, spasmolytic, hepatoprotective, renal-protective, gastroprotective, bronchodilatory, antioxidant and antineoplastic eff
hepatoP↑,
RenoP↑,
BAX↑, Thymoquinone can upregulate proapoptotic genes and proteins, such as Bax/Bak, or downregulate antiapoptotic genes and proteins, such as Bcl-2, Bcl-xL, among others, as well as modulating the caspase pathway
Bak↑,
Bcl-2↓,
Bcl-xL↓,
ROS↑, through the generation of reactive oxygen species (ROS)
P53↑, overexpressed or activated by thymoquinone; for example, p53, PTEN, p21, p27 and breast cancer type 1 susceptibility protein (BRCA1), among others,
PTEN↑,
P21↑,
p27↑,
BRCA1↑,
PI3K↓, (PI3K)/Akt and mitogen-activated protein kinase (MAPK)/ERK, have been found to be inhibited by thymoquinone
Akt↓,
MAPK↓,
ERK↓,
p‑ERK↓, thymoquinone reduces ERK phosphorylation and matrix metalloproteinase (MMP) secretion by downregulating focal adhesion kinase (FAK)
MMPs↓,
FAK↓,
Twist↓, downregulates Twist1 and Zeb1 transcription factors, and thus inhibits epithelial to mesenchymal transition (EMT) and subsequently inhibits cancer metastasis
Zeb1↓,
EMT↓,
TumMeta↓,
angioG↓, thymoquinone can inhibit angiogenesis by interfering with essential steps of neovascularization, such as suppressing proangiogenic vascular endothelial growth factor (VEGF)
VEGF↓,
HDAC↓, HDACs are usually overexpressed in MCF-7 breast cancer cells, and thymoquinone can act as a HDAC inhibitor (HDACi) that potently induces apoptosis through inducing acetylation of histones and inhibiting deacetylation of histones.
Maspin↑, thymoquinone reactivates HDAC target genes (p21 and Maspin), inducing the upregulation of Bax
SIRT1↑, thymoquinone can upregulate SIRT1 expression in neonatal rat cardiomyocytes and consequently deacetylates p53; thus, it can act as an apoptosis inducer
DNMT1↓, Collectively, they suggested that thymoquinone induces methylation of DNA via binding with DNMT1 and suppressing its expression,
DNMT3A↓, thymoquinone decreases the expression of some important epigenetic proteins like DNMT1,3A,3B, G9A, HDAC1,4,9, KDM1B, KMT2A,B,C,D,E and UHRF1 in Jurkat cells,
HDAC1↓,
HDAC4↓,

247- AL,    Allicin inhibits the invasion of lung adenocarcinoma cells by altering tissue inhibitor of metalloproteinase/matrix metalloproteinase balance via reducing the activity of phosphoinositide 3-kinase/AKT signaling
- in-vitro, Lung, A549 - in-vitro, Lung, H1299
MMP2↓, protein levels of
MMP9↓, protein levels of
TIMP1↑,
TIMP2↑,
p‑Akt↓,
PI3K/Akt↓,

256- AL,  doxoR,    Allicin Overcomes Doxorubicin Resistance of Breast Cancer Cells by Targeting the Nrf2 Pathway
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
NRF2↓,
HO-1↓,
p‑Akt↓,

2660- AL,    Allicin: A review of its important pharmacological activities
- Review, AD, NA - Review, Var, NA - Review, Park, NA - Review, Stroke, NA
*Inflam↓, It showed neuroprotective effects, exhibited anti-inflammatory properties, demonstrated anticancer activity, acted as an antioxidant, provided cardioprotection, exerted antidiabetic effects, and offered hepatoprotection.
AntiCan↑,
*antiOx↑,
*cardioP↑, This vasodilatory effect helps protect against cardiovascular diseases by reducing the risk of hypertension and atherosclerosis.
*hepatoP↑,
*BBB↑, This allows allicin to easily traverse phospholipid bilayers and the blood-brain barrier
*Half-Life↝, biological half-life of allicin is estimated to be approximately one year at 4°C. However, it should be noted that its half-life may differ when it is dissolved in different solvents, such as vegetable oil
*H2S↑, allicin undergoes metabolism in the body, leading to the release of hydrogen sulfide (H2S)
*BP↓, H2S acts as a vasodilator, meaning it relaxes and widens blood vessels, promoting blood flow and reducing blood pressure.
*neuroP↑, It acts as a neuromodulator, regulating synaptic transmission and neuronal excitability.
*cognitive↑, Studies have suggested that H2S may enhance cognitive function and protect against neurodegenerative diseases like Alzheimer's and Parkinson's by promoting neuronal survival and reducing oxidative stress.
*neuroP↑, various research studies suggest that the neuroprotective mechanisms of allicin can be attributed to its antioxidant and anti-inflammatory properties
*ROS↓,
*GutMicro↑, may contribute to the overall health of the gut microbiota.
*LDH↓, Liu et al. found that allicin treatment led to a significant decrease in the release of lactate dehydrogenase (LDH),
*ROS↓, allicin's capacity to lower the production of reactive oxygen species (ROS), decrease lipid peroxidation, and maintain the activities of antioxidant enzymes
*lipid-P↓,
*antiOx↑,
*other↑, allicin was found to enhance the expression of sphingosine kinases 2 (Sphk2), which is considered a neuroprotective mechanism in ischemic stroke
*PI3K↓, allicin downregulated the PI3K/Akt/nuclear factor-kappa B (NF-κB) pathway, inhibiting the overproduction of NO, iNOS, prostaglandin E2, cyclooxygenase-2, interleukin-6, and tumor necrosis factor-alpha induced by interleukin-1 (IL-1)
*Akt↓,
*NF-kB↓,
*NO↓,
*iNOS↓,
*PGE2↓,
*COX2↓,
*IL6↓,
*TNF-α↓, Allicin has been found to regulate the immune system and reduce the levels of TNF-α and IL-8.
*MPO↓, Furthermore, allicin significantly decreased tumor necrosis factor-alpha (TNF-α) levels and myeloperoxidase (MPO) activity, indicating its neuroprotective effect against brain ischemia via an anti-inflammatory pathway
*eff↑, Allicin, in combination with melatonin, demonstrated a marked reduction in the expression of nuclear factor erythroid 2-related factor 2 (Nrf-2), Kelch-like ECH-associated protein 1 (Keap-1), and NF-κB genes in rats with brain damage induced by acryl
*NRF2↑, Allicin treatment decreased oxidative stress by upregulating Nrf2 protein and downregulating Keap-1 expression.
*Keap1↓,
*TBARS↓, It significantly reduced myeloperoxidase (MPO) and thiobarbituric acid reactive substances (TBARS) levels,
*creat↓, and decreased blood urea nitrogen (BUN), creatinine, LDH, aspartate aminotransferase (AST), alanine aminotransferase (ALT), and malondialdehyde (MDA) levels.
*LDH↓,
*AST↓,
*ALAT↓,
*MDA↓,
*SOD↑, Allicin also increased the activity of superoxide dismutase (SOD) as well as the levels of glutathione S-transferase (GST) and glutathione (GSH) in the liver, kidneys, and brain
*GSH↑,
*GSTs↑,
*memory↑, Allicin has demonstrated its ability to improve learning and memory deficits caused by lead acetate injury by promoting hippocampal astrocyte differentiation.
chemoP↑, Allicin safeguards mitochondria from damage, prevents the release of cytochrome c, and decreases the expression of pro-apoptotic factors (Bax, cleaved caspase-9, cleaved caspase-3, and p53) typically activated by cisplatin
IL8↓, Allicin has been found to regulate the immune system and reduce the levels of TNF-α and IL-8.
Cyt‑c↑, In addition, allicin was reported to induce cytochrome c, increase expression of caspase 3 [86], caspase 8, 9 [82,87], caspase 12 [80] along with enhanced p38 protein expression levels [81], Fas expression levels [82].
Casp3↑,
Casp8↑,
Casp9↑,
Casp12↑,
p38↑,
Fas↑,
P53↑, Also, significantly increased p53, p21, and CHK1 expression levels decreased cyclin B after allicin treatment.
P21↑,
CHK1↓,
CycB↓,
GSH↓, Depletion of GSH and alterations in intracellular redox status have been found to trigger activation of the mitochondrial apoptotic pathway was the antiproliferative function of allicin
ROS↑, Hepatocellular carcinoma (HCC) cells were sensitised by allicin to the mitochondrial ROS-mediated apoptosis induced by 5-fluorouracil
TumCCA↑, According to research findings, allicin has been shown to decrease the percentage of cells in the G0/G1 and S phases [87], while causing cell cycle arrest at the G2/M phase
Hif1a↓, Allicin treatment was found to effectively reduce HIF-1α protein levels, leading to decreased expression of Bcl-2 and VEGF, and suppressing the colony formation capacity and cell migration rate of cancer cells
Bcl-2↓,
VEGF↓,
TumCMig↓,
STAT3↓, antitumor properties of allicin have been attributed to various mechanisms, including promotion of apoptosis, inhibition of STAT3 signaling
VEGFR2↓, suppression of VEGFR2 and FAK phosphorylation
p‑FAK↓,

2000- AL,    Exploring the ROS-mediated anti-cancer potential in human triple-negative breast cancer by garlic bulb extract: A source of therapeutically active compounds
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vitro, Nor, NA
selectivity↑, The inhibitory effect of ASEE was more pronounced in MDA-MB-231 cells than in MCF-7 cells, however, no substantial cytotoxicity was seen in normal Vero cells.
TumCG?,
*toxicity∅, no substantial cytotoxicity was seen in normal Vero cells
ROS↑, TNBC cells treated with high concentrations of ASEE were found in the late apoptotic stage and exhibited an increase in ROS level and a reduction in MMP
MMP↓,
TumCCA↑, increased the percentage of cells in the G2/M phase
P53↑, ASEE upregulated the p53 and Bax proteins while downregulated the Bcl-2, p-Akt, and p-p38 proteins.
Bcl-2↓,
p‑Akt↓,
p‑p38↓,
*ROS∅, Vero normal cells did not display the unusual morphological alteration and reduction in cell viability. ROS production revealed a 1.21 % ROS level only in control cells that is typically seen in healthy cells.

278- ALA,    The Multifaceted Role of Alpha-Lipoic Acid in Cancer Prevention, Occurrence, and Treatment
- Review, NA, NA
ROS↑, direct anticancer effect of the antioxidant ALA is manifested as an increase in intracellular ROS levels in cancer cells
NRF2↑, enhance the activity of the anti-inflammatory protein nuclear factor erythroid 2–related factor 2 (Nrf2), thereby reducing tissue damage
Inflam↓,
frataxin↑,
*BioAv↓, Oral ALA has a bioavailability of approximately 30% due to issues such as poor stability in the stomach, low solubility, and hepatic degradation.
ChemoSen↑, ALA can enhance the functionality of various other anticancer drugs, including 5-fluorouracil in colon cancer cells and cisplatin in MCF-7 breast cancer cells
Hif1a↓, it is inferred that lipoic acid may inhibit the expression of HIF-1α
eff↑, act as a synergistic agent with natural polyphenolic substances such as apigenin and genistein
FAK↓, ALA inhibits FAK activation by downregulating β1-integrin expression and reduces the levels of MMP-9 and MMP-2
ITGB1↓,
MMP2↓,
MMP9↓,
EMT↓, ALA inhibits the expression of EMT markers, including Snail, vimentin, and Zeb1
Snail↓,
Vim↓,
Zeb1↓,
P53↑, ALA also stimulates the mutant p53 protein and depletes MGMT
MGMT↓, depletes MGMT by inhibiting NF-κB signalling, thereby inducing apoptosis
Mcl-1↓,
Bcl-xL↓,
Bcl-2↓,
survivin↓,
Casp3↑,
Casp9↑,
BAX↑,
p‑Akt↓, ALA inhibits the activation of tumour stem cells by reducing Akt phosphorylation.
GSK‐3β↓, phosphorylation and inactivation of GSK3β
*antiOx↑, indirect antioxidant protection through metal chelation (ALA primarily binds Cu2+ and Zn2+, while DHLA can bind Cu2+, Zn2+, Pb2+, Hg2+, and Fe3+) and the regeneration of certain endogenous antioxidants, such as vitamin E, vitamin C, and glutathione
*ROS↓, ALA can directly quench various reactive species, including ROS, reactive nitrogen species, hydroxyl radicals (HO•), hypochlorous acid (HclO), and singlet oxygen (1O2);
selectivity↑, In normal cells, ALA acts as an antioxidant by clearing ROS. However, in cancer cells, it can exert pro-oxidative effects, inducing pathways that restrict cancer progression.
angioG↓, Combining these two hypotheses, it can be hypothesized that ALA may regulate copper and HIF-2α to limit tumor angiogenesis.
MMPs↓, ALA was shown to inhibit invasion by decreasing the mRNA levels of key matrix metalloproteinases (MMPs), specifically MMP2 and MMP9, which are crucial for the metastatic process
NF-kB↓, ALA has been shown to enhance the efficacy of the chemotherapeutic drug paclitaxel in breast and lung cancer cells by inhibiting the NF-κB signalling pathway and the functions of integrin β1/β3 [138,139]
ITGB3↓,
NADPH↓, ALA has been shown to inhibit NADPH oxidase, a key enzyme closely associated with NP, including NOX4

262- ALA,    Lipoic acid decreases breast cancer cell proliferation by inhibiting IGF-1R via furin downregulation
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
TumCP↓,
Akt↓,
ERK↓,
IGF-1R↓,
Furin↓,
Ki-67↓,
AMPK↑,
mTOR↓,

261- ALA,    The natural antioxidant alpha-lipoic acid induces p27(Kip1)-dependent cell cycle arrest and apoptosis in MCF-7 human breast cancer cells
- in-vitro, BC, MCF-7
ROS↓, We observed that alpha-lipoic acid is able to scavenge reactive oxygen species in MCF-7 cells(52%)
Akt↓,
p27↑,
Bax:Bcl2↑,

259- ALA,    Increased ROS generation and p53 activation in alpha-lipoic acid-induced apoptosis of hepatoma cells
- in-vitro, Liver, HepG2 - in-vitro, Liver, FaO
Cyc↓, cyclin A
P21↑,
ROS↑, α-LA treatment at a concentration that induces apoptosis (500 µM) caused increased ROS generation in FaO cells, as early as 1 h after treatment with a further increase at 3 and 6 h.
p‑P53↑,
BAX↑, 500 µM α-LA produced an increase in Bax levels as early as 24 h
Cyt‑c↑, release from mitochondria
Casp↑, Treatment of HepG2 cells with 500 µM α-LA caused a time-dependent activation of caspase-3, as indicated by a progressive decrease of levels of pro-caspase-3
survivin↓,
JNK↑,
Akt↓,

258- ALA,    Effects of α-lipoic acid on cell proliferation and apoptosis in MDA-MB-231 human breast cells
- in-vitro, BC, MDA-MB-231
TumCG↓, inhibited growth
p‑Akt↓,
Akt↓,
HER2/EBBR2↓, ErbB2 and ErbB3 protein and mRNA expressions
Bcl-2↓,
BAX↑,
Casp3↑,

295- ALA,    α-Lipoic acid suppresses migration and invasion via downregulation of cell surface β1-integrin expression in bladder cancer cells
- in-vitro, Bladder, T24
ITGB1↓,
TumCMig↓,
ERK↓,
Akt↓,

3443- ALA,    Molecular and Therapeutic Insights of Alpha-Lipoic Acid as a Potential Molecule for Disease Prevention
- Review, Var, NA - Review, AD, NA
*antiOx↑, antioxidant potential and free radical scavenging activity.
*ROS↓,
*IronCh↑, Lipoic acid acts as a chelating agent for metal ions, a quenching agent for reactive oxygen species, and a reducing agent for the oxidized form of glutathione and vitamins C and E.
*cognitive↑, α-Lipoic acid enantiomers and its reduced form have antioxidant, cognitive, cardiovascular, detoxifying, anti-aging, dietary supplement, anti-cancer, neuroprotective, antimicrobial, and anti-inflammatory properties.
*cardioP↓,
AntiCan↑,
*neuroP↑,
*Inflam↓, α-Lipoic acid can reduce inflammatory markers in patients with heart disease
*BioAv↓, bioavailability in its pure form is low (approximately 30%).
*AntiAge↑, As a dietary supplements α-lipoic acid has become a common ingredient in regular products like anti-aging supplements and multivitamin formulations
*Half-Life↓, it has a half-life (t1/2) of 30 min to 1 h.
*BioAv↝, It should be stored in a cool, dark, and dry environment, at 0 °C for short-term storage (few days to weeks) and at − 20 °C for long-term storage (few months to years).
other↝, Remarkably, neither α-lipoic acid nor dihydrolipoic acid can scavenge hydrogen peroxide, possibly the most abundant second messenger ROS, in the absence of enzymatic catalysis.
EGFR↓, α-Lipoic acid inhibits cell proliferation via the epidermal growth factor receptor (EGFR) and the protein kinase B (PKB), also known as the Akt signaling, and induces apoptosis in human breast cancer cells
Akt↓,
ROS↓, α-Lipoic acid tramps the ROS followed by arrest in the G1 phase of the cell cycle and activates p27 (kip1)-dependent cell cycle arrest via changing of the ratio of the apoptotic-related protein Bax/Bcl-2
TumCCA↑,
p27↑,
PDH↑, α-Lipoic acid drives pyruvate dehydrogenase by downregulating aerobic glycolysis and activation of apoptosis in breast cancer cells, lactate production
Glycolysis↓,
ROS↑, HT-29 human colon cancer cells; It was concluded that α-lipoic acid induces apoptosis by a pro-oxidant mechanism triggered by an escalated uptake of mitochondrial substrates in oxidizable form
*eff↑, Several studies have found that combining α-lipoic acid and omega-3 fatty acids has a synergistic effect in slowing functional and cognitive decline in Alzheimer’s disease
*memory↑, α-lipoic acid inhibits brain weight loss, downregulates oxidative tissue damage resulting in neuronal cell loss, repairs memory and motor function,
*motorD↑,
*GutMicro↑, modulates the gut microbiota without reducing the microbial diversity (

3437- ALA,    Revisiting the molecular mechanisms of Alpha Lipoic Acid (ALA) actions on metabolism
- Review, Var, NA
*IronCh↑, ALA functions as a metabolic regulator, metal chelator, and a powerful antioxidant.
*antiOx↑,
*ROS↓, It quenches reactive oxygen species (ROS), restores exogenous and endogenous antioxidants such as vitamins and Glutathione (GSH), and repairs oxidized proteins
*GSH↑,
*NF-kB↓, inhibition of the activation of nuclear factor kappa B (NF-κB)
*AMPK⇅, activation of peripheral AMPK and inhibition of hypothalamic AMPK
*FAO↑, ALA has been found to activate peripheral AMPK, thereby enhancing fatty acid oxidation and glucose uptake in muscle cells
*GlucoseCon↑,
*PI3K↑, It stimulates glucose uptake by increasing the activity of PI3K and Akt which are crucial for the translocation of glucose transporters like GLUT4 to the cell membrane, mimicking the action of insulin
*Akt?,

3436- ALA,    Alpha lipoic acid modulates metabolic reprogramming in breast cancer stem cells enriched 3D spheroids by targeting phosphoinositide 3-kinase: In silico and in vitro insights Author links open overlay panel
- in-vitro, BC, MCF-7
ChemoSen↑, LA also enhanced the sensitivity of breast cancer spheroids to doxorubicin (Dox), demonstrating a synergistic effect.
PI3K↓, LA inhibits PI3K/AKT signaling in breast cancer spheroids
Akt↓,
ATP↓, found that LA markedly reduced both ATP levels and glucose uptake
GlucoseCon↓,
ROS↑, LA also induced ROS generation in both MCF-7 and MDA-MB231 spheroids
PKM2↓, LA downregulated the expression of PKM2 and LDHA in the spheroids, indicating an inhibition of glycolysis in BCSCs
Glycolysis↓,
CSCs↓,
IGF-1R↓, LA inhibits IGF-1R via furin downregulation, synergizes with other anticancer drugs like paclitaxel and cisplatin, and enhances radiosensitivity in breast cancer
Furin↓,
RadioS↑,

3434- ALA,    Alpha lipoic acid modulates metabolic reprogramming in breast cancer stem cells enriched 3D spheroids by targeting phosphoinositide 3-kinase: In silico and in vitro insights
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
tumCV↓, significant dose-dependent reduction in cell viability, with the half-maximal inhibitory concentration (IC50) of LA to be 3.2 mM for MCF-7 cells and 2.9 mM for MDA-MB-231 cells
PI3K↓, LA significantly inhibited PI3K, p-AKT, p-p70S6K and p-mTOR levels
p‑Akt↓,
p‑P70S6K↓,
mTOR↓,
ATP↓, LA markedly reduced both ATP levels and glucose uptake (Fig. 4A and 4B). LA also induced ROS generation in both MCF-7 and MDA-MB231 spheroids
GlucoseCon↓,
ROS↑,
PKM2↓, LA downregulated the expression of PKM2 and LDHA in the spheroids, indicating an inhibition of glycolysis in BCSCs
LDHA↓,
Glycolysis↓,
ChemoSen↑, LA enhances chemosensitivity of spheroids to Dox treatment

3539- ALA,    Alpha-lipoic acid as a dietary supplement: Molecular mechanisms and therapeutic potential
- Review, AD, NA
*ROS↓, scavenges free radicals, chelates metals, and restores intracellular glutathione levels which otherwise decline with age.
*IronCh↑, LA preferentially binds to Cu2+, Zn2+ and Pb2+, but cannot chelate Fe3+, while DHLA forms complexes with Cu2+, Zn2+, Pb2+, Hg2+ and Fe3+
*GSH↑,
*antiOx↑, LA has long been touted as an antioxidant
*NRF2↑, activate Phase II detoxification via the transcription factor Nrf2
*MMP9↓, lower expression of MMP-9 and VCAM-1 through repression of NF-kappa-B.
*VCAM-1↓,
*NF-kB↓,
*cognitive↑, it has been used to improve age-associated cardiovascular, cognitive, and neuromuscular deficits, and has been implicated as a modulator of various inflammatory signaling pathways
*Inflam↓,
*BioAv↝, LA bioavailability may be dependent on multiple carrier proteins.
*BioAv↝, observed that approximately 20-40% was absorbed [
*BBB↑, LA has been shown to cross the blood-brain barrier in a limited number of studies
*H2O2∅, Neither species is active against hydrogen peroxide
*neuroP↑, chelation of iron and copper in the brain had a positive effect in the pathobiology of Alzheimer’s Disease by lowering free radical damage
*PKCδ↑, In addition to PKCδ, LA activates Erk1/2 [92, 93], p38 MAPK [94], PI3 kinase [94], and Akt [94-97].
*ERK↑,
*MAPK↑,
*PI3K↑,
*Akt↑,
*PTEN↓, LA decreases the activities of Protein Tyrosine Phosphatase 1B [99], Protein Phosphatase 2A [95], and the phosphatase and tensin homolog PTEN
*AMPK↑, LA activates peripheral AMPK
*GLUT4↑, In skeletal muscle, LA is proposed to recruit GLUT4 from its storage site in the Golgi to the sarcolemma, so that glucose uptake is stimulated by the local increase in transporter abundance.
*GlucoseCon↑,
*BP↝, Feeding LA to hypertensive rats normalized systolic blood pressure and cytosolic free Ca2+
*eff↑, Clinically, LA administration (in combination with acetyl-L-carnitine) showed some promise as an antihypertensive therapy by decreasing systolic pressure in high blood pressure patients and subjects with the metabolic syndrome
*ICAM-1↓, decreased demyelination and spinal cord expression of adhesion molecules (ICAM-1 and VCAM-1)
*VCAM-1↓,
*Dose↝, Considering the transient cellular accumulation of LA following an oral dose, which does not exceed low micromolar levels, it is entirely possible that some of the cellular effects of LA when given at supraphysiological concentrations may be not be c

3272- ALA,    Alpha-lipoic acid as a dietary supplement: Molecular mechanisms and therapeutic potential
- Review, AD, NA
*antiOx↑, LA has long been touted as an antioxidant,
*glucose↑, improve glucose and ascorbate handling,
*eNOS↑, increase eNOS activity, activate Phase II detoxification via the transcription factor Nrf2, and lower expression of MMP-9 and VCAM-1 through repression of NF-kappa-B.
*NRF2↑,
*MMP9↓,
*VCAM-1↓,
*NF-kB↓,
*cardioP↑, used to improve age-associated cardiovascular, cognitive, and neuromuscular deficits,
*cognitive↑,
*eff↓, The efficiency of LA uptake was also lowered by its administration in food,
*BBB↑, LA has been shown to cross the blood-brain barrier in a limited number of studies;
*IronCh↑, LA preferentially binds to Cu2+, Zn2+ and Pb2+, but cannot chelate Fe3+, while DHLA forms complexes with Cu2+, Zn2+, Pb2+, Hg2+ and Fe3+
*GSH↑, LA markedly increases intracellular glutathione (GSH),
*PKCδ↑, PKCδ, LA activates Erk1/2 [92,93], p38 MAPK [94], PI3 kinase [94], and Akt
*ERK↑,
*p38↑,
*MAPK↑,
*PI3K↑,
*Akt↑,
*PTEN↓, LA decreases the activities of Protein Tyrosine Phosphatase 1B [99], Protein Phosphatase 2A [95], and the phosphatase and tensin homolog PTEN [95],
*AMPK↑, LA activates peripheral AMPK
*GLUT4↑, stimulate GLUT4 translocation
*GLUT1↑, LA-stimulated translocation of GLUT1 and GLUT4.
*Inflam↓, LA as an anti-inflammatory agent

3549- ALA,    Important roles of linoleic acid and α-linolenic acid in regulating cognitive impairment and neuropsychiatric issues in metabolic-related dementia
- Review, AD, NA
*Inflam↓, LA and ALA attenuate neuroinflammation by modulating inflammatory signaling.
*other↝, ratio of LA to ALA in typical Western diets is reportedly 8–10:1 or higher, which is rather higher than the ideal ratio of LA to ALA (1–2:1) required to reach the maximal conversion of ALA to its longer chain PUFAs
*other↝, LA and ALA are essential PUFAs that must be obtained from dietary intake because they cannot be synthesized de novo
*neuroP↑, several studies have also suggested that lower dietary intake of LA influences AA metabolism in brain and subsequently causes progressive neurodegenerative disorders
*BioAv↝, LA cannot be synthesized in the human body
*adiP↑, study suggested that LA-rich oil consumption leads to the high levels of adiponectin in the blood [114], which could stimulate mitochondrial function in the liver and skeletal muscles for energy thermogenesis
*BBB↑, Although LA can penetrate the BBB, most of the LA that enters the brain cannot be changed into AA [48,49], and 59 % of the LA that enters the brain is broken down by fatty acid β-oxidation
*Casp6↓, In neurons, LA and ALA attenuate the activation of cleaved caspase-3/-9, p-NF-Kb and the production of TNF-a, IL-6, IL-1b, and ROS by binding GPR40 and GPR120.
*Casp9↓,
*TNF-α↓,
*IL6↓,
*IL1β↓,
*ROS↓,
*NO↓, LA reduces NO production and inducible nitric oxide synthases (iNOS) protein expression in BV-2 microglia
*iNOS↓,
*COX2↓, ALA increases antioxidant enzyme activities in the brain [182] and inhibits the activation of COX-2 in AD models
*JNK↓, ALA has also been shown to suppress the activation of c-Jun N-terminal kinases (JNKs) and p-NF-kB p65 (Ser536), which is involved in inflammatory signaling
*p‑NF-kB↓,
*Aβ↓, and to inhibit Aβ aggregation and neuronal cell necrosis
*BP↓, LA also improves blood pressure, blood triglyceride and cholesterol levels, and vascular inflammation
*memory↑, One study suggested that long-term intake of ALA enhances memory function by increasing hippocampal neuronal function through activation of cAMP response element-binding protein (CREB) [192], extracellular signal-regulated kinase (ERK), and Akt signa
*cAMP↑,
*ERK↑,
*Akt↑,
cognitive?, Furthermore, ALA administration inhibits Aβ induced neuroinflammation in the cortex and hippocampus and enhances cognitive function

1158- And,  GEM,    Andrographolide causes apoptosis via inactivation of STAT3 and Akt and potentiates antitumor activity of gemcitabine in pancreatic cancer
TumCP↓,
TumCCA↑,
Apoptosis↑,
STAT3↓,
Akt↓,
P21↑,
BAX↑,
cycD1↓,
cycE↓,
survivin↓,
XIAP↓,
Bcl-2↓,
eff↑, ANDRO combined with gemcitabine significantly induce stronger cell cycle arrest and more obvious apoptosis than each single treatment.

1150- Api,    Apigenin inhibits the TNFα-induced expression of eNOS and MMP-9 via modulating Akt signalling through oestrogen receptor engagement
- in-vitro, Lung, EAhy926
eNOS↓, Apigenin (50 μM) counteracted the TNFα-induced expression of eNOS and MMP-9 and the TNFα- triggered activation of Akt, p38MAPK and JNK signalling
MMP9↓,
Akt↓,
p38↓,
JNK↓, Apigenin pre-treatment (50 lM) significantly inhibited the TNFa-induced phosphorylation of Akt (Fig. 2a), p38MAPK (Fig. 2b) and JNK

1008- Api,    Apigenin-induced lysosomal degradation of β-catenin in Wnt/β-catenin signaling
- in-vitro, CRC, HCT116 - in-vitro, CRC, SW480
Wnt/(β-catenin)↓,
β-catenin/ZEB1↓,
TumAuto↑,
Akt↓,
mTOR↓,
tumCV↓,
TumCCA↑, cell cycle arrest at G2/M phase
TumAuto↑, data suggested the involvement of autophagy in apigenin-induced β-catenin down-regulation during Wnt signaling
p‑Akt↓,
p‑p70S6↓,
p‑4E-BP1↓,

577- Api,  PacT,    Inhibition of IL-6/STAT3 axis and targeting Axl and Tyro3 receptor tyrosine kinases by apigenin circumvent taxol resistance in ovarian cancer cells
- in-vitro, Ovarian, SKOV3
p‑Akt↓, phosphorylation
Bcl-xL↓,
Bcl-2↓,
AXL↓,
Tyro3↓,

581- Api,  Cisplatin,    The natural flavonoid apigenin sensitizes human CD44+ prostate cancer stem cells to cisplatin therapy
- in-vitro, Pca, CD44+
Bcl-2↓,
survivin↓,
Casp8↑,
P53↑,
Sharpin↓,
APAF1↑,
p‑Akt↓,
NF-kB↓,
P21↑,
Cyc↓,
CDK2↓,
CDK4/6↓,
Snail↓,
ChemoSen↑, Apigenin significantly increased the inhibitory effects of cisplatin on cell migration via downregulation of Snail expression

583- Api,  Cisplatin,    Apigenin suppresses GLUT-1 and p-AKT expression to enhance the chemosensitivity to cisplatin of laryngeal carcinoma Hep-2 cells: an in vitro study
- in-vitro, Laryn, HEp2
PI3K/Akt↓,
GLUT1↓,
Akt↓,

240- Api,    The flavonoid apigenin reduces prostate cancer CD44(+) stem cell survival and migration through PI3K/Akt/NF-κB signaling
- in-vitro, Pca, PC3 - in-vitro, Pca, CD44+
P21↑,
p27↑,
Casp3↑,
Casp8↑,
Slug↓,
Snail↓,
NF-kB↓,
PI3K↓,
Akt↓,

238- Api,    Apigenin inhibits TGF-β-induced VEGF expression in human prostate carcinoma cells via a Smad2/3- and Src-dependent mechanism
- in-vitro, Pca, PC3 - in-vitro, Pca, LNCaP - in-vitro, Pca, C4-2B
VEGF↓,
TGF-β↓,
Src↓,
FAK↓,
Akt↓,
SMAD2↓,
SMAD3↓,

242- Api,    Apigenin inhibits proliferation and invasion, and induces apoptosis and cell cycle arrest in human melanoma cells
- in-vitro, Melanoma, A375 - in-vitro, Melanoma, C8161
ERK↓,
PI3k/Akt/mTOR↓, Akt/mTOR
Casp3↑, cleaved
PARP↑, cleaved
p‑mTOR↓,
p‑Akt↓,

175- Api,    Apigenin up-regulates transgelin and inhibits invasion and migration of colorectal cancer through decreased phosphorylation of AKT
- vitro+vivo, CRC, SW480 - vitro+vivo, CRC, DLD1 - vitro+vivo, CRC, LS174T
MMP↓,
p‑Akt↓, phosphorylation

270- Api,    Apigenin induces apoptosis in human leukemia cells and exhibits anti-leukemic activity in vivo via inactivation of Akt and activation of JNK
- in-vivo, AML, U937
Akt↓, nactivation of Akt and activation of JNK
JNK↑,
Mcl-1↓,
cl‑Bcl-2↓, cleavage
Casp3↑,
Casp7↑,
Casp9↑,
cl‑PARP↑, cleaved
mTOR↓,
GSK‐3β↓,

416- Api,    In Vitro and In Vivo Anti-tumoral Effects of the Flavonoid Apigenin in Malignant Mesothelioma
- vitro+vivo, NA, NA
Bax:Bcl2↑,
P53↑,
ROS↑,
Casp9↑,
Casp8↑,
cl‑PARP1↑, cleavage
p‑ERK⇅, Here, we demonstrated that API treatment was able to increase ERK1/2 phosphorylation in MM-B1, H-Meso-1, and #40a cells while induced a decrease of ERK1/2 activation in MM-F1 cells.
p‑JNK↓,
p‑p38↑,
p‑Akt↓,
cJun↓,
NF-kB↓,
EGFR↓,
TumCCA↑, increase of the percentage of cells in subG1 phase

308- Api,    Apigenin Inhibits Cancer Stem Cell-Like Phenotypes in Human Glioblastoma Cells via Suppression of c-Met Signaling
- in-vitro, GBM, U87MG - in-vitro, GBM, U373MG
cMET↓,
Akt↓,
Nanog↓,
SOX2↓, Sox2

2584- Api,  Chemo,    The versatility of apigenin: Especially as a chemopreventive agent for cancer
- Review, Var, NA
ChemoSen↑, Apigenin has also been studied for its potential as a sensitizer in cancer therapy, improving the efficacy of traditional chemotherapeutic drugs and radiotherapy
RadioS↑, Apigenin enhances radiotherapy effects by sensitizing cancer cells to radiation-induced cell death
eff↝, It works by suppressing the expression of involucrin (hINV), a hallmark of keratinocyte development. Apigenin inhibits the rise in hINV expression caused by differentiating agents
DR5↑, Apigenin also greatly upregulates the expression of death receptor 5 (DR5
selectivity↑, Surprisingly, apigenin-mediated increase of DR5 expression is missing in normal mononuclear cells from human peripheral blood and doesn't subject these cells to TRAIL-induced death.
angioG↓, Apigenin has been found to prevent angiogenesis by targeting critical signaling pathways involved in blood vessel creation.
selectivity↑, Importantly, apigenin has been demonstrated to selectively kill cancer cells while sparing normal ones
chemoP↑, This selective cytotoxicity is beneficial in cancer therapy because it reduces the negative effects frequently associated with traditional treatments like chemotherapy
MAPK↓, Apigenin's ability to suppress MAPK signaling adds to its anticancer properties.
PI3K↓, Apigenin suppresses the PI3K/Akt/mTOR pathway, which is typically dysregulated in cancer.
Akt↓,
mTOR↓,
Wnt↓, Apigenin inhibits Wnt signaling by increasing β-catenin degradation
β-catenin/ZEB1↓,
GLUT1↓, fig 3
radioP↑, while reducing radiation-induced damage to healthy tissues
BioAv↓, obstacles associated with apigenin's low bioavailability and stability

2593- Api,    Apigenin promotes apoptosis of 4T1 cells through PI3K/AKT/Nrf2 pathway and improves tumor immune microenvironment in vivo
- in-vivo, BC, 4T1
TumCP↓, API suppresses 4T1 cells proliferation
TumCMig↓, API restraints 4T1 cells migration and invasion
TumCI↓,
Apoptosis↑, API triggers 4T1 apoptosis and modulates the expression levels of apoptotic-associated proteins in 4T1 cells
MMP↑, API triggers the depolarization of ΔΨm in 4T1 cells
ROS↑, API induces ROS generation
p‑PI3K↓, The results revealed a significant downregulation of p-PI3K/PI3K, p-AKT/AKT, and Nrf2 in 4T1 cells following API treatment
PI3K↓,
Akt↓,
NRF2↓,
AntiTum↑, API exhibits anti-tumor activity in mice
OS↑, results of animal survival experiments show that API can appropriately prolong the survival of mice with mammary gland tumors

2640- Api,    Apigenin: A Promising Molecule for Cancer Prevention
- Review, Var, NA
chemoP↑, considerable potential for apigenin to be developed as a cancer chemopreventive agent.
ITGB4↓, apigenin inhibits hepatocyte growth factor-induced MDA-MB-231 cells invasiveness and metastasis by blocking Akt, ERK, and JNK phosphorylation and also inhibits clustering of β-4-integrin function at actin rich adhesive site
TumCI↓,
TumMeta↓,
Akt↓,
ERK↓,
p‑JNK↓,
*Inflam↓, The anti-inflammatory properties of apigenin are evident in studies that have shown suppression of LPS-induced cyclooxygenase-2 and nitric oxide synthase-2 activity and expression in mouse macrophages
*PKCδ↓, Apigenin has been reported to inhibit protein kinase C activity, mitogen activated protein kinase (MAPK), transformation of C3HI mouse embryonic fibroblasts and the downstream oncogenes in v-Ha-ras-transformed NIH3T3 cells (43, 44).
*MAPK↓,
EGFR↓, Apigenin treatment has been shown to decrease the levels of phosphorylated EGFR tyrosine kinase and of other MAPK and their nuclear substrate c-myc, which causes apoptosis in anaplastic thyroid cancer cells
CK2↓, apigenin has been shown to inhibit the expression of casein kinase (CK)-2 in both human prostate and breast cancer cells
TumCCA↑, apigenin induces a reversible G2/M and G0/G1 arrest by inhibiting p34 (cdc2) kinase activity, accompanied by increased p53 protein stability
CDK1↓, inhibiting p34 (cdc2) kinase activity
P53↓,
P21↑, Apigenin has also been shown to induce WAF1/p21 levels resulting in cell cycle arrest and apoptosis in androgen-responsive human prostate cancer
Bax:Bcl2↑, Apigenin treatment has been shown to alter the Bax/Bcl-2 ratio in favor of apoptosis, associated with release of cytochrome c and induction of Apaf-1, which leads to caspase activation and PARP-cleavage
Cyt‑c↑,
APAF1↑,
Casp↑,
cl‑PARP↑,
VEGF↓, xposure of endothelial cells to apigenin results in suppression of the expression of VEGF, an important factor in angiogenesis via degradation of HIF-1α protein
Hif1a↓,
IGF-1↓, oral administration of apigenin suppresses the levels of IGF-I in prostate tumor xenografts and increases levels of IGFBP-3, a binding protein that sequesters IGF-I in vascular circulation
IGFBP3↑,
E-cadherin↑, apigenin exposure to human prostate carcinoma DU145 cells caused increase in protein levels of E-cadherin and inhibited nuclear translocation of β-catenin and its retention to the cytoplasm
β-catenin/ZEB1↓,
HSPs↓, targets of apigenin include heat shock proteins (61), telomerase (68), fatty acid synthase (69), matrix metalloproteinases (70), and aryl hydrocarbon receptor activity (71) HER2/neu (72), casein kinase 2 alpha
Telomerase↓,
FASN↓,
MMPs↓,
HER2/EBBR2↓,
CK2↓,
eff↑, The combination of sulforaphane and apigenin resulted in a synergistic induction of UGT1A1
AntiAg↑, Apigenin inhibit platelet function through several mechanisms including blockade of TxA
eff↑, ex vivo anti-platelet effect of aspirin in the presence of apigenin, which encourages the idea of the combined use of aspirin and apigenin in patients in which aspirin fails to properly suppress the TxA
FAK↓, Apigenin inhibits expression of focal adhesion kinase (FAK), migration and invasion of human ovarian cancer A2780 cells.
ROS↑, Apigenin generates reactive oxygen species, causes loss of mitochondrial Bcl-2 expression, increases mitochondrial permeability, causes cytochrome C release, and induces cleavage of caspase 3, 7, 8, and 9 and the concomitant cleavage of the inhibitor
Bcl-2↓,
Cyt‑c↑,
cl‑Casp3↑,
cl‑Casp7↑,
cl‑Casp8↑,
cl‑Casp9↑,
cl‑IAP2↑,
AR↓, significant decrease in AR protein expression along with a decrease in intracellular and secreted forms of PSA. Apigenin treatment of LNCaP cells
PSA↓,
p‑pRB↓, apigenin inhibited hyperphosphorylation of the pRb protein
p‑GSK‐3β↓, Inhibition of p-Akt by apigenin resulted in decreased phosphorylation of GSK-3beta.
CDK4↓, both flavonoids exhibited cell growth inhibitory effects which were due to cell cycle arrest and downregulation of the expression of CDK4
ChemoSen↑, Combination therapy of gemcitabine and apigenin enhanced anti-tumor efficacy in pancreatic cancer cells (MiaPaca-2, AsPC-1)
Ca+2↑, apigenin in neuroblastoma SH-SY5Y cells resulted in increased apoptosis, which was associated with increases in intracellular free [Ca(2+)] and Bax:Bcl-2 ratio, mitochondrial release of cytochrome c and activation of caspase-9, calpain, caspase-3,12
cal2↑,

2639- Api,    Plant flavone apigenin: An emerging anticancer agent
- Review, Var, NA
*antiOx↑, Apigenin (4′, 5, 7-trihydroxyflavone), a major plant flavone, possessing antioxidant, anti-inflammatory, and anticancer properties
*Inflam↓,
AntiCan↑,
ChemoSen↑, Studies demonstrate that apigenin retain potent therapeutic properties alone and/or increases the efficacy of several chemotherapeutic drugs in combination on a variety of human cancers.
BioEnh↑, Apigenin’s anticancer effects could also be due to its differential effects in causing minimal toxicity to normal cells with delayed plasma clearance and slow decomposition in liver increasing the systemic bioavailability in pharmacokinetic studies.
chemoP↑, apigenin highlighting its potential activity as a chemopreventive and therapeutic agent.
IL6↓, In taxol-resistant ovarian cancer cells, apigenin caused down regulation of TAM family of tyrosine kinase receptors and also caused inhibition of IL-6/STAT3 axis, thereby attenuating proliferation.
STAT3↓,
NF-kB↓, apigenin treatment effectively inhibited NF-κB activation, scavenged free radicals, and stimulated MUC-2 secretion
IL8↓, interleukin (IL)-6, and IL-8
eff↝, The anti-proliferative effects of apigenin was significantly higher in breast cancer cells over-expressing HER2/neu but was much less efficacious in restricting the growth of cell lines expressing HER2/neu at basal levels
Akt↓, Apigenin interferes in the cell survival pathway by inhibiting Akt function by directly blocking PI3K activity
PI3K↓,
HER2/EBBR2↓, apigenin administration led to the depletion of HER2/neu protein in vivo
cycD1↓, Apigenin treatment in breast cancer cells also results in decreased expression of cyclin D1, D3, and cdk4 and increased quantities of p27 protein
CycD3↓,
p27↑,
FOXO3↑, In triple-negative breast cancer cells, apigenin induces apoptosis by inhibiting the PI3K/Akt pathway thereby increasing FOXO3a expression
STAT3↓, In addition, apigenin also down-regulated STAT3 target genes MMP-2, MMP-9, VEGF and Twist1, which are involved in cell migration and invasion of breast cancer cells [
MMP2↓,
MMP9↓,
VEGF↓, Apigenin acts on the HIF-1 binding site, which decreases HIF-1α, but not the HIF-1β subunit, thereby inhibiting VEGF.
Twist↓,
MMP↓, Apigenin treatment of HGC-27 and SGC-7901 gastric cancer cells resulted in the inhibition of proliferation followed by mitochondrial depolarization resulting in apoptosis
ROS↑, Further studies revealed apigenin-induced apoptosis in hepatoma tumor cells by utilizing ROS generated through the activation of the NADPH oxidase
NADPH↑,
NRF2↓, Apigenin significantly sensitized doxorubicin-resistant BEL-7402 (BEL-7402/ADM) cells to doxorubicin (ADM) and increased the intracellular concentration of ADM by reducing Nrf2-
SOD↓, In human cervical epithelial carcinoma HeLa cells combination of apigenin and paclitaxel significantly increased inhibition of cell proliferation, suppressing the activity of SOD, inducing ROS accumulation leading to apoptosis by activation of caspas
COX2↓, melanoma skin cancer model where apigenin inhibited COX-2 that promotes proliferation and tumorigenesis
p38↑, Additionally, it was shown that apigenin treatment in a late phase involves the activation of p38 and PKCδ to modulate Hsp27, thus leading to apoptosis
Telomerase↓, apigenin inhibits cell growth and diminishes telomerase activity in human-derived leukemia cells
HDAC↓, demonstrated the role of apigenin as a histone deacetylase inhibitor. As such, apigenin acts on HDAC1 and HDAC3
HDAC1↓,
HDAC3↓,
Hif1a↓, Apigenin acts on the HIF-1 binding site, which decreases HIF-1α, but not the HIF-1β subunit, thereby inhibiting VEGF.
angioG↓, Moreover, apigenin was found to inhibit angiogenesis, as suggested by decreased HIF-1α and VEGF expression in cancer cells
uPA↓, Furthermore, apigenin intake resulted in marked inhibition of p-Akt, p-ERK1/2, VEGF, uPA, MMP-2 and MMP-9, corresponding with tumor growth and metastasis inhibition in TRAMP mice
Ca+2↑, Neuroblastoma SH-SY5Y cells treated with apigenin led to induction of apoptosis, accompanied by higher levels of intracellular free [Ca(2+)] and shift in Bax:Bcl-2 ratio in favor of apoptosis, cytochrome c release, followed by activation casp-9, 12
Bax:Bcl2↑,
Cyt‑c↑,
Casp9↑,
Casp12↑,
Casp3↑, Apigenin also augmented caspase-3 activity and PARP cleavage
cl‑PARP↑,
E-cadherin↑, Apigenin treatment resulted in higher levels of E-cadherin and reduced levels of nuclear β-catenin, c-Myc, and cyclin D1 in the prostates of TRAMP mice.
β-catenin/ZEB1↓,
cMyc↓,
CDK4↓, apigenin exposure led to decreased levels of cell cycle regulatory proteins including cyclin D1, D2 and E and their regulatory partners CDK2, 4, and 6
CDK2↓,
CDK6↓,
IGF-1↓, A reduction in the IGF-1 and increase in IGFBP-3 levels in the serum and the dorsolateral prostate was observed in apigenin-treated mice.
CK2↓, benefits of apigenin as a CK2 inhibitor in the treatment of human cervical cancer by targeting cancer stem cells
CSCs↓,
FAK↓, Apigenin inhibited the tobacco-derived carcinogen-mediated cell proliferation and migration involving the β-AR and its downstream signals FAK and ERK activation
Gli↓, Apigenin inhibited the self-renewal capacity of SKOV3 sphere-forming cells (SFC) by downregulating Gli1 regulated by CK2α
GLUT1↓, Apigenin induces apoptosis and slows cell growth through metabolic and oxidative stress as a consequence of the down-regulation of glucose transporter 1 (GLUT1).

2318- Api,    Apigenin as a multifaceted antifibrotic agent: Therapeutic potential across organ systems
- Review, Nor, NA
*ROS↓, Apigenin reduces fibrosis by targeting oxidative stress, fibroblast activation, and ECM buildup across organs
*PKM2↓, PKM2-HIF-1α pathway inhibited
*Hif1a↓,
*TGF-β↓, apigenin suppresses the PKM2-HIF-1α and TGF-β signaling pathways to prevent fibrosis
*AMPK↑, In the kidneys, it activates AMPK to suppress TGF-β1-induced fibroblast transformation
*Inflam↓, For the brain, apigenin reduces inflammation and oxidative stress through the PI3K/Akt/Nrf2 pathway.
*PI3K↓, Apigenin exerts neuroprotective effects in neonatal hypoxic-ischemic (HI) brain injury by activating the PI3K/Akt/Nrf2 signaling pathway, which is critical in defending neurons from oxidative stress and inflammation.
*Akt↑,
*NRF2↑, apigenin reduces oxidative damage through Nrf2 and NF-κB pathway modulation
*NF-kB↓, downregulates critical TGF-β and NF-κB pathways.

1537- Api,    Apigenin as Tumor Suppressor in Cancers: Biotherapeutic Activity, Nanodelivery, and Mechanisms With Emphasis on Pancreatic Cancer
- Review, PC, NA
TumCP↓,
TumCCA↑,
Apoptosis↑,
MMPs↓,
Akt↓,
*BioAv↑, delivery systems (nanosuspension, polymeric micelles, liposomes).
*BioAv↓, low solubility of apigenin in water (1.35 μg/mL) and its high permeability
Half-Life∅, (appearing in blood circulation after 3.9 h)
Hif1a↓, (HIF-1α) is targeted by apigenin in several cancers such as, ovarian cancer, prostate cancer, and lung cancer
GLUT1↓, GLUT-1 is blocked by apigenin (0–100 μM) under normoxic conditions
VEGF↓,
ChemoSen↑, apigenin can be applied as a chemosensitizer
ROS↑, accumulation of ROS produced were stimulated
Bcl-2↓, down-regulation of anti-apoptotic factors Bcl-2 and Bcl-xl as well as the up-regulation of apoptotic factors Bax and Bim.
Bcl-xL↓,
BAX↑,
BIM↑,

1545- Api,    The Potential Role of Apigenin in Cancer Prevention and Treatment
- Review, NA, NA
TNF-α↓, Apigenin downregulates the TNFα
IL6↓,
IL1α↓,
P53↑,
Bcl-xL↓,
Bcl-2↓,
BAX↑,
Hif1a↓, Apigenin inhibited HIF-1alpha and vascular endothelial growth factor expression
VEGF↓,
TumCCA↑, Apigenin exposure induces G2/M phase cell cycle arrest, DNA damage, apoptosis and p53 accumulation
DNAdam↑,
Apoptosis↑,
CycB↓,
cycA1↓,
CDK1↓,
PI3K↓,
Akt↓,
mTOR↓,
IKKα↓, , decreases IKKα kinase activity,
ERK↓,
p‑Akt↓,
p‑P70S6K↓,
p‑S6↓,
p‑ERK↓, decreased the expression of phosphorylated (p)-ERK1/2 proteins, p-AKT and p-mTOR
p‑P90RSK↑,
STAT3↓,
MMP2↓, Apigenin down-regulated Signal transducer and activator of transcription 3target genes MMP-2, MMP-9 and vascular endothelial growth factor
MMP9↓,
TumCP↓, Apigenin significantly suppressed colorectal cancer cell proliferation, migration, invasion and organoid growth through inhibiting the Wnt/β-catenin signaling
TumCMig↓,
TumCI↓,
Wnt/(β-catenin)↓,

1547- Api,    Apigenin: Molecular Mechanisms and Therapeutic Potential against Cancer Spreading
- Review, NA, NA
angioG↓,
EMT↓,
CSCs↓,
TumCCA↑,
Dose∅, Dried parsley 45,035ug/g: Dried chamomille flower 3000–5000ug/g: Parsley 2154.6ug/g:
ROS↑, activity of Apigenin has been linked to the induction of oxidative stress in cancer cells
MMP↓, triggering intracellular ROS accumulation and loss of mitochondrial integrity
Catalase↓, catalase and glutathione (GSH), molecules involved in alleviating oxidative stress, were downregulated after Apigenin
GSH↓,
PI3K↓, suppression of the PI3K/Akt and NF-κB
Akt↓,
NF-kB↓,
OCT4↓, glycosylated form of Apigenin (i.e., Vitexin) was able to suppress stemness features of human endometrial cancer, as documented by the downregulation of Oct4 and Nanog
Nanog↓,
SIRT3↓, inhibition of sirtuin-3 (SIRT3) and sirtuin-6 (SIRT6) protein levels
SIRT6↓,
eff↑, ability of Apigenin to interfere with CSC features is often enhanced by the co-administration of other flavonoids, such as chrysin
eff↑, Apigenin combined with a chemotherapy agent, temozolomide (TMZ), was used on glioblastoma cells and showed better performance in cell arrest at the G2 phase compared with Apigenin or TMZ alone,
Cyt‑c↑, release of cytochrome c (Cyt c)
Bax:Bcl2↑, Apigenin has been shown to induce the apoptosis death pathway by increasing the Bax/Bcl-2 ratio
p‑GSK‐3β↓, Apigenin has been shown to prevent activation of phosphorylation of glycogen synthase kinase-3 beta (GSK-3β)
FOXO3↑, Apigenin administration increased the expression of forkhead box O3 (FOXO3)
p‑STAT3↓, Apigenin can induce apoptosis via inhibition of STAT3 phosphorylation
MMP2↓, downregulation of the expression of MMP-2 and MMP-9
MMP9↓,
COX2↓, downregulation of PI3K/Akt in leukemia HL60 cells [156,157] and of COX2, iNOS, and reactive oxygen species (ROS) accumulation in breast cancer cells
MMPs↓, triggering intracellular ROS accumulation and loss of mitochondrial integrity, as proved by low MMP in Apigenin-treated cells
NRF2↓, suppressed the nuclear factor erythroid 2-related factor 2 (Nrf2)
HDAC↓, inhibition of histone deacetylases (HDACs) is the mechanism through which Apigenin induces apoptosis in prostate cancer cells
Telomerase↓, Apigenin has been shown to downregulate telomerase activity
eff↑, Indeed, co-administration with 5-fluorouracil (5-FU) increased the efficacy of Apigenin in human colon cancer through p53 upregulation and ROS accumulation
eff↑, Apigenin synergistically enhances the cytotoxic effects of Sorafenib
eff↑, pretreatment of pancreatic BxPC-3 cells for 24 h with a low concentration of Apigenin and gemcitabine caused the inhibition of the GSK-3β/NF-κB signaling pathway, leading to the induction of apoptosis
eff↑, In NSCLC cells, compared to monotherapy, co-treatment with Apigenin and naringenin increased the apoptotic rate through ROS accumulation, Bax/Bcl-2 increase, caspase-3 activation, and mitochondrial dysfunction
eff↑, Several studies have shown that Apigenin-induced autophagy may play a pro-survival role in cancer therapy; in fact, inhibition of autophagy has been shown to exacerbate the toxicity of Apigenin
XIAP↓,
survivin↓,
CK2↓,
HSP90↓,
Hif1a↓,
FAK↓,
EMT↓,

1548- Api,    A comprehensive view on the apigenin impact on colorectal cancer: Focusing on cellular and molecular mechanisms
- Review, Colon, NA
*BioAv↓, Apigenin is not easily absorbed orally because of its low water solubility, which is only 2.16 g/mL
*Half-Life∅, Apigenin is slowly absorbed and eliminated from the body, as evidenced by its half‐life of 91.8 h in the blood
selectivity↑, selective anticancer effects and effective cell cytotoxic activity while exhibiting negligible toxicity to ordinary cells
*toxicity↓, intentional consumption in higher doses, as the toxicity hazard is low
Wnt/(β-catenin)↓, inhibiting the Wnt/β‐catenin
P53↑,
P21↑,
PI3K↓,
Akt↓,
mTOR↓,
TumCCA↑, G2/M
TumCI↓,
TumCMig↓,
STAT3↓, apigenin can activate p53, which improves catalase and inhibits STAT3,
PKM2↓,
EMT↓, reversing increases in epithelial–mesenchymal transition (EMT)
cl‑PARP↑, apigenin increases the cleavage of poly‐(ADP‐ribose) polymerase (PARP) and rapidly enhances caspase‐3 activity,
Casp3↑,
Bax:Bcl2↑,
VEGF↓, apigenin suppresses VEGF transcription
Hif1a↓, decrease in hypoxia‐inducible factor 1‐alpha (HIF‐1α
Dose∅, effectiveness of apigenin (200 and 300 mg/kg) in treating CC was evaluated by establishing xenografts on Balb/c nude mice.
GLUT1↓, Apigenin has been found to inhibit GLUT1 activity and glucose uptake in human pancreatic cancer cells
GlucoseCon↓,

1565- Api,    Apigenin-7-glucoside induces apoptosis and ROS accumulation in lung cancer cells, and inhibits PI3K/Akt/mTOR pathway
- in-vitro, Lung, A549 - in-vitro, Nor, BEAS-2B - in-vitro, Lung, H1975
TumCP↓, AGL significantly reduced proliferation, promoted cell apoptosis, and attenuated the migration and invasion of A549 or H1975 cell
Apoptosis↑,
TumCMig↓,
TumCI↓,
Cyt‑c↑, elevated the levels of cytochrome C and MDA
MDA↑,
GSH↓, but reduced the production of GSH in A549 and H1975 cells.
ROS↑, AGL enhanced the accumulation of ROS
PI3K↓, induces ROS accumulation in lung cancer cells by repressing PI3K/Akt/mTOR pathway
Akt↓,
mTOR↓,

1560- Api,    Apigenin as an anticancer agent
- Review, NA, NA
Apoptosis↑,
Casp3∅,
Casp8∅,
TNF-α∅,
Cyt‑c↑, evidenced by the induction of cytochrome c
MMP2↓, Apigenin treatment leads to significant downregulation of matrix metallopeptidases-2, -9, Snail, and Slug,
MMP9↓,
Snail↓,
Slug↓,
NF-kB↓, NF-κB p105/p50, PI3K, Akt, and the phosphorylation of p-Akt decreases after treatment
p50↓,
PI3K↓,
Akt↓,
p‑Akt↓,

556- ART/DHA,    Artemisinins as a novel anti-cancer therapy: Targeting a global cancer pandemic through drug repurposing
- Review, NA, NA
IL6↓,
IL1↓, IL-1β
TNF-α↓,
TGF-β↓, TGF-β1
NF-kB↓,
MIP2↓,
PGE2↓,
NO↓,
Hif1a↓,
KDR/FLK-1↓,
VEGF↓,
MMP2↓,
TIMP2↑,
ITGB1↑,
NCAM↑,
p‑ATM↑,
p‑ATR↑,
p‑CHK1↑,
p‑Chk2↑,
Wnt/(β-catenin)↓,
PI3K↓,
Akt↓,
ERK↓, ERK1/2
cMyc↓,
mTOR↓,
survivin↓,
cMET↓,
EGFR↓,
cycD1↓,
cycE1↓,
CDK4/6↓,
p16↑,
p27↑,
Apoptosis↑,
TumAuto↑,
Ferroptosis↑,
oncosis↑,
TumCCA↑, G0/G1 into M phase, G0/G1 into S phase, G1 and G2/M
ROS↑, ovarian cancer cell line model, artesunate induced oxidative stress, DNA double-strand breaks (DSBs) and downregulation of RAD51 foci
DNAdam↑,
RAD51↓,
HR↓,

574- ART/DHA,    Dihydroartemisinin suppresses glioma proliferation and invasion via inhibition of the ADAM17 pathway
TumCP↓,
TumCMig↓,
TumCI↓,
MMP17↓,
p‑EGFR↓,
p‑Akt↓,

569- ART/DHA,    Dihydroartemisinin exhibits anti-glioma stem cell activity through inhibiting p-AKT and activating caspase-3
- in-vitro, GBM, NA
TumCP↓,
Apoptosis↑,
TumCCA↑, cell cycle arrest in the G1 phase
Casp3↑,
p‑Akt↓,

2324- ART/DHA,    Research Progress of Warburg Effect in Hepatocellular Carcinoma
- Review, Var, NA
PKM2↓, DHA effectively suppressed aerobic glycolysis and ESCC progression by downregulating PKM2 expression in esophageal squamous cell carcinoma (ESCC) and ESCC cells
GLUT1↓, DHA inhibited leukemia cell K562 proliferation by suppressing GLUT1 and PKM2 levels, thereby regulating glucose uptake and inhibiting aerobic glycolysis
Glycolysis↓,
Akt↓, In LNCaP cells, DHA reduced Akt/mTOR and HIF-1α activity, leading to decreased expression of GLUT1, HK2, PKM2, and LDH and subsequent inhibition of aerobic glycolysis
mTOR↓,
Hif1a↓,
HK2↓,
LDH↓,
NF-kB↓, DHA was also found to inhibit the NF-κB signaling pathway to prevent GLUT1 translocation to the plasma membrane, thereby inhibiting the progression of non-small-cell lung cancer (NSCLC) cells via targeting glucose metabolism

3383- ART/DHA,    Dihydroartemisinin: A Potential Natural Anticancer Drug
- Review, Var, NA
TumCP↓, DHA exerts anticancer effects through various molecular mechanisms, such as inhibiting proliferation, inducing apoptosis, inhibiting tumor metastasis and angiogenesis, promoting immune function, inducing autophagy and endoplasmic reticulum (ER) stres
Apoptosis↑,
TumMeta↓,
angioG↓,
TumAuto↑,
ER Stress↑,
ROS↑, DHA could increase the level of ROS in cells, thereby exerting a cytotoxic effect in cancer cells
Ca+2↑, activation of Ca2+ and p38 was also observed in DHA-induced apoptosis of PC14 lung cancer cells
p38↑,
HSP70/HSPA5↓, down-regulation of heat-shock protein 70 (HSP70) might participate in the apoptosis of PC3 prostate cancer cells induced by DHA
PPARγ↑, DHA inhibited the growth of colon tumor by inducing apoptosis and increasing the expression of peroxisome proliferator-activated receptor γ (PPARγ)
GLUT1↓, DHA was shown to inhibit the activity of glucose transporter-1 (GLUT1) and glycolytic pathway by inhibiting phosphatidyl-inositol-3-kinase (PI3K)/AKT pathway and downregulating the expression of hypoxia inducible factor-1α (HIF-1α)
Glycolysis↓, Inhibited glycolysis
PI3K↓,
Akt↓,
Hif1a↓,
PKM2↓, DHA could inhibit the expression of PKM2 as well as inhibit lactic acid production and glucose uptake, thereby promoting the apoptosis of esophageal cancer cells
lactateProd↓,
GlucoseCon↓,
EMT↓, regulating the EMT-related genes (Slug, ZEB1, ZEB2 and Twist)
Slug↓, Downregulated Slug, ZEB1, ZEB2 and Twist in mRNA level
Zeb1↓,
ZEB2↓,
Twist↓,
Snail?, downregulated the expression of Snail and PI3K/AKT signaling pathway, thereby inhibiting metastasis
CAFs/TAFs↓, DHA suppressed the activation of cancer-associated fibroblasts (CAFs) and mouse cancer-associated fibroblasts (L-929-CAFs) by inhibiting transforming growth factor-β (TGF-β signaling
TGF-β↓,
p‑STAT3↓, blocking the phosphorylation of STAT3 and polarization of M2 macrophages
M2 MC↓,
uPA↓, DHA could inhibit the growth and migration of breast cancer cells by inhibiting the expression of uPA
HH↓, via inhibiting the hedgehog signaling pathway
AXL↓, DHA acted as an Axl inhibitor in prostate cancer, blocking the expression of Axl through the miR-34a/miR-7/JARID2 pathway, thereby inhibiting the proliferation, migration and invasion of prostate cancer cells.
VEGFR2↓, inhibition of VEGFR2-mediated angiogenesis
JNK↑, JNK pathway activated and Beclin 1 expression upregulated.
Beclin-1↑,
GRP78/BiP↑, Glucose regulatory protein 78 (GRP78, an ER stress-related molecule) was upregulated after DHA treatment.
eff↑, results demonstrated that DHA-induced ER stress required iron
eff↑, DHA was used in combination with PDGFRα inhibitors (sunitinib and sorafenib), it could sensitize ovarian cancer cells to PDGFR inhibitors and achieved effective therapeutic efficacy
eff↑, DHA combined with 2DG (a glycolysis inhibitor) synergistically induced apoptosis through both exogenous and endogenous apoptotic pathways
eff↑, histone deacetylase inhibitors (HDACis) enhanced the anti-tumor effect of DHA by inducing apoptosis.
eff↑, DHA enhanced PDT-induced cell growth inhibition and apoptosis, increased the sensitivity of esophageal cancer cells to PDT by inhibiting the NF-κB/HIF-1α/VEGF pathway
eff↑, DHA was added to magnetic nanoparticles (MNP), and the MNP-DHA has shown an effect in the treatment of intractable breast cancer
IL4↓, downregulated IL-4;
DR5↑, Upregulated DR5 in protein, Increased DR5 promoter activity
Cyt‑c↑, Released cytochrome c from the mitochondria to the cytosol
Fas↑, Upregulated fas, FADD, Bax, cleaved-PARP
FADD↑,
cl‑PARP↑,
cycE↓, Downregulated Bcl-2, Bcl-xL, procaspase-3, Cyclin E, CDK2 and CDK4
CDK2↓,
CDK4↓,
Mcl-1↓, Downregulated Mcl-1
Ki-67↓, Downregulated Ki-67 and Bcl-2
Bcl-2↓,
CDK6↓, Downregulated of Cyclin E, CDK2, CDK4 and CDK6
VEGF↓, Downregulated VEGF, COX-2 and MMP-9
COX2↓,
MMP9↓,

1335- AS,    Extract from Astragalus membranaceus inhibit breast cancer cells proliferation via PI3K/AKT/mTOR signaling pathway
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, BC, SkBr3
p‑PI3K↓,
p‑GS3Kβ↓,
p‑Akt↓,
p‑mTOR↓,

1338- AS,    The Modulatory Properties of Astragalus membranaceus Treatment on Triple-Negative Breast Cancer: An Integrated Pharmacological Method
- in-vitro, BC, NA
TumCI↓,
Apoptosis↑,
Symptoms↓,
PIK3CA↓,
Akt↓,
Bcl-2↓,

1357- Ash,    Cytotoxicity of withaferin A in glioblastomas involves induction of an oxidative stress-mediated heat shock response while altering Akt/mTOR and MAPK signaling pathways
- in-vitro, GBM, U87MG - in-vitro, GBM, U251 - in-vitro, GBM, GL26
TumCP↓,
TumCCA↑, G2/M cell cycle
Akt↓,
mTOR↓,
p70S6↓,
p85S6K↓,
AMPKα↑,
TSC2↑,
HSP70/HSPA5↑,
HO-1↑,
HSF1↓,
Apoptosis↑,
ROS↑, Withaferin A elevates pro-oxidant potential in GBM cells and induces a cellular oxidative stress response
eff↓, Pre-treatment with a thiol-antioxidant protects GBM cells from the anti-proliferative and cytotoxic effects of withaferin A NAC pretreatment was able to completely prevent cell cycle shift to G2/M arrest following 1µM WA treatment at 24h

3155- Ash,    Overview of the anticancer activity of withaferin A, an active constituent of the Indian ginseng Withania somnifera
- Review, Var, NA
Half-Life↝, The pharmacokinetic study demonstrates that a dose of 4 mg/kg in mice results in 2 μM concentration in plasma (with a half-life of 1.3 h, in the breast cancer model of mice),
Inflam↓, WA has many biological activities: anti-inflammatory (Dubey et al. 2018), immunomodulatory (Davis and Girija 2000), antistress (Singh et al. 2016), antioxidant (Sumathi et al. 2007) and anti-angiogenesis
antiOx↓,
angioG↓,
ROS↑, WA induces oxidative stress (ROS) determining mitochondrial dysfunction as well as apoptosis in leukaemia cells
BAX↑, withaferin mediates apoptosis by ROS generation and activation of Bax/Bak.
Bak↑,
E6↓, The results of the study show that withaferin treatment downregulates the HPV E6 and E7 oncoprotein and induces accumulation of p53 result in the activation of various apoptotic markers (e.g. Bcl2, Bax, caspase-3 and cleaved PARP).
E7↓,
P53↑,
Casp3↑,
cl‑PARP↑,
STAT3↓, WA treatment also decreases the level of STAT3
eff↑, This study concludes that combination of DOX with WA can reduce the doses and side effects of the treatment which gives valuable possibilities for future research.
HSP90↓, by inhibiting the HSP90
TGF-β↓, WA inhibited TGFβ1 and TNFα- induced EMT;
TNF-α↓,
EMT↑,
mTOR↓, by downregulation of mTOR/STAT3 signalling.
NOTCH1↓, WA showed inhibition of pro-survival signalling markers (Notch1, pAKT and NFκB)
p‑Akt↓,
NF-kB↓,
Dose↝, WA dose escalation sets consisted of 72, 108, 144 and 216 mg, fractioned in 2-4 doses/day.

3156- Ash,    Withaferin A: From ayurvedic folk medicine to preclinical anti-cancer drug
- Review, Var, NA
MAPK↑, Figure 3
p38↑,
BAX↑,
BIM↑,
CHOP↑,
ROS↑,
DR5↑,
Apoptosis↑,
Ferroptosis↑,
GPx4↓,
BioAv↝, WA has a rapid oral absorption and reaches to peak plasma concentration of around 16.69 ± 4.02 ng/ml within 10 min after oral administration of Withania somnifera aqueous extract at dose of 1000 mg/kg, which is equivalent to 0.458 mg/kg of WA
HSP90↓, table 1 10uM) were found to inhibit the chaperone activity of HSP90
RET↓,
E6↓,
E7↓,
Akt↓,
cMET↓,
Glycolysis↓, by suppressing the glycolysis and tricarboxylic (TCA) cycle
TCA↓,
NOTCH1↓,
STAT3↓,
AP-1↓,
PI3K↓,
eIF2α↓,
HO-1↑,
TumCCA↑, WA (1--3 uM) have been reported to inhibit cell proliferation by inducing G2 and M phase cycle arrest inovarian, breast, prostate, gastric and myelodysplastic/leukemic cancer cells and osteosarcoma
CDK1↓, WA is able to decrease the cyclin-dependent kinase 1 (Cdk1) activity and prevent Cdk1/cyclin B1 complex formation, which are key steps in cell cycle progression
*hepatoP↑, A treatment (40 mg/kg) reduces acetaminophen-induced liver injury (AILI) in mouse models and decreases H 2O 2-induced glutathione (GSH) depletion and necrosis in hepatocyte
*GSH↑,
*NRF2↑, WA triggers an anti-oxidant response after acetaminophen overdose by enhancing hepatic transcription of the nuclear factor erythroid 2–related factor 2 (NRF2)-responsive gene
Wnt↓, indirectly inhibit Wnt
EMT↓, WA can also block tumor metastasis through reduced expression of epithelial mesenchymal transition (EMT) markers.
uPA↓, WA (700 nM) exert anti-meta-static activities in breast cancer cells through inhibition of the urokinase-type plasminogen activator (uPA) protease
CSCs↓, s WA (125-500 nM) suppress tumor sphere formation indicating that the self-renewal of CSC is abolished
Nanog↓, loss of these CSC-specific characteristics is reflected in the loss of typical stem cell markers such as ALDH1A, Nanog, Sox2, CD44 and CD24
SOX2↓,
CD44↓,
lactateProd↓, drop in lactate levels compared to control mice.
Iron↑, Furthermore, we found that WA elevates the levels of intracellular labile ferrous iron (Fe +2 ) through excessive activation of heme oxygenase-1 (HMOX1), which independently causes accumulation of toxic lipid radicals and ensuing ferroptosis
NF-kB↓, nhibition of NF-kB kinase signaling pathway

3160- Ash,    Withaferin A: A Pleiotropic Anticancer Agent from the Indian Medicinal Plant Withania somnifera (L.) Dunal
- Review, Var, NA
TumCCA↑, withaferin A suppressed cell proliferation in prostate, ovarian, breast, gastric, leukemic, and melanoma cancer cells and osteosarcomas by stimulating the inhibition of the cell cycle at several stages, including G0/G1 [86], G2, and M phase
H3↑, via the upregulation of phosphorylated Aurora B, H3, p21, and Wee-1, and the downregulation of A2, B1, and E2 cyclins, Cdc2 (Tyr15), phosphorylated Chk1, and Chk2 in DU-145 and PC-3 prostate cancer cells.
P21↑,
cycA1↓,
CycB↓,
cycE↓,
CDC2↓,
CHK1↓,
Chk2↓,
p38↑, nitiated cell death in the leukemia cells by increasing the expression of p38 mitogen-activated protein kinases (MAPK)
MAPK↑,
E6↓, educed the expression of human papillomavirus E6/E7 oncogenes in cervical cancer cells
E7↓,
P53↑, restored the p53 pathway causing the apoptosis of cervical cancer cells.
Akt↓, oral dose of 3–5 mg/kg withaferin A attenuated the activation of Akt and stimulated Forkhead Box-O3a (FOXO3a)-mediated prostate apoptotic response-4 (Par-4) activation,
FOXO3↑,
ROS↑, the generation of reactive oxygen species, histone H2AX phosphorylation, and mitochondrial membrane depolarization, indicating that withaferin A can cause the oxidative stress-mediated killing of oral cancer cells [
γH2AX↑,
MMP↓,
mitResp↓, withaferin A inhibited the expansion of MCF-7 and MDA-MB-231 human breast cancer cells by ROS production, owing to mitochondrial respiration inhibition
eff↑, combination treatment of withaferin A and hyperthermia induced the death of HeLa cells via a decrease in the mitochondrial transmembrane potential and the downregulation of the antiapoptotic protein myeloid-cell leukemia 1 (MCL-1)
TumCD↑,
Mcl-1↓,
ER Stress↑, . Withaferin A also attenuated the development of glioblastoma multiforme (GBM), both in vitro and in vivo, by inducing endoplasmic reticulum stress via activating the transcription factor 4-ATF3-C/EBP homologous protein (ATF4-ATF3-CHOP)
ATF4↑,
ATF3↑,
CHOP↑,
NOTCH↓, modulating the Notch-1 signaling pathway and the downregulation of Akt/NF-κB/Bcl-2 . withaferin A inhibited the Notch signaling pathway
NF-kB↓,
Bcl-2↓,
STAT3↓, Withaferin A also constitutively inhibited interleukin-6-induced phosphorylation of STAT3,
CDK1↓, lowering the levels of cyclin-dependent Cdk1, Cdc25C, and Cdc25B proteins,
β-catenin/ZEB1↓, downregulation of p-Akt expression, β-catenin, N-cadherin and epithelial to the mesenchymal transition (EMT) markers
N-cadherin↓,
EMT↓,
Cyt‑c↑, depolarization and production of ROS, which led to the release of cytochrome c into the cytosol,
eff↑, combinatorial effect of withaferin A and sulforaphane was also observed in MDA-MB-231 and MCF-7 breast cancer cells, with a dramatic reduction of the expression of the antiapoptotic protein Bcl-2 and an increase in the pro-apoptotic Bax level, thus p
CDK4↓, downregulates the levels of cyclin D1, CDK4, and pRB, and upregulates the levels of E2F mRNA and tumor suppressor p21, independently of p53
p‑RB1↓,
PARP↑, upregulation of Bax and cytochrome c, downregulation of Bcl-2, and activation of PARP, caspase-3, and caspase-9 cleavage
cl‑Casp3↑,
cl‑Casp9↑,
NRF2↑, withaferin A binding with Keap1 causes an increase in the nuclear factor erythroid 2-related factor 2 (Nrf2) protein levels, which in turn, regulates the expression of antioxidant proteins that can protect the cells from oxidative stress.
ER-α36↓, Decreased ER-α
LDHA↓, inhibited growth, LDHA activity, and apoptotic induction
lipid-P↑, induction of oxidative stress, increased lipid peroxidation,
AP-1↓, anti-inflammatory qualities of withaferin A are specifically attributed to its inhibition of pro-inflammatory molecules, α-2 macroglobulin, NF-κB, activator protein 1 (AP-1), and cyclooxygenase-2 (COX-2) inhibition,
COX2↓,
RenoP↑, showing strong evidence of the renoprotective potential of withaferin A due to its anti-inflammatory activity
PDGFR-BB↓, attenuating the BB-(PDGF-BB) platelet growth factor
SIRT3↑, by increasing the sirtuin3 (SIRT3) expression
MMP2↓, withaferin A inhibits matrix metalloproteinase-2 (MMP-2) and MMP-9,
MMP9↓,
NADPH↑, but also provokes mRNA stimulation for a set of antioxidant genes, such as NADPH quinone dehydrogenase 1 (NQO1), glutathione-disulfide reductase (GSR), Nrf2, heme oxygenase 1 (HMOX1),
NQO1↑,
GSR↑,
HO-1↑,
*SOD2↑, cardiac ischemia-reperfusion injury model. Withaferin A triggered the upregulation of superoxide dismutase SOD2, SOD3, and peroxiredoxin 1(Prdx-1).
*Prx↑,
*Casp3?, and ameliorated cardiomyocyte caspase-3 activity
eff↑, combination with doxorubicin (DOX), is also responsible for the excessive generation of ROS
Snail↓, inhibition of EMT markers, such as Snail, Slug, β-catenin, and vimentin.
Slug↓,
Vim↓,
CSCs↓, highly effective in eliminating cancer stem cells (CSC) that expressed cell surface markers, such as CD24, CD34, CD44, CD117, and Oct4 while downregulating Notch1, Hes1, and Hey1 genes;
HEY1↓,
MMPs↓, downregulate the expression of MMPs and VEGF, as well as reduce vimentin, N-cadherin cytoskeleton proteins,
VEGF↓,
uPA↓, and protease u-PA involved in the cancer cell metastasis
*toxicity↓, A was orally administered to Wistar rats at a dose of 2000 mg/kg/day and had no adverse effects on the animals
CDK2↓, downregulated the activation of Bcl-2, CDK2, and cyclin D1
CDK4↓, Another study also demonstrated the inhibition of Hsp90 by withaferin A in a pancreatic cancer cell line through the degradation of Akt, cyclin-dependent kinase 4 Cdk4,
HSP90↓,

3162- Ash,    Molecular insights into cancer therapeutic effects of the dietary medicinal phytochemical withaferin A
- Review, Var, NA
lipid-P↓, Oral cancer 20 mg/Kg ↓Lipid peroxidation : ↑SOD, glutathione peroxidase, p53, Bcl-2
SOD↑,
GPx↑,
P53↑,
Bcl-2↑,
E6↓, Cervival cancer 8mg/Kg ↓E6, E7: ↑p53, pRb, Cyclin B1, P34 Cdc2, p21, PCNA
E7↓,
pRB↑,
CycB↑,
CDC2↑,
P21↑,
PCNA↓,
ALDH1A1↓, Mammary cancer 0-1 mg/mouse (5-10) ↓Mammosphere number, ALDH1 activity. Vimentin, glycolysis
Vim↓,
Glycolysis↓,
cMyc↓, Mesotheliome cancer 5 mg/Kg ↓Proteasomal chymotrypsin, C-Myc : ↑ Bax, CARP-1
BAX↑,
NF-kB↓,
Casp3↑, caspase-3 activation
CHOP↑, WA is found to increase activation of Elk1 and CHOP (CCAAT-enhancer-binding protein homologous protein) by RSK, as well as up-regulation of DR5 by selectively suppressing pathway ERK
DR5↑,
ERK↓,
Wnt↓, WA inhibits Wnt/β-catenin pathway via suppression of AKT signalling, which inhibits cancer cell motility and sensitises for cell death
β-catenin/ZEB1↓,
Akt↓,
HSP90↓, WA-dependent inhibition of heat shock protein (HSP) chaperone functions. WA inhibits the activity of HSP90-mediated function

3166- Ash,    Exploring the Multifaceted Therapeutic Potential of Withaferin A and Its Derivatives
- Review, Var, NA
*p‑PPARγ↓, preventing the phosphorylation of peroxisome proliferator-activated receptors (PPARγ)
*cardioP↑, cardioprotective activity by AMP-activated protein kinase (AMPK) activation and suppressing mitochondrial apoptosis.
*AMPK↑,
*BioAv↝, The oral bioavailability was found to be 32.4 ± 4.8% after 5 mg/kg intravenous and 10 mg/kg oral WA administration.
*Half-Life↝, The stability studies of WA in gastric fluid, liver microsomes, and intestinal microflora solution showed similar results in male rats and humans with a half-life of 5.6 min.
*Half-Life↝, WA reduced quickly, and 27.1% left within 1 h
*Dose↑, WA showed that formulation at dose 4800 mg having equivalent to 216 mg of WA, was tolerated well without showing any dose-limiting toxicity.
*chemoP↑, Here, we discuss the chemo-preventive effects of WA on multiple organs.
IL6↓, attenuates IL-6 in inducible (MCF-7 and MDA-MB-231)
STAT3↓, WA displayed downregulation of STAT3 transcriptional activity
ROS↓, associated with reactive oxygen species (ROS) generation, resulted in apoptosis of cells. The WA treatment decreases the oxidative phosphorylation
OXPHOS↓,
PCNA↓, uppresses human breast cells’ proliferation by decreasing the proliferating cell nuclear antigen (PCNA) expression
LDH↓, WA treatment decreases the lactate dehydrogenase (LDH) expression, increases AMP protein kinase activation, and reduces adenosine triphosphate
AMPK↑,
TumCCA↑, (SKOV3 andCaOV3), WA arrest the G2/M phase cell cycle
NOTCH3↓, It downregulated the Notch-3/Akt/Bcl-2 signaling mediated cell survival, thereby causing caspase-3 stimulation, which induces apoptosis.
Akt↓,
Bcl-2↓,
Casp3↑,
Apoptosis↑,
eff↑, Withaferin-A, combined with doxorubicin, and cisplatin at suboptimal dose generates ROS and causes cell death
NF-kB↓, reduces the cytosolic and nuclear levels of NF-κB-related phospho-p65 cytokines in xenografted tumors
CSCs↓, WA can be used as a pharmaceutical agent that effectively kills cancer stem cells (CSCs).
HSP90↓, WA inhibit Hsp90 chaperone activity, disrupting Hsp90 client proteins, thus showing antiproliferative effects
PI3K↓, WA inhibited PI3K/AKT pathway.
FOXO3↑, Par-4 and FOXO3A proapoptotic proteins were increased in Pten-KO mice supplemented with WA.
β-catenin/ZEB1↓, decreased pAKT expression and the β-catenin and N-cadherin epithelial-to-mesenchymal transition markers in WA-treated tumors control
N-cadherin↓,
EMT↓,
FASN↓, WA intraperitoneal administration (0.1 mg) resulted in significant suppression of circulatory free fatty acid and fatty acid synthase expression, ATP citrate lyase,
ACLY↓,
ROS↑, WA generates ROS followed by the activation of Nrf2, HO-1, NQO1 pathways, and upregulating the expression of the c-Jun-N-terminal kinase (JNK)
NRF2↑,
HO-1↑,
NQO1↑,
JNK↑,
mTOR↓, suppressing the mTOR/STAT3 pathway
neuroP↑, neuroprotective ability of WA (50 mg/kg b.w)
*TNF-α↓, WA attenuate the levels of neuroinflammatory mediators (TNF-α, IL-1β, and IL-6)
*IL1β↓,
*IL6↓,
*IL8↓, WA decreases the pro-inflammatory cytokines (IL-6, TNFα, IL-8, IL-18)
*IL18↓,
RadioS↑, radiosensitizing combination effect of WA and hyperthermia (HT) or radiotherapy (RT)
eff↑, WA and cisplatin at suboptimal dose generates ROS and causes cell death [41]. The actions of this combination is attributed by eradicating cells, revealing markers of cancer stem cells like CD34, CD44, Oct4, CD24, and CD117

999- Ba,    Baicalin Inhibits EMT through PDK1/AKT Signaling in Human Nonsmall Cell Lung Cancer
- in-vitro, Lung, H460
TumCP↓,
p‑PDK1↓,
p‑Akt↓,
EMT↓, baicalin effectively inhibited the EMT of NSCLC.
E-cadherin↑,
Vim↓,

2295- Ba,  5-FU,    Baicalein reverses hypoxia-induced 5-FU resistance in gastric cancer AGS cells through suppression of glycolysis and the PTEN/Akt/HIF-1α signaling pathway
- in-vitro, GC, AGS
ChemoSen↑, baicalein increased the sensitivity of AGS cells to 5-FU treatment under hypoxia
HK2↓, hypoxia-enhanced glycolytic flux and expression of several critical glycolysis-associated enzymes (HK2, LDH-A and PDK1) in the AGS cells were suppressed by baicalein
LDHA↓,
PDK1↓,
Akt↓, baicalein inhibited hypoxia-induced Akt phosphorylation by promoting PTEN accumulation, thereby attenuating hypoxia-inducible factor-1α (HIF-1α) expression in AGS cells
PTEN↑,
Hif1a↓,
Glycolysis↓, results together suggest that inhibition of glycolysis via regulation of the PTEN/Akt/HIF-1α signaling pathway may be one of the mechanisms whereby baicalein reverses 5-FU resistance in cancer cells under hypoxia.
ROS↑, Taniguchi et al found that baicalein overcomes tumor necrosis factor-related apoptosis-inducing ligand resistance in cancer cells through DR5 upregulation mediated by ROS induction and CHOP/GADD153 activation
CHOP↑,

2290- Ba,    Research Progress of Scutellaria baicalensis in the Treatment of Gastrointestinal Cancer
- Review, GI, NA
p‑mTOR↓, Baicalein treatment decreased the expression levels of p-mTOR, p-Akt, p-IκB and NF-κB proteins, and suppressed GC cells by inhibiting the PI3K/Akt
p‑Akt↓,
p‑IKKα↓,
NF-kB↓,
PI3K↓,
Akt↓,
ROCK1↓, Baicalin reduces HCC proliferation and metastasis by inhibiting the ROCK1/GSK-3β/β-catenin signaling pathway
GSK‐3β↓,
CycB↓, Baicalein induces S-phase arrest in gallbladder cancer cells by down-regulating Cyclin B1 and Cyclin D1 in gallbladder cancer BGC-SD and SGC996 cells while up-regulating Cyclin A
cycD1↓,
cycA1↑,
CDK4↓, Following baicalein treatment, there is a down-regulation of Ezrin, CyclinD1, and CDK4, as well as an up-regulation of p53 and p21 protein levels, thereby leading to the induction of CRC HCT116 cell cycle arrest
P53↑,
P21↑,
TumCCA↑,
MMP2↓, baicalein was able to inhibit the metastasis of gallbladder cancer cells by down-regulating ZFX, MMP-2 and MMP-9.
MMP9↓,
EMT↓, Baicalein treatment effectively inhibits the snail-induced EMT process in CRC HT29 and DLD1 cells
Hif1a↓, Baicalein inhibits VEGF by downregulating HIF-1α, a crucial regulator of angiogenesis
Shh↓, baicalein inhibits the metastasis of PC by impeding the Shh pathway
PD-L1↓, Baicalin and baicalein down-regulate PD-L1 expression induced by IFN-γ by reducing STAT3 activity
STAT3↓,
IL1β↓, baicalein therapy significantly diminishes the levels of pro-inflammatory cytokines such as interleukin-1 beta (IL-1β), IL-2, IL-6, and GM-CSF
IL2↓,
IL6↓,
PKM2↓, Baicalein, by reducing the expression levels of HIF-1A and PKM2, can inhibit the glycolysis process in ESCC cells
HDAC10↓, Baicalein treatment increases the level of miR-3178 and decreases HDAC10 expression, resulting in the inactivation of the AKT signaling pathways.
P-gp↓, baicalein reverses P-glycoprotein (P-gp)-mediated resistance in multidrug-resistant HCC (Bel7402/5-FU) cells by reducing the levels of P-gp and Bcl-xl
Bcl-xL↓,
eff↓, Baicalein combined with gemcitabine/docetaxel promotes apoptosis of PC cells by activating the caspase-3/PARP signaling pathway
BioAv↓, baicalein suffers from low water solubility and susceptibility to degradation by the digestive system
BioAv↑, Encapsulation of baicalein into liposomal bilayers exhibits a therapeutic efficacy close to 90% for PDAC

2292- Ba,  BA,    Baicalin and baicalein in modulating tumor microenvironment for cancer treatment: A comprehensive review with future perspectives
- Review, Var, NA
AntiCan↑, Baicalin and baicalein exhibit anticancer activities against multiple cancers with extremely low toxicity to normal cells.
*toxicity↓,
BioAv↝, Baicalein permeates easily through the epithelium from the gut lumen to the blood underneath due to its low molecular mass and high lipophilicity, albeit a low presence of its transporters.
BioAv↓, In contrast, baicalin has limited permeability partly due to its larger molecular mass and higher hydrophilicity [24]. The overall low water solubility of baicalin and baicalein contributes to their poor bioavailability.
*ROS↓, baicalin protected macrophages against mycoplasma gallisepticum (MG)-induced ROS production and NLRP3 inflammasome activation by upregulating autophagy and TLR2-NFκB pathway
*TLR2↓,
*NF-kB↓,
*NRF2↑, Therefore, baicalin exerts strong antioxidant activity by activating NRF2 antioxidant program.
*antiOx↑,
*Inflam↓, These data suggest that by attenuating ROS and inflammation baicalein inhibits tumor formation and metastasis.
HDAC1↓, baicalein reduced CTCLs by inhibiting HDAC1 and HDAC8 and its effect on tumor inhibition was better than traditional HDAC inhibitors
HDAC8↓,
Wnt↓, Baicalein also reduced the proliferation of acute T-lymphoblastic leukemia (TLL) Jurkat cells by inhibiting the Wnt/β-catenin signaling pathway
β-catenin/ZEB1↓,
PD-L1↓, baicalein and baicalin promoted antitumor immune response by suppressing PD-L1 expression of HCC cells, thus increasing tumor regression
Sepsis↓, Baicalein can also attenuate severe sepsis via ameliorating immune dysfunction of T lymphocytes.
NF-kB↓, downregulation of NFκB and CD74/CD44 signaling in EBV-transformed B cells
LOX1↓, baicalein is considered to be an inhibitor of lipoxygenases (LOXs)
COX2↓, inhibits the expression of NF-κB/p65 and COX-2
VEGF↑, Baicalin was shown to suppress the expression of VEGF, resulting in the inhibition of PI3K/AKT/mTOR pathway and reduction of proliferation and migration of human mesothelioma cells
PI3K↓,
Akt↓,
mTOR↓,
MMP2↓, baicalin suppressed expression of MMP-2 and MMP-9 via restriction of p38MAPK signaling, resulting in reduced breast cancer cell growth, invasion
MMP9↓,
SIRT1↑, The inhibition of MMP-2 and MMP-9 expression in NSCLC cells is mediated by activating the SIRT1/AMPK signaling pathway.
AMPK↑,

2298- Ba,    Flavonoids Targeting HIF-1: Implications on Cancer Metabolism
- Review, Var, NA
TumCG↓, Baicalein significantly reduced intracerebral tumor growth and proliferation and promoted apoptosis and cell cycle arrest in orthotopic U87 gliomas in mice
TumCP↓,
Hif1a↓, suppression of HIF-1α by baicalein contributed to its reduction of cell viability in ovarian cancer (OVCAR-3 and CP-70) cell lines. 20-μM and 40-μM.
VEGF↓, Suppression of HIF-1α/VEGF pathway
ChemoSen↑, Moreover, baicalein increased the sensitivity of gastric cancer cells (AGS) to 5-fluorouracil (5-FU) under hypoxic conditions
Glycolysis↓, baicalein suppressed the expression of glycolysis-associated enzymes including HKII, PDK1, and LDHA via inhibition of Akt-phosphorylation, which led to HIF-1α suppression
HK2↓,
PDK1↓,
LDHA↓,
p‑Akt↓,
PTEN↑, Furthermore, baicalein inhibited hypoxia-induced Akt phosphorylation by promoting PTEN accumulation, thereby attenuating hypoxia-inducible factor-alpha ( HIF-1a) expression in AGS cells. (orginal paper)

2599- Ba,    Baicalein induces apoptosis and autophagy of breast cancer cells via inhibiting PI3K/AKT pathway in vivo and vitro
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
TumCP↓, baicalein has the potential to suppress cell proliferation, induce apoptosis and autophagy of breast cancer cells in vitro and in vivo.
Apoptosis↑,
p‑Akt↓, baicalein significantly downregulated the expression of p-AKT, p-mTOR, NF-κB, and p-IκB
p‑mTOR↓,
NF-kB↓,
p‑IKKα↓,
IKKα↑, while enhancing the expression of IκB in MCF-7 and MDA-MB-231
PI3K↓, baicalein induces apoptosis and autophagy of breast cancer cells via inhibiting the PI3K/AKT signaling pathway in vivo and vitro
MMP↓, increasing dose of baicalein, the ΔΨm was decreased in MCF-7 and MDA-MB-231 cells.
TumAuto↑, Baicalein induces autophagy in MCF-7 and MDA-MB-231 cells
TumVol↓, demonstrated that the growth, volume, and weight of tumors were significantly suppressed in the baicalein-treated group compared with the control group
TumW↓,

2603- Ba,    Baicalein inhibits prostate cancer cell growth and metastasis via the caveolin-1/AKT/mTOR pathway
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3
TumCG↓, baicalein potently suppressed the growth and induced the apoptosis of DU145 and PC-3
Apoptosis↑,
Cav1↓, baicalein can suppress caveolin-1 and the phosphorylation of AKT and mTOR in a time- and dose-dependent manner
p‑Akt↓,
p‑mTOR↓,
Bax:Bcl2↑, revealed that the Bax/Bcl-2 ratio was increased after baicalein treatment in a dose-dependent manner
survivin↓, survivin was decreased, whereas the level of cleaved PARP was elevated.
cl‑PARP↑,
BioAv↓, Although low water solubility, fast oxidative degradation, and fast metabolism limit its pharmaceutical use in some degree, various methods have been used to overcome these issues of flavonoids

2620- Ba,    Natural compounds targeting glycolysis as promising therapeutics for gastric cancer: A review
- Review, GC, NA
Hif1a↓, Baicalein reduces the levels of HIF-1α in AGS gastric cancer cells in a dose-dependent manner (10, 20, and 40 µM)
HK2↓, down-regulates the levels of HK2, LDHA, and PDK1
LDHA↓,
PDK1↓,
p‑Akt↓, inhibits Akt phosphorylation under hypoxic conditions
PTEN↑, promotes the expression of PTEN protein
GlucoseCon↓, gradually restores glucose uptake and lactic acid production in hypoxic AGS cells to those observed under normoxic conditions
lactateProd↓,
Glycolysis↓, Baicalein and other compounds could directly regulate glycolysis-related enzymes

2617- Ba,    Potential of baicalein in the prevention and treatment of cancer: A scientometric analyses based review
- Review, Var, NA
Ca+2↑, MDA-MB-231 ↑Ca2+
MMP2↓, MDA-MB-231 ↓MMP-2/9
MMP9↓,
Vim↓, ↓Vimentin, ↓SNAIL, ↑E-cadherin, ↓Wnt1, ↓β-catenin
Snail↓,
E-cadherin↑,
Wnt↓,
β-catenin/ZEB1↓,
p‑Akt↓, MCF-7 ↓p-Akt, ↓p-mTOR, ↓NF-κB
p‑mTOR↓,
NF-kB↓,
i-ROS↑, MCF-7 ↑Intracellular ROS, ↓Bcl-2, ↑Bax, ↑cytochrome c, ↑caspase-3/9
Bcl-2↓,
BAX↑,
Cyt‑c↑,
Casp3↑,
Casp9↑,
STAT3↓, 4T1, MDA-MB-231 ↓STAT3, ↓ IL-6
IL6↓,
MMP2↓, HeLa ↓MMP-2, ↓MMP-9
MMP9↓,
NOTCH↓, ↓Notch 1
PPARγ↓, ↓PPARγ
p‑NRF2↓, HCT-116 ↓p-Nrf2
HK2↓, ↓HK2, ↓LDH-A, ↓PDK1, ↓glycolysis, PTEN/Akt/HIF-1α regulation
LDHA↓,
PDK1↓,
Glycolysis↓,
PTEN↑, Furthermore, baicalein inhibited hypoxia-induced Akt phosphorylation by promoting PTEN accumulation, thereby attenuating hypoxia-inducible factor-alpha ( HIF-1a) expression in AGS cells.
Akt↓,
Hif1a↓,
MMP↓, SGC-7901 ↓ΔΨm
VEGF↓, ↓VEGF, ↓VEGFR2
VEGFR2↓,
TOP2↓, ↓Topoisomerase II
uPA↓, ↓u-PA, ↓TIMP1, ↓TIMP2
TIMP1↓,
TIMP2↓,
cMyc↓, ↓β-catenin, ↓c-Myc, ↓cyclin D1, ↓Axin-2
TrxR↓, EL4 ↓Thioredoxin reductase, ↑ASK1,
ASK1↑,
Vim↓, ↓vimentin
ZO-1↑, ↑ZO-1
E-cadherin↑, ↑E-cadherin
SOX2↓, PANC-1, BxPC-3, SW1990 ↓Sox-2, ↓Oct-4, ↓SHH, ↓SMO, ↓Gli-2
OCT4↓,
Shh↓,
Smo↓,
Gli1↓,
N-cadherin↓, ↓N-cadherin
XIAP↓, ↓XIAP

2629- Ba,    Baicalein, a Component of Scutellaria baicalensis, Attenuates Kidney Injury Induced by Myocardial Ischemia and Reperfusion
- in-vivo, Nor, NA
*RenoP↑, Intravenous pretreatment with baicalein (in doses of 3, 10, or 30 mg/kg), however, significantly reduced the increases in the creatinine level, renal histological damage, and apoptosis induced by myocardial ischemia and reperfusion.
*Apoptosis↓,
*TNF-α↓, In addition, the increases in the serum levels of tumor necrosis factor-α, interleukin-1, and interleukin-6, and of tumor necrosis factor-α in the kidneys were significantly reduced
*IL1↓,
*Bcl-2↑, Western blot analysis revealed that baicalein significantly increased Bcl-2 and reduced Bax in the kidneys
*BAX↓,
*Akt↑, inhibition of apoptosis, possibly through the reduction of tumor necrosis factor-α production, the modulation of Bcl-2 and Bax, and the activation of Akt and extracellular signal-regulated kinases 1 and 2.

2473- BA,    Baicalin Inhibits EMT through PDK1/AKT Signaling in Human Nonsmall Cell Lung Cancer
- in-vitro, Lung, A549 - in-vitro, Nor, BEAS-2B - in-vitro, Lung, H460
EMT↓, Baicalin impedes EMT by inhibiting the PDK1/AKT pathway in human NSCLC and thus may be an effective alternative treatment for carcinoma and a new candidate antimetastasis drug.
PDK1↓, Baicalin Inhibited PDK1/AKT Signaling Pathway in NSCLC
Akt↓,
TumCMig↓, At 30 μM, this compound considerably inhibited migration and clone formation in NSCLC cell lines.
E-cadherin↑,
Vim↓, figure 3

2474- Ba,    Anticancer properties of baicalein: a review
- Review, Var, NA - in-vitro, Nor, BV2
ROS⇅, Like other flavonoids, baicalein can be either anti-oxidant or pro-oxidant, depending on its metabolism and concentration.
ROS↑, It is reported that baicalein generated ROS, subsequently caused endoplasmic reticulum (ER) stress, activated Ca2+-dependent mitochondrial death pathway, finally triggered apoptosis
ER Stress↑,
Ca+2↑,
Apoptosis↑,
eff↑, Due to this, ROS production is a mechanism shared by all non-surgical therapeutic approaches for cancer, including chemotherapy, radiotherapy and photodynamic therapy
DR5↑, baicalein-induced ROS generation up-regulated DR5 expression and then activated the extrinsic apoptotic pathway in human prostate cancer cells
12LOX↓, Baicalein is known as a 12-LOX inhibitor.
Cyt‑c↑, It markedly induced the release of Cytochrome c from mitochondria into the cytosol and activated Caspase-9, Caspase-7, and Caspase-3, concomitant with cleavage of the Caspase-3 substrate poly(ADP-ribose) polymerase
Casp7↑,
Casp9↑,
Casp3↑,
cl‑PARP↑,
TumCCA↑, Baicalein induces G1/S arrest due to increased Cyclin E expression, a major factor in the regulation of the G1/S checkpoint of the cell cycle, accompanied by reduced levels of Cdk 4 and Cyclin D1 in human lung squamous carcinoma (CH27) cells
cycE↑,
CDK4↓,
cycD1↓,
VEGF↓, In ovarian cancer cells, baicalein effectively lowered the protein level of VEGF, c-Myc, HIF-α, and NFκB
cMyc↓,
Hif1a↓,
NF-kB↓,
BioEnh↑, curcumin and high-dose (−)-epicatechin were demonstrated to subsequently increase the absorption of baicalein
BioEnh↑, Baicalein can increase the oral bioavailability of tamoxifen by inhibiting cytochrome P450 (CYP) 3A4-mediated metabolism of tamoxifen in the small intestine and/or liver,
P450↓,
*Hif1a↓, In BV2 microglia, baicalein suppressed expression of hypoxia-induced HIF-1α and hypoxia responsive genes, including inducible nitric oxide synthase (iNOS), COX-2, and VEGF, by inhibiting ROS and PI3K/Akt pathway (Hwang et al. 2008).
*iNOS↓,
*COX2↓,
*VEGF↓,
*ROS↓,
*PI3K↓,
*Akt↓,

2477- Ba,    Baicalein induces apoptosis via a mitochondrial-dependent caspase activation pathway in T24 bladder cancer cells
- in-vitro, CRC, T24
TumCG↓, Baicalein inhibited growth and caused G1/S arrest of the cell cycle in the T24 cells.
TumCCA↑,
MMP↓, baicalein induced apoptosis via loss of mitochondrial transmembrane potential (ΔΨm), release of cytochrome c and activation of caspase-9 and caspase-3.
Cyt‑c↑,
Casp9↑,
Casp3↑,
p‑Akt↓, Baicalein inhibited Akt phosphorylation, downregulated Bcl-2 expression and upregulated Bax expression, which in turn increased the ratio of Bax/Bcl-2.
Bcl-2↓,
BAX↑,
Bax:Bcl2↑,
12LOX↓, Baicalein is a well-known inhibitor of 12-lipoxygenase (12-LOX)

2480- Ba,    Inhibition of 12/15 lipoxygenase by baicalein reduces myocardial ischemia/reperfusion injury via modulation of multiple signaling pathways
- in-vivo, Stroke, NA
*12LOX↓, administration of 12/15-LOX inhibitor, baicalein, significantly attenuated myocardial infarct size induced by I/R injury
*ROS↓, baicalein treatment significantly inhibited cardiomyocyte apoptosis, inflammatory responses and oxidative stress in the heart after I/R injury
*ERK↑, mechanisms underlying these effects were associated with the activation of ERK1/2 and AKT pathways and inhibition of activation of p38 MAPK, JNK1/2, and NF-kB/p65 pathways in the I/R-treated hearts
*Akt↑,
*p38↓,
*JNK↓,
*NF-kB↓,
*cardioP↑, Baicalein inhibits cardiac injury and inflammation

1525- Ba,  almon,    Synergistic antitumor activity of baicalein combined with almonertinib in almonertinib-resistant non-small cell lung cancer cells through the reactive oxygen species-mediated PI3K/Akt pathway
- in-vitro, Lung, H1975 - in-vivo, Lung, NA
eff↑, Compared with baicalein or almonertinib alone, the combined application of the two drugs dramatically attenuates cell proliferation
TumCP↓,
Apoptosis↑,
cl‑Casp3↑,
cl‑PARP↑,
cl‑Casp9↑,
p‑PI3K↓, combination of baicalein and almonertinib can improve the antitumor activity in almonertinib-resistant NSCLC through the ROS-mediated PI3K/Akt pathway.
p‑Akt↓,
ROS↑, baicalein combined with almonertinib results in massive accumulation of reactive oxygen species (ROS)
eff↓, preincubation with N-acetyl-L-cysteine (ROS remover) prevents proliferation as well as inhibits apoptosis induction

1532- Ba,    Baicalein as Promising Anticancer Agent: A Comprehensive Analysis on Molecular Mechanisms and Therapeutic Perspectives
- Review, NA, NA
ROS↑, Baicalein initially incited the formation of ROS, which subsequently aimed at endoplasmic reticulum stress and stimulated the Ca2+/-reliant mitochondrial death pathway.
ER Stress↑,
Ca+2↑,
MMPs↓,
Cyt‑c↑, cytochrome C release
Casp3↑,
ROS↑, Baicalein on apoptosis in human bladder cancer 5637 cells was investigated, and it was found that it induces ROS generation
DR5↑, Baicalein activates DR5 up-regulation
ROS↑, MCF-7 cells by inducing mitochondrial apoptotic cell death. It does this by producing ROS, such as hydroxyl radicals, and reducing Cu (II) to Cu (I) in the Baicalein–Cu (II) system
BAX↑,
Bcl-2↓,
MMP↓,
Casp3↑,
Casp9↑,
P53↑,
p16↑,
P21↑,
p27↑,
HDAC10↑, modulating the up-regulation of miR-3178 and Histone deacetylase 10 (HDAC10), which accelerates apoptotic cell death
MDM2↓, MDM2-mediated breakdown
Apoptosis↑,
PI3K↓, baicalein-influenced apoptosis is controlled via suppression of the PI3K/AKT axis
Akt↓,
p‑Akt↓, by reducing the concentrations of p-Akt, p-mTOR, NF-κB, and p-IκB while increasing IκB expression
p‑mTOR↓,
NF-kB↓,
p‑IκB↓,
IκB↑,
BAX↑,
Bcl-2↓,
ROS⇅, Based on its metabolic activities and intensity, Baicalein can act as an antioxidant and pro-oxidant.
BNIP3↑, Baicalein also increases the production of BNIP3 which is a protein stimulated by ROS and promotes apoptosis
p38↑,
12LOX↓, inhibition of 12-LOX (Platelet-type 12-Lipoxygenase)
Mcl-1↓,
Wnt?, decreasing Wnt activity
GLI2↓, Baicalein significantly reduced the presence of Gli-2, a crucial transcription factor in the SHH pathway
AR↓, downregulating the androgen receptor (AR)
eff↑, PTX/BAI NE could increase intracellular ROS levels, reduce cellular glutathione (GSH) levels, and trigger caspase-3 dynamism in MCF-7/Tax cells. Moreover, it exhibited higher efficacy in inhibiting tumors in vivo

1299- BBR,    Effects of Berberine and Its Derivatives on Cancer: A Systems Pharmacology Review
- Review, NA, NA
TumCCA↑, G1 phase, G0/G1 phase, or G2/M phase
TP53↑,
COX2↓,
Bax:Bcl2↑,
ROS↑,
VEGFR2↓,
Akt↓,
ERK↓,
MMP2↓, Berberine also decreased MMP-2, MMP-9, E-cadherin, EGF, bFGF, and fibronectin in the breast cancer cells.
MMP9↓,
IL8↑,
P21↑,
p27↑,
E-cadherin↓,
Fibronectin↓,
cMyc↓, The results indicated that these derivatives could selectively induce and stabilize the formation of the c-myc in the parallel molecular G-quadruplex. Accordingly, transcription of c-myc was down-regulated in the cancer cell line

2021- BBR,    Berberine: An Important Emphasis on Its Anticancer Effects through Modulation of Various Cell Signaling Pathways
- Review, NA, NA
*antiOx?, Berberine has been noted as a potential therapeutic candidate for liver fibrosis due to its antioxidant and anti-inflammatory activities
*Inflam↓,
Apoptosis↑, Apoptosis induced by berberine in liver cancer cells caused cell cycle arrest at the M/G1 phase and increased the Bax expression
TumCCA↑,
BAX↑,
eff↑, mixture of curcumin and berberine effectively decreases growth in breast cancer cell lines
VEGF↓, berberine also prevented the expression of VEGF
PI3K↓, berberine plays an important role in cancer management through inhibition of the PI3K/AKT/mTOR pathway
Akt↓,
mTOR↓,
Telomerase↓, Berberine decreased the telomerase activity and level of the colorectal cancer cell line,
β-catenin/ZEB1↓, berberine and its derivatives have the ability to inhibit β-catenin/Wnt signaling in tumorigenesis
Wnt↓,
EGFR↓, berberine treatment decreased cell proliferation and epidermal growth factor receptor expression levels in the xenograft model.
AP-1↓, Berberine efficiently targets both the host and the viral factors accountable for cervical cancer development via inhibition of activating protein-1
NF-kB↓, berberine inhibited lung cancer cell growth by concurrently targeting NF-κB/COX-2, PI3K/AKT, and cytochrome-c/caspase signaling pathways
COX2↑,
NRF2↓, Berberine suppresses the Nrf2 signaling-related protein expression in HepG2 and Huh7 cells,
RadioS↑, suggesting that berberine supports radiosensitivity through suppressing the Nrf2 signaling pathway in hepatocellular carcinoma cells
STAT3↓, regulating the JAK–STAT3 signaling pathway
ERK↓, berberine prevented the metastatic potential of melanoma cells via a reduction in ERK activity, and the protein levels of cyclooxygenase-2 by a berberine-caused AMPK activation
AR↓, Berberine reduced the androgen receptor transcriptional activity
ROS↑, In a study on renal cancer, berberine raised the levels of autophagy and reactive oxygen species in human renal tubular epithelial cells derived from the normal kidney HK-2 cell line, in addition to human cell lines ACHN and 786-O cell line.
eff↑, berberine showed a greater apoptotic effect than gemcitabine in cancer cells
selectivity↑, After berberine treatment, it was noticed that berberine showed privileged selectivity towards cancer cells as compared to normal ones.
selectivity↑, expression of caspase-1 and its downstream target Interleukin-1β (IL-1β) was higher in osteosarcoma cells as compared to normal cells
BioAv↓, several studies have been undertaken to overcome the difficulties of low absorption and poor bioavailability through nanotechnology-based strategies.
DNMT1↓, In human multiple melanoma cell U266, berberine can inhibit the expression of DNMT1 and DNMT3B, which leads to hypomethylation of TP53 by altering the DNA methylation level and the p53-dependent signal pathway
cMyc↓, Moreover, berberine suppresses SLC1A5, Na+ dependent transporter expression through preventing c-Myc

1387- BBR,    Antitumor Activity of Berberine by Activating Autophagy and Apoptosis in CAL-62 and BHT-101 Anaplastic Thyroid Carcinoma Cell Lines
- in-vitro, Thyroid, CAL-62
TumCG↓,
Apoptosis↑,
LC3B↑, LC3B-II
ROS↑,
PI3K↓,
Akt↓,
mTOR↓,

1102- BBR,    Berberine suppressed epithelial mesenchymal transition through cross-talk regulation of PI3K/AKT and RARα/RARβ in melanoma cells
- in-vitro, Melanoma, B16-BL6
TumCMig↓,
TumCI↓,
EMT↓,
p‑PI3K↓,
p‑Akt↓,
RARα↓,
RARβ↑,
RARγ↑,
E-cadherin↑,
N-cadherin↓,

2698- BBR,    A gene expression signature-based approach reveals the mechanisms of action of the Chinese herbal medicine berberine
- Analysis, BC, MDA-MB-231
HDAC↓, Results showed that BBR may inhibit protein synthesis, histone deacetylase (HDAC), or AKT/mammalian target of rapamycin (mTOR) pathways.
Akt↓,
mTOR↓,
ER Stress↑, BBR inhibited global protein synthesis and basal AKT activity, and induced endoplasmic reticulum (ER) stress and autophagy, which was associated with activation of AMP-activated protein kinase (AMPK).
TumAuto↑,
AMPK↑,
mTOR∅, However, BBR did not alter mTOR or HDAC activities.
HDAC∅, SAHA but not BBR inhibited HDAC activity, suggesting that BBR is not an HDAC inhibitor.
ac‑α-tubulin↑, BBR induced the acetylation of α-tubulin, a substrate of HDAC6, although it did not directly inhibit HDAC activity

2707- BBR,    Berberine exerts its antineoplastic effects by reversing the Warburg effect via downregulation of the Akt/mTOR/GLUT1 signaling pathway
- in-vitro, Liver, HepG2 - in-vitro, BC, MCF-7
GLUT1↓, BBR downregulated the protein expression levels of GLUT1, maintained the cytoplasmic internalization of GLUT1
Akt↓, and suppressed the Akt/mTOR signaling pathway in both HepG2 and MCF7 cell lines
mTOR↓,
ATP↓, BBR-induced decrease in ATP synthesis, glucose uptake, GLUT1 expression and cell proliferation
GlucoseCon↓,
TumCP↓,
Warburg↓, antineoplastic effect of BBR may involve the reversal of the Warburg effect
selectivity↑, The results demonstrated that the colony-forming capacity was slightly inhibited in Hs 578Bst normal breast cells following BBR treatment, but significantly inhibited in both cancer cell lines.
TumCCA↑, BBR effectively induced cell cycle arrest at the G2M phase
Glycolysis↓, Notably, our preliminary experiments identified that BBR strongly decreased the glucose uptake ability of HepG2 and MCF7 cell lines, therefore, it was hypothesized that BBR may interfere with tumor progression by inhibiting glycolysis.

2682- BBR,    Berberine Inhibited Growth and Migration of Human Colon Cancer Cell Lines by Increasing Phosphatase and Tensin and Inhibiting Aquaporins 1, 3 and 5 Expressions
- in-vitro, CRC, HT29 - in-vitro, CRC, SW480 - in-vitro, CRC, HCT116
TumCP↓, We demonstrated that treatment of these CRC cell lines with berberine inhibited cell proliferation, migration and invasion through induction of apoptosis and necrosis.
TumCMig↓,
TumCI↓,
Apoptosis↑,
necrosis↑,
AQPs↓, berberine treatment down-regulated the expression of all three types of AQPs.
PTEN↑, up-regulating PTEN and down-regulating PI3K, AKT and p-AKT expression as well as suppressing its downstream targets, mTOR and p-mTOR at the protein level
PI3K↓,
Akt↓,
p‑Akt↓,
mTOR↓,
p‑mTOR↓,

2686- BBR,    Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs
- Review, Nor, NA
Inflam↓, BBR has documented to have anti-diabetic, anti-inflammatory and anti-microbial (both anti-bacterial and anti-fungal) properties.
IL6↓, BBRs can inhibit IL-6, TNF-alpha, monocyte chemo-attractant protein 1 (MCP1) and COX-2 production and expression.
MCP1↓,
COX2↓,
PGE2↓, BBRs can also effect prostaglandin E2 (PGE2)
MMP2↓, and decrease the expression of key genes involved in metastasis including: MMP2 and MMP9.
MMP9↓,
DNAdam↑, BBR induces double strand DNA breaks and has similar effects as ionizing radiation
eff↝, In some cell types, this response has been reported to be TP53-dependent
Telomerase↓, This positively-charged nitrogen may result in the strong complex formations between BBR and nucleic acids and induce telomerase inhibition and topoisomerase poisoning
Bcl-2↓, BBR have been shown to suppress BCL-2 and expression of other genes by interacting with the TATA-binding protein and the TATA-box in certain gene promoter regions
AMPK↑, BBR has been shown in some studies to localize to the mitochondria and inhibit the electron transport chain and activate AMPK.
ROS↑, targeting the activity of mTOR/S6 and the generation of ROS
MMP↓, BBR has been shown to decrease mitochondrial membrane potential and intracellular ATP levels.
ATP↓,
p‑mTORC1↓, BBR induces AMPK activation and inhibits mTORC1 phosphorylation by suppressing phosphorylation of S6K at Thr 389 and S6 at Ser 240/244
p‑S6K↓,
ERK↓, BBR also suppresses ERK activation in MIA-PaCa-2 cells in response to fetal bovine serum, insulin or neurotensin stimulation
PI3K↓, Activation of AMPK is associated with inhibition of the PI3K/PTEN/Akt/mTORC1 and Raf/MEK/ERK pathways which are associated with cellular proliferation.
PTEN↑, RES was determined to upregulate phosphatase and tensin homolog (PTEN) expression and decrease the expression of activated Akt. In HCT116 cells, PTEN inhibits Akt signaling and proliferation.
Akt↓,
Raf↓,
MEK↓,
Dose↓, The effects of low doses of BBR (300 nM) on MIA-PaCa-2 cells were determined to be dependent on AMPK as knockdown of the alpha1 and alpha2 catalytic subunits of AMPK prevented the inhibitory effects of BBR on mTORC1 and ERK activities and DNA synthes
Dose↑, In contrast, higher doses of BBR inhibited mTORC1 and ERK activities and DNA synthesis by AMPK-independent mechanisms [223,224].
selectivity↑, BBR has been shown to have minimal effects on “normal cells” but has anti-proliferative effects on cancer cells (e.g., breast, liver, CRC cells) [225–227].
TumCCA↑, BBR induces G1 phase arrest in pancreatic cancer cells, while other drugs such as gemcitabine induce S-phase arrest
eff↑, BBR was determined to enhance the effects of epirubicin (EPI) on T24 bladder cancer cells
EGFR↓, In some glioblastoma cells, BBR has been shown to inhibit EGFR signaling by suppression of the Raf/MEK/ERK pathway but not AKT signaling
Glycolysis↓, accompanied by impaired glycolytic capacity.
Dose?, The IC50 for BBR was determined to be 134 micrograms/ml.
p27↑, Increased p27Kip1 and decreased CDK2, CDK4, Cyclin D and Cyclin E were observed.
CDK2↓,
CDK4↓,
cycD1↓,
cycE↓,
Bax:Bcl2↑, Increased BAX/BCL2 ratio was observed.
Casp3↑, The mitochondrial membrane potential was disrupted and activated caspase 3 and caspases 9 were observed
Casp9↑,
VEGFR2↓, BBR treatment decreased VEGFR, Akt and ERK1,2 activation and the expression of MMP2 and MMP9 [235].
ChemoSen↑, BBR has been shown to increase the anti-tumor effects of tamoxifen (TAM) in both drug-sensitive MCF-7 and drug-resistant MCF-7/TAM cells.
eff↑, The combination of BBR and CUR has been shown to be effective in suppressing the growth of certain breast cancer cell lines.
eff↑, BBR has been shown to synergize with the HSP-90 inhibitor NVP-AUY922 in inducing death of human CRC.
PGE2↓, BBR inhibits COX2 and PEG2 in CRC.
JAK2↓, BBR prevented the invasion and metastasis of CRC cells via inhibiting the COX2/PGE2 and JAK2/STAT3 signaling pathways.
STAT3↓,
CXCR4↓, BBR has been observed to inhibit the expression of the chemokine receptors (CXCR4 and CCR7) at the mRNA level in esophageal cancer cells.
CCR7↓,
uPA↓, BBR has also been shown to induce plasminogen activator inhibitor-1 (PAI-1) and suppress uPA in HCC cells which suppressed their invasiveness and motility.
CSCs↓, BBR has been shown to inhibit stemness, EMT and induce neuronal differentiation in neuroblastoma cells. BBR inhibited the expression of many genes associated with neuronal differentiation
EMT↓,
Diff↓,
CD133↓, BBR also suppressed the expression of many genes associated with cancer stemness such as beta-catenin, CD133, NESTIN, N-MYC, NOTCH and SOX2
Nestin↓,
n-MYC↓,
NOTCH↓,
SOX2↓,
Hif1a↓, BBR inhibited HIF-1alpha and VEGF expression in prostate cancer cells and increased their radio-sensitivity in in vitro as well as in animal studies [290].
VEGF↓,
RadioS↑,

2670- BBR,    Berberine: A Review of its Pharmacokinetics Properties and Therapeutic Potentials in Diverse Vascular Diseases
- Review, Var, NA
*Inflam↓, According to data published so far, berberine shows remarkable anti-inflammatory, antioxidant, antiapoptotic, and antiautophagic activity
*antiOx↑,
*Ca+2↓, Impaired cerebral arterial vasodilation can be alleviated by berberine in a diabetic rat model via down-regulation of the intracellular Ca2+ processing of VSMCs
*BioAv↓, poor oral absorption and low bioavailability
*BioAv↑, Conversion of biological small molecules into salt compounds may be a method to improve its bioavailability in vivo.
*BioAv↑, Long-chain alkylation (C5-C9) may enhance hydrophobicity, which has been shown to improve bioavailability; for example, 9-O-benzylation further enhances lipophilicity and imparts neuroprotective effect
*angioG↑, figure 2
*MAPK↓,
*AMPK↓, 100 mg/kg berberine daily for 14 days attenuated ischemia–reperfusion injury via hemodynamic improvements and inhibition of AMPK activity in both non-ischemic and ischemic areas of rat heart tissue
*NF-kB↓,
VEGF↓,
PI3K↓,
Akt↓,
MMP2↓,
Bcl-2↓,
ERK↓,

2753- BetA,    Betulinic acid induces apoptosis by regulating PI3K/Akt signaling and mitochondrial pathways in human cervical cancer cells
- in-vitro, Cerv, HeLa
PI3K↓, BA treatment acted through downregulating a phosphatidylinositol 3-kinase (PI3K) subunit and suppressing the Akt phosphorylation at Thr308 and Ser473 after increasing the generation of intracellular reactive oxygen species
p‑Akt↓,
ROS↑,
TumCCA↑, BA induced cell cycle arrest at the G0/G1 phase, which was consistent with the cell cycle-related protein results in which BA significantly enhanced the expression of p27Kip and p21Waf1/Cip1 in HeLa cells.
p27↑,
P21↑,
mt-Apoptosis↑, mitochondrial apoptosis, as reflected by the increased expression of Bad and caspase-9
BAD↑,
Casp9↑,
MMP↓, decline in mitochondrial membrane potential.
eff↓, preincubation of the cells with glutathione (antioxidant) blocked the process of apoptosis, prevented the phosphorylation of downstream substrates.

2757- BetA,    Betulinic Acid Inhibits Glioma Progression by Inducing Ferroptosis Through the PI3K/Akt and NRF2/HO-1 Pathways
- in-vitro, GBM, U251
tumCV↓, BA reduced viability; inhibited colony formation, migration, and invasion; and triggered apoptosis.
TumCMig↓,
TumCI↓,
Apoptosis↑,
p‑PI3K↓, BA administration decreased the levels of phosphorylated PI3K and AKT.
p‑Akt↓,
Ferroptosis↑, BA-induced ferroptosis and HO-1 and NRF2 levels were increased
HO-1↑,
NRF2↑,

2760- BetA,    A Review on Preparation of Betulinic Acid and Its Biological Activities
- Review, Var, NA - Review, Stroke, NA
AntiTum↑, BA is considered a future promising antitumor compound
Cyt‑c↑, BA stimulated mitochondria to release cytochrome c and Smac and cause further apoptosis reactions
Smad1↑,
Sepsis↓, Administration of 10 and 30 mg/kg of BA significantly improved survival against sepsis and attenuated lung injury.
NF-kB↓, BA inhibited nuclear factor-kappa B (NF-κB) expression in the lung and decreased levels of cytokine, intercellular adhesion molecule-1 (ICAM-1), monocyte chemoattractant protein-1 (MCP-1) and matrix metalloproteinase-9 (MMP-9)
ICAM-1↓,
MCP1↓,
MMP9↓,
COX2↓, In hPBMCs, BA suppressed cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PEG2) production by inhibiting extracellular regulated kinase (ERK) and Akt phosphorylation and thereby modulated the NF-κB signaling pathway
PGE2↓,
ERK↓,
p‑Akt↓,
*ROS↓, BA significantly decreased the mortality of mice against endotoxin shock and inhibited the production of PEG2 in two of the most susceptible organs, lungs and livers [80]. Moreover, BA reduced reactive oxygen species (ROS) formation
*LDH↓, and the release of lactate dehydrogenase
*hepatoP↑, hepatoprotective effect of BA from Tecomella undulata.
*SOD↑, Pretreatment of BA prevented the depletion of hepatic antioxidants superoxide dismutase (SOD) and catalase (CAT), reduced glutathione (GSH) and ascorbic acid (AA) and decreased the CCl4-induced LPO level
*Catalase↑,
*GSH↑,
*AST↓, A also attenuated the elevation of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) plasma level,
*ALAT↓,
*RenoP↑, BA also exhibits renal-protective effects. Renal fibrosis is an end-stage renal disease symptom that develops from chronic kidney disease (CKD).
*ROS↓, BA protected against this ischemia-reperfusion injury in a mice model by enhancing blood flow and reducing oxidative stress and nitrosative stress
*α-SMA↓, Moreover, BA reduced the expression of α-smooth muscle actin (α-SMA) and collagen-I

725- Bor,    Boric acid exert anti-cancer effect in poorly differentiated hepatocellular carcinoma cells via inhibition of AKT signaling pathway
- in-vitro, HCC, NA
tumCV↓, decreased survival
Apoptosis↑,
TumAuto↑,
p‑Akt↓, boric acid might be a promising therapeutic candidate in hepatocellular carcinoma via the inhibition of AKT signaling pathway.

750- Bor,    Calcium fructoborate regulate colon cancer (Caco-2) cytotoxicity through modulation of apoptosis
- in-vitro, CRC, Caco-2
Bcl-2↓,
BAX↑,
Akt↓,
p70S6↓,
PTEN↑,
TSC2↑,

2776- Bos,    Anti-inflammatory and anti-cancer activities of frankincense: Targets, treatments and toxicities
- Review, Var, NA
*5LO↓, Arthritis Human primary chondrocytes: 5-LOX↓, TNF-α↓, MMP3↓
*TNF-α↓,
*MMP3↓,
*COX1↓, COX-1↓, Leukotriene synthesis by 5-LOX↓
*COX2↓, Arthritis Human blood in vitro: COX-2↓, PGE2↓, TH1 cytokines↓, TH2 cytokines↑
*PGE2↓,
*Th2↑,
*Catalase↑, Ethanol-induced gastric ulcer: CAT↑, SOD↑, NO↑, PGE-2↑
*SOD↑,
*NO↑,
*PGE2↑,
*IL1β↓, inflammation Human PBMC, murine RAW264.7 macrophages: TNFα↓ IL-1β↓, IL-6↓, Th1 cytokines (IFNγ, IL-12)↓, Th2 cytokines (IL-4, IL-10)↑; iNOS↓, NO↓, phosphorylation of JNK and p38↓
*IL6↓,
*Th1 response↓,
*Th2↑,
*iNOS↓,
*NO↓,
*p‑JNK↓,
*p38↓,
GutMicro↑, colon carcinogenesis: gut microbiota; pAKT↓, GSK3β↓, cyclin D1↓
p‑Akt↓,
GSK‐3β↓,
cycD1↓,
Akt↓, Prostate Ca: AKT and STAT3↓, stemness markers↓, androgen receptor↓, Sp1 promoter binding↓, p21(WAF1/CIP1)↑, cyclin D1↓, cyclin D2↓, DR5↑,CHOP↑, caspases-3/-8↑, PARP cleavage, NFκB↓, IKK↓, Bcl-2↓, Bcl-xL↓, caspase 3↑, DNA
STAT3↓,
CSCs↓,
AR↓,
P21↑,
DR5↑,
CHOP↑,
Casp3↑,
Casp8↑,
cl‑PARP↑,
DNAdam↑,
p‑RB1↓, Glioblastoma: pRB↓, FOXM1↓, PLK1↓, Aurora B/TOP2A pathway↓,CDC25C↓, pCDK1↓, cyclinB1↓, Aurora B↓, TOP2A↓, pERK-1/-2↓
Foxm1↓,
TOP2↓,
CDC25↓,
p‑CDK1↓,
p‑ERK↓,
MMP9↓, Pancreas Ca: Ki-67↓, CD31↓, COX-2↓, MMP-9↓, CXCR4↓, VEGF↓
VEGF↓,
angioG↓, Apoptosis↑, G2/M arrest, angiogenesis↓
ROS↑, ROS↑,
Cyt‑c↑, Leukemia : cytochrome c↑, AIF↑, SMAC/DIABLO↑, survivin↓, ICAD↓
AIF↑,
Diablo↑,
survivin↓,
ICAD↓,
ChemoSen↑, Breast Ca: enhancement in combination with doxorubicin
SOX9↓, SOX9↓
ER Stress↑, Cervix Ca : ER-stress protein GRP78↑, CHOP↑, calpain↑
GRP78/BiP↑,
cal2↓,
AMPK↓, Breast Ca: AMPK/mTOR signaling↓
mTOR↓,
ROS↓, Boswellia extracts and its phytochemicals reduced oxidative stress (in terms of inhibition of ROS and RNS generation)

2768- Bos,    Boswellic acids as promising agents for the management of brain diseases
- Review, Var, NA - Review, AD, NA - Review, Park, NA
*neuroP↑, BAs-induced neuroprotection is proposed to be associated with the ability to reduce neurotoxic aggregates, decrease oxidative stress, and improve cognitive dysfunction.
*ROS↓,
*cognitive↓,
TumCP↓, BAs have been suggested as potential agents for the treatment of brain tumors due to their potential to attenuate cell proliferation, migration, metastasis, angiogenesis, and promote apoptosis during both in vitro and in vivo studies
TumCMig↓,
TumMeta↓,
angioG↓,
Apoptosis↑,
*Inflam↓, The anti-inflammatory activities of BAs have been investigated in many preclinical and clinical trials
IL1↓, BAs inhibit the production of pro-inflammatory cytokines such as interleukin-1 (IL-1), IL-2, IL-4, IL-6, and tumor necrosis factor-α (TNF-α) in several experimental studies.
IL2↓,
IL4↓,
IL6↓,
TNF-α↓,
P53↑, AKBA has been reported to induce apoptosis in pancreatic and gastric cancers, through tumor suppressor protein 53 (p53)-independent pathway, while reducing expression of protein kinase (PK) B and NF-kb
Akt↓,
NF-kB↓,
DNAdam↑, DNA fragmentation, and activation of caspase cascade
Casp↑,
COX2↓, regulated genes such as cyclooxygenase-2 (COX-2), matrix metallopeptidase-9 (MMP-9), C-X-C motif chemokine receptor 4 (CXCR4), and vascular endothelial growth factor (VEGF)
MMP9↓,
CXCR4↓,
VEGF↓,
*SOD↑, BAs against oxidative injury has been shown in several cell lines and animal models [12], [13], [21]. BAs exert protective effects through the normalization of antioxidant enzyme levels, such as superoxide dismutase (SOD), catalase, and glutathione p
*Catalase↑,
*GPx↑,
*NRF2↑, Moreover, it can activate nuclear factor erythroid 2-related factor-2 (Nrf2)/antioxidant response element-regulated pathways

1416- Bos,    Anti-cancer properties of boswellic acids: mechanism of action as anti-cancerous agent
- Review, NA, NA
5LO↓,
TumCCA↑, G0/G1 phase
LC3B↓, reduced the expression of LC3A/B-I and LC3A/B-II,
PI3K↓,
Akt↓,
Glycolysis↓,
AMPK↑,
mTOR↓,
Let-7↑,
COX2↓, methanolic extract decreased the expression of cyclooxygenase-2 gene
VEGF↓,
CXCR4↓,
MMP2↓,
MMP9↓,
HIF-1↓,
angioG↓,
TumCP↓,
TumCMig↓,
NF-kB↓,

1420- Bos,    Acetyl-11-keto-β-boswellic acid inhibits proliferation and induces apoptosis of gastric cancer cells through the phosphatase and tensin homolog /Akt/ cyclooxygenase-2 signaling pathway
- vitro+vivo, GC, BGC-823
TumCP↓,
TumCG↓, vivo
PTEN↑,
BAX↑,
Bcl-2↓,
p‑Akt↓,
COX2↓,

1101- CA,  Tras,    Cooperative antitumor activities of carnosic acid and Trastuzumab in ERBB2+ breast cancer cells
- in-vitro, BC, NA
ChemoSen↑, CA reversibly enhances Tz inhibition of cell survival, cooperatively inhibits cell migration and induces cell cycle arrest in G0/G1
HER2/EBBR2↓,
PI3K↓,
Akt↓,
mTOR↓,
p62↑,

1230- CA,  Caff,    Caffeine and Caffeic Acid Inhibit Growth and Modify Estrogen Receptor and Insulin-like Growth Factor I Receptor Levels in Human Breast Cancer
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - Human, NA, NA
TumVol↓, Moderate (2-4 cups/day) to high (≥5 cups/day) coffee intake was associated with smaller invasive primary tumors
TumCG↓,
ER(estro)↓,
cycD1↓,
IGF-1R↓,
p‑Akt↓,

1260- CAP,    Capsaicin inhibits in vitro and in vivo angiogenesis
- vitro+vivo, NA, NA
VEGF↓,
angioG↓, capsaicin is a novel inhibitor of angiogenesis
TumCCA↑, G(1) arrest
cycD1↓,
Akt↓,

2016- CAP,    Capsaicin binds the N-terminus of Hsp90, induces lysosomal degradation of Hsp70, and enhances the anti-tumor effects of 17-AAG (Tanespimycin)
HSP90↓, Here, we investigated the mechanism by which capsaicin inhibits Hsp90
ATPase↓, capsaicin binds to the N-terminus of Hsp90 and inhibits its ATPase activity
eff↑, Combined treatments of capsaicin and the Hsp90 inhibitor 17-AAG improved the anti-tumor efficacy of 17-AAG in cell culture
HSP70/HSPA5↓, capsaicin triggers the lysosomal degradation of Hsp70 in various cancer cell lines
other↝, The mechanism by which capsaicin induces apoptosis in cancer cells is not well understood, but it appears to be independent of the TRPV1 receptor as neither capsazepine, a TRPV1 antagonist, nor intracellular Ca2+ chelators have been found to inhibit
NF-kB↓, capsaicin can block the activity of many oncogenic signaling proteins including NF-κB, ER, EGFR/HER2, CDK4, Src, VEGF, and PI3K/Akt, among others.
EGFR↓,
CDK4↓,
Src↓,
VEGF↓,
PI3K↓,
Akt↓,

2018- CAP,  MF,    Capsaicin: Effects on the Pathogenesis of Hepatocellular Carcinoma
- Review, HCC, NA
TRPV1↑, Capsaicin is an agonist for transient receptor potential cation channel subfamily V member 1 (TRPV1)
eff↑, It is noteworthy that capsaicin binding to the TRPV1 receptor may be increased using a static magnetic field (SMF), thus enhancing the anti-cancer effect of capsaicin on HepG2 (human hepatoblastoma cell line) cells through caspase-3 apoptosis
Akt↓, capsaicin can regulate autophagy by inhibiting the Akt/mTOR
mTOR↓,
p‑STAT3↑, Capsaicin can upregulate the activity of the signal transducer and activator of transcription 3 (p-STAT3)
MMP2↑, increase of the expression of MMP-2
ER Stress↑, capsaicin may induce apoptosis through endoplasmic reticulum (ER) stress
Ca+2↑, and the subsequent ER release of Ca2+
ROS↑, Capsaicin-induced ROS generation
selectivity↑, On the other hand, an excess of capsaicin is cytotoxic on HepG2 cells, and normal hepatocytes to a smaller extent, by collapse of the mitochondrial membrane potential with ROS formation
MMP↓,
eff↑, combination of capsaicin and sorafenib demonstrated significant anticarcinogenic properties on LM3 HCC cells, restricting tumor cell growth

2019- CAP,    Capsaicin: A Two-Decade Systematic Review of Global Research Output and Recent Advances Against Human Cancer
- Review, Var, NA
chemoP↑, Capsaicin has shown significant prospects as an effective chemopreventive agent
Ca+2↑, Capsaicin was shown to cause upstream activation of Ca2+
antiOx↑, Another plausible mechanism implicated in the chemopreventive action of capsaicin is its anti-oxidative effects.
*ROS↓, capsaicin inhibits ROS release and the subsequent mitochondrial membrane potential collapse, cytochrome c expression, chromosome condensation, and caspase-3 activation induced by oxidized low-density lipoprotein in normal human HUVEC cells
*MMP∅,
*Cyt‑c∅,
*Casp3∅,
*eff↑, dietary curcumin and capsaicin concurrent administration in high-fat diet-fed rats were shown to mitigate the testicular and hepatic antioxidant status by increasing GSH levels, glutathione transferase activity, and Cu-ZnSOD expression
*Inflam↓, Anti-inflammation is another mechanism implicated in the chemopreventive action of capsaicin.
*NF-kB↓, inhibition of NF-kB by capsaicin
*COX2↓, compound elicits COX-2 enzyme activity inhibition and downregulation of iNOS
iNOS↓,
TRPV1↑, major pro-apoptotic mechanisms of capsaicin is via the vanilloid receptors, primarily TRPV1
i-Ca+2?, causing a concomitant influx of Ca2+: severe condition of mitochondria calcium overload. at high concentration (> 10 µM), capsaicin induces a slow but persistent increase in intracellular Ca2+
MMP↓, depolarization of mitochondria membrane potential
Cyt‑c↑, release of cytochrome C
Bax:Bcl2↑, activation of Bax and p53 through C-jun N-terminal kinase (JNK) activation
P53↑,
JNK↑,
PI3K↓, blocking the Pi3/Akt/mTOR signalling pathway, capsaicin increases levels of autophagic markers (LC3-II and Atg5)
Akt↓,
mTOR↓,
LC3II↑,
ATG5↑,
p62↑, enhances p62 and Fap-1 degradation and increases caspase-3 activity to induce apoptosis in human nasopharyngeal carcinoma cells
Fap1↓,
Casp3↑,
Apoptosis↑,
ROS↑, generation of ROS in human hepatoma (HepG2 cells)
MMP9↓, inhibition of MMP9 by capsaicin occurs via the suppression of AMPK-NF-κB, EGFR-mediated FAK/Akt, PKC/Raf/ERK, p38 MAPK, and AP-1 signaling pathway
eff↑, capsaicin 8% patch could promote the regeneration and restoration of skin nerve fibres in chemotherapy-induced peripheral neuropathy in addition to pain relief
eff↓, capsaicin has shown several unpleasant side effects, including stomach cramps, skin and gastric irritation, and burning sensation
eff↑, liposomes and micro-emulsion-based drugs have been known to significantly improve oral bioavailability and reduce the irritation of drugs
selectivity↑, In addition, these delivery systems can be surfaced-modified to perform site-directed/cell-specific drug delivery, thereby ensuring increased cell death of cancer cells while sparing non-selective normal cells
eff↑, Furthermore, owing to its antioxidant potential, capsaicin has been applied as a bioreduction and capping agent to synthesize biocompatible silver nanoparticles
ChemoSen↑, capsaicin has been combined with other anticancer therapies for more pronounced anticancer effects

1104- CAR,    Carvacrol Ameliorates Transforming Growth Factor-β1-Induced Extracellular Matrix Deposition and Reduces Epithelial-Mesenchymal Transition by Regulating The Phosphatidylinositol 3-Kinase/Protein Kinase B Pathway In Hk-2 Cells
- in-vitro, Kidney, HK-2
tumCV↓,
COL4↓,
COL1↓,
Fibronectin↓,
E-cadherin↑, attenuated (TGF-β1-induced) decrease of E-cadherin
Snail↑,
Vim↑,
α-SMA↑,
PI3K↓,
Akt↓,

2653- Cela,    Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical Evidence
- Review, Var, NA
chemoP↑, It has been widely studied as chemopreventive and anticancer drug
Catalase↑,
ROS↑, ROS induction has been attributed as the primary mode through which celastrol mediates its anticancer effects.
HSP90↓, celastrol has been reported to inhibit HSP90 function
Sp1/3/4↓, induce suppressor of specificity protein (Sp) repressors [79], activate the PKCzeta–AMPK-p53–PLK 2 signaling axis [73], and activate the JNK pathway [80,81] to induce apoptosis.
AMPK↑,
P53↑,
JNK↑,
ER Stress↑, celastrol induces ER stress [78], mitochondrial dysfunction, specifically disruption of mitochondrial membrane potential [72,78,82], and cell cycle arrest at G2/M phase [76,77] and S phase [75]
MMP↓,
TumCCA↑,
TumAuto↑, Interestingly, at low concentrations (i.e., below the cytotoxic threshold) celastrol was found to induce autophagy in gastric cancer cells through ROS-mediated accumulation of hypoxia-inducible factor 1-α via the transient activation of AKT.
Hif1a↑,
Akt↑,
other↓, (1) inhibition of mitochondrial respiratory chain complex I activity [80];
Prx↓, (2) inhibition of peroxiredoxins, namely peroxiredoxin-1 [76] and peroxiredoxin-2 [78].

954- CGA,    Chlorogenic acid inhibits hypoxia-induced angiogenesis via down-regulation of the HIF-1α/AKT pathway
- in-vitro, Lung, A549 - in-vitro, Nor, HUVECs
Hif1a↓,
VEGF↓,
angioG↓,
Akt↓,

1145- CHr,    Chrysin inhibits propagation of HeLa cells by attenuating cell survival and inducing apoptotic pathways
- in-vitro, Cerv, HeLa
tumCV↓,
BAX↑,
BID↑,
BOK↑,
APAF1↑,
TNF-α↑,
FasL↑,
Fas↑,
FADD↑,
Casp3↑,
Casp7↑,
Casp8↑,
Casp9↑,
Mcl-1↓,
NAIP↓,
Bcl-2↓,
CDK4↓,
CycB↓,
cycD1↓,
cycE1↓,
TRAIL↑,
p‑Akt↓,
Akt↓,
mTOR↓,
PDK1↓,
BAD↓,
GSK‐3β↑,
AMPK↑, AMPKa
p27↑,
P53↑,

2801- CHr,    AMP-activated protein kinase (AMPK) activation is involved in chrysin-induced growth inhibition and apoptosis in cultured A549 lung cancer cells
- in-vitro, Lung, A549
AMPK↑, demonstrated a significant AMPK activation after chrysin treatment in A549 cells
Akt↓, inhibited Akt/mammalian target of rapamycin (mTOR) activation
ChemoSen↑, Chrysin increases doxorubicin-induced AMPK activation to promote A549 cell death and growth inhibition
ROS↑, Recently, studies have confirmed that chrysin is a potent inducer of ROS and in A549 and other cancer cells

2781- CHr,  PBG,    Chrysin a promising anticancer agent: recent perspectives
- Review, Var, NA
PI3K↓, It can block Phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) and Mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling in different animals against various cancers
Akt↓,
mTOR↓,
MMP9↑, Chrysin strongly suppresses Matrix metalloproteinase-9 (MMP-9), Urokinase plasminogen activator (uPA) and Vascular endothelial growth factor (VEGF), i.e. factors that can cause cancer
uPA↓,
VEGF↓,
AR↓, Chrysin has the ability to suppress the androgen receptor (AR), a protein necessary for prostate cancer development and metastasis
Casp↑, starts the caspase cascade and blocks protein synthesis to kill lung cancer cells
TumMeta↓, Chrysin significantly decreased lung cancer metastasis i
TumCCA↑, Chrysin induces apoptosis and stops colon cancer cells in the G2/M cell cycle phase
angioG↓, Chrysin prevents tumor growth and cancer spread by blocking blood vessel expansion
BioAv↓, Chrysin’s solubility, accessibility and bioavailability may limit its medical use.
*hepatoP↑, As chrysin reduced oxidative stress and lipid peroxidation in rat liver cells exposed to a toxic chemical agent.
*neuroP↑, Protecting the brain against oxidative stress (GPx) may be aided by increasing levels of antioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GPx).
*SOD↑,
*GPx↑,
*ROS↓, A decrease in oxidative stress and an increase in antioxidant capacity may result from chrysin’s anti-inflammatory properties
*Inflam↓,
*Catalase↑, Supplementation with chrysin increased the activity of antioxidant enzymes like SOD and catalase and reduced the levels of oxidative stress markers like malondialdehyde (MDA) in the colon tissue of the rats.
*MDA↓, Antioxidant enzyme activity (SOD, CAT) and oxidative stress marker (MDA) levels were both enhanced by chrysin supplementation in mouse liver tissue
ROS↓, reduction of reactive oxygen species (ROS) and oxidative stress markers in the cancer cells further indicated the antioxidant activity of chrysin
BBB↑, After crossing the blood-brain barrier, it has been shown to accumulate there
Half-Life↓, The half-life of chrysin in rats is predicted to be close to 2 hours.
BioAv↑, Taking chrysin with food may increase the effectiveness of the supplement: increased by a factor of 1.8 when taken with a high-fat meal
ROS↑, In contrast to 5-FU/oxaliplatin, chrysin increases the production of reactive oxygen species (ROS), which in turn causes autophagy by stopping Akt and mTOR from doing their jobs
eff↑, mixture of chrysin and cisplatin caused the SCC-25 and CAL-27 cell lines to make more oxygen free radicals. After treatment with chrysin, cisplatin, or both, the amount of reactive oxygen species (ROS) was found to have gone up.
ROS↑, When reactive oxygen species (ROS) and calcium levels in the cytoplasm rise because of chrysin, OC cells die.
ROS↑, chrysin is the cause of death in both types of prostate cancer cells. It does this by depolarizing mitochondrial membrane potential (MMP), making reactive oxygen species (ROS), and starting lipid peroxidation.
lipid-P↑,
ER Stress↑, when chrysin is present in DU145 and PC-3 cells, the expression of a group of proteins that control ER stress goes up
NOTCH1↑, Chrysin increased the production of Notch 1 and hairy/enhancer of split 1 at the protein and mRNA levels, which stopped cells from dividing
NRF2↓, Not only did chrysin stop Nrf2 and the genes it controls from working, but it also caused MCF-7 breast cancer cells to die via apoptosis.
p‑FAK↓, After 48 hours of treatment with chrysin at amounts between 5 and 15 millimoles, p-FAK and RhoA were greatly lowered
Rho↓,
PCNA↓, Lung histology and immunoblotting studies of PCNA, COX-2, and NF-B showed that adding chrysin stopped the production of these proteins and maintained the balance of cells
COX2↓,
NF-kB↓,
PDK1↓, After the chrysin was injected, the genes PDK1, PDK3, and GLUT1 that are involved in glycolysis had less expression
PDK3↑,
GLUT1↓,
Glycolysis↓, chrysin stops glycolysis
mt-ATP↓, chrysin inhibits complex II and ATPases in the mitochondria of cancer cells
Ki-67↓, the amounts of Ki-67, which is a sign of growth, and c-Myc in the tumor tissues went down
cMyc↓,
ROCK1↓, (ROCK1), transgelin 2 (TAGLN2), and FCH and Mu domain containing endocytic adaptor 2 (FCHO2) were much lower.
TOP1↓, DNA topoisomerases and histone deacetylase were inhibited, along with the synthesis of the pro-inflammatory cytokines tumor necrosis factor alpha (TNF-alpha) and (IL-1 beta), while the activity of protective signaling pathways was increased
TNF-α↓,
IL1β↓,
CycB↓, Chrysin suppressed cyclin B1 and CDK2 production in order to stop cancerous growth.
CDK2↓,
EMT↓, chrysin treatment can also stop EMT
STAT3↓, chrysin block the STAT3 and NF-B pathways, but it also greatly reduced PD-L1 production both in vivo and in vitro.
PD-L1↓,
IL2↑, chrysin increases both the rate of T cell growth and the amount of IL-2

2805- CHr,    Chrysin serves as a novel inhibitor of DGKα/FAK interaction to suppress the malignancy of esophageal squamous cell carcinoma (ESCC)
- in-vitro, ESCC, KYSE150 - in-vivo, ESCC, NA
FAK↓, chrysin significantly disrupted the DGKα/FAK signalosome to inhibit FAK-controlled signaling pathways and the malignant progression of ESCC cells both in vitro and in vivo
GlucoseCon↓, Chrysin significantly reduced the levels of glycolytic indexes, such as glucose uptake
Casp3↑, hrysin dose-dependently increased the apoptotic rate and caspase 3/7 activity in KYSE410, KYSE30, and KYSE150 cells.
Casp7↑,
p‑Akt↓, chrysin dose-dependently inhibited the phosphorylation of AKT
TumCG↓, chrysin dose-dependently reduced the growth of ESCC tumors
Weight∅, difference of body weight between chrysin treatment groups and control group is minimal

2792- CHr,    Chrysin induces death of prostate cancer cells by inducing ROS and ER stress
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3
DNAdam↑, chrysin induced apoptosis of cells evidenced by DNA fragmentation and increasing the population of both DU145 and PC-3 cells in the sub-G1 phase of the cell cycle
TumCCA↑,
MMP↓, chrysin induced loss of mitochondria membrane potential (MMP), while increasing production of reactive oxygen species (ROS) and lipid peroxidation in a dose-dependent manner
ROS↑,
lipid-P↑,
ER Stress↑, Also, it induced endoplasmic reticulum (ER) stress through activation of unfolded protein response (UPR) proteins including PRKR-like ER kinase (PERK), eukaryotic translation initiation factor 2α (eIF2α), and 78 kDa glucose-regulated protein (GRP78)
UPR↑,
PERK↑,
eIF2α↑,
GRP78/BiP↑,
PI3K↓, chrysin-mediated intracellular signaling pathways suppressed phosphoinositide 3-kinase (PI3K) and the abundance of AKT, P70S6K, S6, and P90RSK proteins, but stimulated mitogen-activated protein kinases (MAPK) and activation of ERK1/2 and P38 proteins
Akt↓,
p70S6↓,
MAPK↑,

2780- CHr,    Anti-cancer Activity of Chrysin in Cancer Therapy: a Systematic Review
- Review, Var, NA
*antiOx↑, antioxidant (13), anti-inflammatory (14), antibacterial (15), anti-hypertensive (16), anti-allergic (17), vasodilator (18),
Inflam↓,
*hepatoP↑, anti-diabetic (19), anti-anxiety (10), anti-viral (20), anti-estrogen (21), liver protective (22), anti-aging (23), anti-seizure (24), and anti-cancer effects (25)
AntiCan↑,
Cyt‑c↑, (1) facilitating the release of cytochrome C from the mitochondria,
Casp3↑, (2) activating caspase-3 and inhibiting the activity of the XIAP molecule,
XIAP↓,
p‑Akt↓, (3) reducing AKT phosphorylation and triggering the PI3K pathway and induction of apoptosis
PI3K↑,
Apoptosis↑,
COX2↓, chrysin interacts weakly with COX-1 binding site whereas displayed a remarkable interaction with COX-2.
FAK↓, ESCC cells: resultant blockage of the FAK/AKT signaling pathways
AMPK↑, A549: activation of AMPK by chrysin contributes to Akt suppression
STAT3↑, 4T1cell: inhibited STAT3 activation
MMP↓, Chrysin induces apoptosis through the intrinsic mitochondrial pathway that disrupts mitochondrial membrane potential (MMP) and increases DNA fragmentation.
DNAdam↑,
BAX↑, produces pro-apoptotic proteins, including Bax and Bak, and activates caspase-9 and caspase-3 in various cancer cells
Bak↑,
Casp9↑,
p38↑, chrysin can inhibit tumor growth by activating P38 MAPK and stopping the cell cycle
MAPK↑,
TumCCA↑,
ChemoSen↑, beneficial in inhibiting chemotherapy resistance of cancer cells
HDAC8↓, chrysin suppresses tumorigenesis by inhibiting histone deacetylase 8 (HDAC8)
Wnt↓, chrysin can attenuate Wnt and NF-κB signaling pathways
NF-kB↓,
angioG↓, chrysin can inhibit angiogenesis and inducing apoptosis in HTh7 cells, 4T1 mice, and MDA-MB-231 cells
BioAv↓, low bioavailability of flavonoids such as chrysin

2782- CHr,    Broad-Spectrum Preclinical Antitumor Activity of Chrysin: Current Trends and Future Perspectives
- Review, Var, NA - Review, Stroke, NA - Review, Park, NA
*antiOx↑, antioxidant, anti-inflammatory, hepatoprotective, neuroprotective
*Inflam↓, inhibitory effect of chrysin on inflammation and oxidative stress is also important in Parkinson’s disease
*hepatoP↑,
*neuroP↑,
*BioAv↓, Accumulating data demonstrates that poor absorption, rapid metabolism, and systemic elimination are responsible for poor bioavailability of chrysin in humans that, subsequently, restrict its therapeutic effects
*cardioP↑, cardioprotective [69], lipid-lowering effect [70]
*lipidLev↓,
*RenoP↑, Renoprotective
*TNF-α↓, chrysin reduces levels of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-2 (IL-2).
*IL2↓,
*PI3K↓, induction of the PI3K/Akt signaling pathway by chrysin contributes to a reduction in oxidative stress and inflammation during cerebral I/R injury
*Akt↓,
*ROS↓,
*cognitive↑, Chrysin (25, 50, and 100 mg/kg) improves cognitive capacity, inflammation, and apoptosis to ameliorate traumatic brain injury
eff↑, chrysin and silibinin is beneficial in suppressing breast cancer malignancy via decreasing cancer proliferation
cycD1↓, chrysin and silibinin induced cell cycle arrest via down-regulation of cyclin D1 and hTERT
hTERT↓,
VEGF↓, Administration of chrysin is associated with the disruption of hypoxia-induced VEGF gene expression
p‑STAT3↓, chrysin is capable of reducing STAT3 phosphorylation in hypoxic conditions without affecting the HIF-1α protein level.
TumMeta↓, chrysin is a potent agent in suppressing metastasis and proliferation of breast cancer cells during hypoxic conditions
TumCP↓,
eff↑, combination therapy of breast cancer cells using chrysin and metformin exerts a synergistic effect and is more efficient compared to chrysin alone
eff↑, combination of quercetin and chrysin reduced levels of pro-inflammatory factors, such as IL-1β, Il-6, TNF-α, and IL-10, via NF-κB down-regulation.
IL1β↓,
IL6↓,
NF-kB↓,
ROS↑, after chrysin administration, an increase occurs in levels of ROS that, subsequently, impairs the integrity of the mitochondrial membrane, leading to cytochrome C release and apoptosis induction
MMP↓,
Cyt‑c↑,
Apoptosis↑,
ER Stress↑, in addition to mitochondria, ER can also participate in apoptosis
Ca+2↑, Upon chrysin administration, an increase occurs in levels of ROS and cytoplasmic Ca2+ that mediate apoptosis induction in OC cells
TET1↑, In MKN45 cells, chrysin promotes the expression of TET1
Let-7↑, Chrysin is capable of promoting the expression of miR-9 and Let-7a as onco-suppressor factors in cancer to inhibit the proliferation of GC cells
Twist↓, Down-regulation of NF-κB, and subsequent decrease in Twist/EMT are mediated by chrysin administration, negatively affecting cervical cancer metastasis
EMT↓,
TumCCA↑, nduction of cell cycle arrest and apoptosis via up-regulation of caspase-3, caspase-9, and Bax are mediated by chrysin
Casp3↑,
Casp9↑,
BAX↑,
HK2↓, Chrysin administration (15, 30, and 60 mM) reduces the expression of HK-2 in hepatocellular carcinoma (HCC) cells to impair glucose uptake and lactate production.
GlucoseCon↓,
lactateProd↓,
Glycolysis↓, In addition to glycolysis metabolism impairment, the inhibitory effect of chrysin on HK-2 leads to apoptosis
SHP1↑, upstream modulator of STAT3 known as SHP-1 is up-regulated by chrysin
N-cadherin↓, Furthermore, N-cadherin and E-cadherin are respectively down-regulated and up-regulated upon chrysin administration in inhibiting melanoma invasion
E-cadherin↑,
UPR↑, chrysin substantially diminishes survival by ER stress induction via stimulating UPR, PERK, ATF4, and elF2α
PERK↑,
ATF4↑,
eIF2α↑,
RadioS↑, Irradiation combined with chrysin exerts a synergistic effect
NOTCH1↑, Irradiation combined with chrysin exerts a synergistic effect
NRF2↓, in reducing Nrf2 expression, chrysin down-regulates the expression of ERK and PI3K/Akt pathways—leading to an increase in the efficiency of doxorubicin in chemotherapy
BioAv↑, chrysin at the tumor site by polymeric nanoparticles leads to enhanced anti-tumor activity, due to enhanced cellular uptake
eff↑, Chrysin- and curcumin-loaded nanoparticles significantly promote the expression of TIMP-1 and TIMP-2 to exert a reduction in melanoma invasion

2783- CHr,    Apoptotic Effects of Chrysin in Human Cancer Cell Lines
- Review, Var, NA
TumCP↓, chrysin has shown to inhibit proliferation and induce apoptosis, and is more potent than other tested flavonoids in leukemia cells
Apoptosis↑,
Casp↑, chrysin is likely to act via activation of caspases and inactivation of Akt signaling in the cells.
PCNA↓, inhibited the growth of cervical cancer cells, HeLa, via apoptosis induction and down-regulated the proliferating cell nuclear antigen (PCNA) in the cells.
p38↑, chrysin potentially induced p38, therefore activated NFkappaB/p65 in the HeLa cells
NF-kB↑,
DNAdam↑, only apigenin, chrysin, quercetin, galangin, luteolin and fisetin were found to clearly induce the oligonucleosomal DNA fragmentation at 50 μM after 6 h of treatment
XIAP↓, down-regulation of X-linked inhibitor of apoptosis protein (XIAP) in the U937 cells
Cyt‑c↑, (1) chrysin mediated the release of cytochrome c from mitochondria into the cytoplasm;
Casp3↑, (2) chrysin induced elevated caspase-3 activity and proteolytic cleavage of its downstream targets, such as phospholipase C-gamma-1 (PLC-gamma1), which is correlated with down-regulation of XIAP;
Akt↓, (3) chrysin decreased phosphorylated Akt levels in cells where the PI3K pathway plays a role in regulating the mechanism.
SCF↓, Chrysin has also been reported to have the ability to abolish the stem cell factor (SCF)/c-Kit signaling by inhibiting the PI3K pathway
hTERT↓, A significant decrease in human telomerase reverse transcriptase (hTERT) expression levels was also observed in leukemia cells treated with 60 ng/mL Manisa propolis, owing to its constituent of chrysin
COX2↓, Chrysin also inhibited the lipopolysaccharide-induced COX-2 expression via inhibition of nuclear factor IL-6 (NF-IL6)
*Inflam↓, anti-inflammatory [21] and anti-oxidant effects [22], and has shown cancer chemopreventive activity via induction of apoptosis in diverse range of human and rat cell types.
*antiOx↑,
*chemoP↑,
AR-V7?,
CYP19?, Chrysin has recently shown to be a potent inhibitor of aromatase [18] and of human immunodeficiency virus activation in models of latent infection

2785- CHr,    Emerging cellular and molecular mechanisms underlying anticancer indications of chrysin
- Review, Var, NA
*NF-kB↓, suppressed pro-inflammatory cytokine expression and histamine release, downregulated nuclear factor kappa B (NF-kB), cyclooxygenase 2 (COX-2), and inducible nitric oxide synthase (iNOS)
*COX2↓,
*iNOS↓,
angioG↓, upregulated apoptotic pathways [28], inhibited angiogenesis [29] and metastasis formation
TOP1↓, suppressed DNA topoisomerases [31] and histone deacetylase [32], downregulated tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β)
HDAC↓,
TNF-α↓,
IL1β↓,
cardioP↑, promoted protective signaling pathways in the heart [34], kidney [35] and brain [8], decreased cholesterol level
RenoP↑,
neuroP↑,
LDL↓,
BioAv↑, bioavailability of chrysin in the oral route of administration was appraised to be 0.003–0.02% [55], the maximum plasma concentration—12–64 nM
eff↑, Chrysin alone and potentially in combination with metformin decreased cyclin D1 and hTERT gene expression in the T47D breast cancer cell line
cycD1↓,
hTERT↓,
MMP-10↓, Chrysin pretreatment inhibited MMP-10 and Akt signaling pathways
Akt↓,
STAT3↓, Chrysin declined hypoxic survival, inhibited activation of STAT3, and reduced VEGF expression in hypoxic cancer cells
VEGF↓,
EGFR↓, chrysin to inhibit EGFR was reported in a breast cancer stem cell model [
Snail↓, chrysin downregulated MMP-10, reduced snail, slug, and vimentin expressions increased E-cadherin expression, and inhibited Akt signaling pathway in TNBC cells, proposing that chrysin possessed a reversal activity on EMT
Slug↓,
Vim↓,
E-cadherin↑,
eff↑, Fabrication of chrysin-attached to silver and gold nanoparticles crossbred reduced graphene oxide nanocomposites led to augmentation of the generation of ROS-induced apoptosis in breast cancer
TET1↑, Chrysin induced augmentation in TET1
ROS↑, Pretreatment with chrysin induced ROS formation, and consecutively, inhibited Akt phosphorylation and mTOR.
mTOR↓,
PPARα↓, Chrysin inhibited mRNA expression of PPARα
ER Stress↑, ROS production by chrysin was the critical mediator behind induction of ER stress, leading to JNK phosphorylation, intracellular Ca2+ release, and activation of the mitochondrial apoptosis pathway
Ca+2↑,
ERK↓, reduced protein expression of p-ERK/ERK
MMP↑, Chrysin pretreatment led to an increase in mitochondrial ROS creation, swelling in isolated mitochondria from hepatocytes, collapse in MMP, and release cytochrome c.
Cyt‑c↑,
Casp3↑, Chrysin could elevate caspase-3 activity in the HCC rats group
HK2↓, chrysin declined HK-2 combined with VDAC-1 on mitochondria
NRF2↓, chrysin inhibited the Nrf2 expression and its downstream genes comprising AKR1B10, HO-1, and MRP5 by quenching ERK and PI3K-Akt pathway
HO-1↓,
MMP2↓, Chrysin pretreatment also downregulated MMP2, MMP9, fibronectin, and snail expression
MMP9↓,
Fibronectin↓,
GRP78/BiP↑, chrysin induced GRP78 overexpression, spliced XBP-1, and eIF2-α phosphorylation
XBP-1↓,
p‑eIF2α↑,
*AST↓, Chrysin administration significantly reduced AST, ALT, ALP, LDH and γGT serum activities
ALAT↓,
ALP↓,
LDH↓,
COX2↑, chrysin attenuated COX-2 and NFkB p65 expression, and Bcl-xL and β-arrestin levels
Bcl-xL↓,
IL6↓, Reduction in IL-6 and TNF-α and augmentation in caspases-9 and 3 were observed due to chrysin supplementation.
PGE2↓, Chrysin induced entire suppression NF-kB, COX-2, PG-E2, iNOS as well.
iNOS↓,
DNAdam↑, Chrysin induced apoptosis of cells by causing DNA fragmentation and increasing the proportions of DU145 and PC-3 cells
UPR↑, Also, it induced ER stress via activation of UPR proteins comprising PERK, eIF2α, and GRP78 in DU145 and PC-3 cells.
Hif1a↓, Chrysin increased the ubiquitination and degradation of HIF-1α by increasing its prolyl hydroxylation
EMT↓, chrysin was effective in HeLa cell by inhibiting EMT and CSLC properties, NF-κBp65, and Twist1 expression
Twist↓,
lipid-P↑, Chrysin disrupted intracellular homeostasis by altering MMP, cytosolic Ca (2+) levels, ROS generation, and lipid peroxidation, which plays a role in the death of choriocarcinoma cells.
CLDN1↓, Chrysin decreased CLDN1 and CLDN11 expression in human lung SCC
PDK1↓, Chrysin alleviated p-Akt and inhibited PDK1 and Akt
IL10↓, Chrysin inhibited cytokines release, TNF-α, IL-1β, IL-10, and IL-6 induced by Ni in A549 cells.
TLR4↓, Chrysin suppressed TLR4 and Myd88 mRNA and protein expression.
NOTCH1↑, Chrysin inhibited tumor growth in ATC both in vitro and in vivo through inducing Notch1
PARP↑, Pretreating cells with chrysin increased cleaved PARP, cleaved caspase-3, and declined cyclin D1, Mcl-1, and XIAP.
Mcl-1↓,
XIAP↓,

2786- CHr,    Chemopreventive and therapeutic potential of chrysin in cancer: mechanistic perspectives
- Review, Var, NA
Apoptosis↑, chrysin inhibits cancer growth through induction of apoptosis, alteration of cell cycle and inhibition of angiogenesis, invasion and metastasis without causing any toxicity and undesirable side effects to normal cells
TumCCA↑,
angioG↓,
TumCI↓,
TumMeta↑,
*toxicity↓,
selectivity↑,
chemoP↑, Induction of phase II detoxification enzymes, such as glutathione S-transferase (GST) or NAD(P)H:quinone oxidoreductase (QR) is one of the major mechanism of protection against initiation of carcinogenesis
*GSTs↑,
*NADPH↑,
*GSH↑, upregulation of antioxidant and carcinogen detoxification enzymes (glutathione (GSH), glutathione peroxidase (GPx), glutathione reductase (GR), GST and QR)
HDAC8↓, inhibits of HDAC8 enzymatic activity
Hif1a↓, Prostate DU145: Inhibits HIF-1a expression through Akt signaling and abrogation of VEGF expression
*ROS↓, chrysin (20 and 40 mg/kg) was shown to exhibit chemopreventive activity by ameliorating oxidative stress and inflammation via NF-kB pathway
*NF-kB↓,
SCF↓, Chrysin has also been reported to have the ability to abolish the stem cell factor (SCF)/c-Kit signaling in human myeloid leukemia cells by preventing the PI3 K pathway
cl‑PARP↑, (PARP) and caspase-3 and concurrently decreasing pro-survival proteins survivin and XIAP
survivin↓,
XIAP↓,
Casp3↑, activation of caspase-3 and -9.
Casp9↑,
GSH↓, chrysin sustains a significant depletion of intracellular GSH concentrations in human NSCLC cells
ChemoSen↑, chrysin potentiates cisplatin toxicity, in part, via synergizing pro-oxidant effects of cisplatin by inducing mitochondrial dysfunction, and by depleting cellular GSH, an important antioxidant defense
Fenton↑, ability to participate in a fenton type chemical reaction
P21↑, upregulation of p21 independent of p53 status and decrease in cyclin D1, CDK2 protein levels
P53↑,
cycD1↓,
CDK2↓,
STAT3↓, chrysin inhibits angiogenesis through inhibition of STAT3 and VEGF release mediated by hypoxia through Akt signaling pathway
VEGF↓,
Akt↓,
NRF2↓, Chrysin treatment significantly reduced nrf2 expression in cells at both the mRNA and protein levels through down-regulation of PI3K-Akt and ERK pathways.

2787- CHr,    Network pharmacology unveils the intricate molecular landscape of Chrysin in breast cancer therapeutics
- Analysis, Var, MCF-7
TumCP↓, implicated in cell proliferation, angiogenesis, invasion, and metastasis
angioG↓,
TumCI↓,
TumMeta↓,
TP53↑, Chrysin exhibited strong binding interactions with several key hub proteins, notably TP53, AKT1, and CASP3, suggesting its capacity to inhibit tumorigenesis in breast cancer
Akt↓,
Casp3↑,
tumCV↓, dose-dependent reduction in cell viability was observed, with an IC50 value of 67.43 and 22.55 µM for 24 and 48 h
TNF-α↓, chrysin binds strongly to TNF-α, potentially inhibiting its function.
BioAv↑, Improved bioavailability of chrysin via its interaction with HSA could enhance its therapeutic efficacy, a factor that could be further explored in future pharmacokinetic studies
BioAv↑, Albumin’s ability to bind and transport Chrysin could influence the bioavailability of the flavonoid, potentially enhancing its therapeutic effects.
AKT1↓, chrysin effectively inhibits AKT1,

2791- CHr,    Chrysin attenuates progression of ovarian cancer cells by regulating signaling cascades and mitochondrial dysfunction
- in-vitro, Ovarian, OV90
TumCP↓, chrysin inhibited ovarian cancer cell proliferation and induced cell death by increasing reactive oxygen species (ROS) production and cytoplasmic Ca2+ levels as well as inducing loss of mitochondrial membrane potential (MMP).
TumCD↑,
ROS↑,
Ca+2↑,
MMP↓,
MAPK↑, chrysin activated mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/AKT pathways in ES2 and OV90 cells in concentration-response experiments
PI3K↑, results indicate that the chrysin-induced activation of PI3K and MAPK signaling molecules, which induced apoptosis,
p‑Akt↑, Chrysin stimulated the phosphorylation of AKT and P70S6K proteins in both ES2 and OV90 cells compared to the untreated control cell
PCNA↓, treatment with chrysin attenuated the abundant expression of PCNA protein in both ES2 and OV90 cells
p‑p70S6↑,
p‑ERK↑, chrysin activated the phospho-ERK1/2, p38, and JNK proteins as members of the MAPK pathway in the ovarian cancer cells
p38↑,
JNK↑,
DNAdam↑, stimulates apoptotic events in prostate cancer cells by the accumulation of DNA fragmentation, an increase in the population of cells in the sub-G1 phase of the cell cycle
TumCCA↑,
chemoP↑, combination therapy with chrysin enhances the therapeutic effect of the chemotherapeutic agent, docetaxel, in lung cancer by reducing its adverse effects

952- Cin,    Cinnamon Extract Reduces VEGF Expression Via Suppressing HIF-1α Gene Expression and Inhibits Tumor Growth in Mice
- in-vitro, BC, MDA-MB-231 - in-vitro, GBM, U251 - in-vivo, Ovarian, SKOV3
VEGF↓,
Hif1a↓, inhibit expression and phosphorylation of STAT3 and AKT, which are key factors in the regulation of HIF-1α expression
p‑STAT3↓,
p‑Akt↓,
angioG↓,
TumCG↓,
TumW↓,
ascitic↓, reduction in tumor burden and ascites volume

1587- Citrate,    ATP citrate lyase: A central metabolic enzyme in cancer
- Review, NA, NA
ACLY↓, administration of citrate at high level mimics a strong inhibition of ACLY and could be tested to strengthen the effects of current therapies. -a strong ACLY inhibition could be mimicked by by flooding the cytosol with citrate.
other↓, ACLY inhibition by simple drugs such as HCA or bempedoic acid should be tested, optimally associated with glycolytic inhibitors (or glucose starvation diet) and current therapies.
PFK1↓, citrate promotes: - the inactivation of PFK1 and decreases ATP production [
ATP↓,
PFK2↓, inhibition of PFK2 in ascite cancer cells
Mcl-1↓, deactivation of the anti-apoptotic factor Mcl-1 and the activation of caspases such as caspase 2, 3 and 9
Casp3↑,
Casp2↑,
Casp9↑,
IGF-1R↓, downregulation of the IGF-1R/PI3K/AKT
PI3K↓,
Akt↓,
p‑Akt↓, decreased phosphorylation of AKT and ERK in non-small cell lung cancer
p‑ERK↓,
PTEN↑, activation of PTEN suppressor,
Snail↓, reversion of dedifferentiation (in particular through Snail inhibition with E-cadherin expression) and stimulation of T lymphocytes response
E-cadherin↑,
ChemoSen↑, increasing the sensitivity of tumors to cisplatin

1574- Citrate,    Citrate Suppresses Tumor Growth in Multiple Models through Inhibition of Glycolysis, the Tricarboxylic Acid Cycle and the IGF-1R Pathway
- in-vitro, Lung, A549 - in-vitro, Melanoma, WM983B - in-vivo, NA, NA
TumCG↓,
eff↑, additional benefit accrued in combination with cisplatin
T-Cell↑, significantly higher infiltrating T-cells
p‑IGF-1R↓, citrate inhibited IGF-1R phosphorylation
p‑Akt↓, inhibited AKT phosphorylation
PTEN↑, activated PTEN
p‑eIF2α↑, increased expression of p-eIF2a p-eIF2a was decreased when PTEN was depleted
OCR↓, citrate treatment of A549 cells dramatically reduced oxygen consumption
ROS↓, observed a decrease in ROS in A549
ECAR∅, acidification rate (ECAR) and found it to be unchanged
IL1↑, s (e.g. interleukin-1, tumor necrosis factor-alpha, etc) and anti-inflammatory cytokines (e.g. interleukin-10 and interleukin 1 receptor antagonist) are activated
TNF-α↑,
IL10↑,
IGF-1R↓, Citrate Inhibits IGF-1R Activation And Its Downstream Pathway
eIF2α↑, eIF2α activity was increased in A549 cells after citrate treatment
PTEN↑, PTEN was activated
TCA↓,
Glycolysis↓, citrate may inhibit tumor growth via inhibiting glycolysis and the TCA cycle and that this effect appears to be selective to tumor tissue.
selectivity↑, citrate may inhibit tumor growth via inhibiting glycolysis and the TCA cycle and that this effect appears to be selective to tumor tissue.
*toxicity∅, Chronic citrate treatment was non-toxic as evidenced by gross pathology in numerous organs (liver, lung, spleen and kidney)
Dose∅, corresponding to approximately 56 g of citrate in a 70 kg person

1578- Citrate,    Understanding the Central Role of Citrate in the Metabolism of Cancer Cells and Tumors: An Update
- Review, Var, NA
TCA↑,
FASN↑, Cytosolic acetyl-CoA sustains fatty acid (FA) synthesis (FAS)
Glycolysis↓,
glucoNG↑, while it enhances gluconeogenesis by promoting fructose-1,6-biphosphatase (FBPase)
PFK1↓, citrate directly inhibits the main regulators of glycolysis, phosphofructokinase-1 (PFK1) and phosphofructokinase-2 (PFK2)
PFK2↓, well-known inhibitor of PFK
FBPase↑, enhances gluconeogenesis by promoting fructose-1,6-biphosphatase (FBPase)
TumCP↓, inhibits the proliferation of various cancer cells of solid tumors (human mesothelioma, gastric and ovarian cancer cells) at high concentrations (10–20 mM),
eff↑, promoting apoptosis and the sensitization of cells to cisplatin
ACLY↓, higher concentrations (10 mM or more) decreased both acetylation and ACLY expression
Dose↑, In various cell lines, a high concentration of citrate—generally above 10 mM—inhibits the proliferation of cancer cells in a dose dependent manner
Casp3↑,
Casp2↑,
Casp8↑,
Casp9↑,
Bcl-xL↓,
Mcl-1↓,
IGF-1R↓, citrate at high concentration (10 mM) also inhibits the insulin-like growth factor-1 receptor (IGF-1R)
PI3K↓, pathways
Akt↓, activates PTEN, the key phosphatase inhibiting the PI3K/Akt pathway
mTOR↓,
PTEN↑, high dose of citrate activates PTEN
ChemoSen↑, citrate increases the sensibility of cells to chemotherapy (in particular, cisplatin)
Dose?, oral gavage of citrate sodium (4 g/kg twice a day) for several weeks (4 to 7 weeks) significantly regressed tumors

1580- Citrate,    Citrate activates autophagic death of prostate cancer cells via downregulation CaMKII/AKT/mTOR pathway
- in-vitro, Pca, PC3 - in-vivo, PC, NA - in-vitro, Pca, LNCaP - in-vitro, Pca, WPMY-1
Apoptosis↑,
Ca+2↓, Ca2+-chelating property of citrate
Akt↓, downregulation CaMKII/AKT/mTOR pathway
mTOR↓,
selectivity↑, citrate (0-3 mM) did not affect the cell growth of normal prostate epithelial cells (WPMY-1).
TumCP↓, also verified that citrate significantly inhibited the proliferation of PCa cells (PC3 and LNCaP).
cl‑Casp3↑,
cl‑PARP↑, increased the levels of Cleaved caspase3 and Cleaved PARP in prostate cancer cells
LC3‑Ⅱ/LC3‑Ⅰ↑, ratio of LC3-II/I was markedly increased and the expression of p62 was significantly decreased after the treatment of citrate in PCa cells (PC3 and LNCaP).
p62↓,
ATG5↑, citrate also promoted the protein expression of Atg5, Atg7 and Beclin-1 in PCa cells (PC3 and LNCaP).
ATG7↑,
Beclin-1↑,
TumAuto↑, citrate induces autophagy of prostate cancer cells
CaMKII ↓, citrate suppresses the activation of the CaMKI

1585- Citrate,    Sodium citrate targeting Ca2+/CAMKK2 pathway exhibits anti-tumor activity through inducing apoptosis and ferroptosis in ovarian cancer
- in-vitro, Ovarian, SKOV3 - in-vitro, Ovarian, A2780S - in-vitro, Nor, HEK293
Apoptosis↑,
Ferroptosis↑,
Ca+2↓, Sodium citrate chelates intracellular Ca2+
CaMKII ↓, inhibits the CAMKK2/AKT/mTOR/HIF1α-dependent glycolysis pathway, thereby inducing cell apoptosis.
Akt↓,
mTOR↓,
Hif1a↓,
ROS↑, Inactivation of CAMKK2/AMPK pathway reduces Ca2+ level in the mitochondria by inhibiting the activity of the MCU, resulting in excessive ROS production.
ChemoSen↑, Sodium citrate increases the sensitivity of ovarian cancer cells to chemo-drugs
Casp3↑,
Casp9↑,
BAX↑,
Bcl-2↓,
Cyt‑c↑, co-localization of cytochrome c and Apaf-1
GlucoseCon↓, glucose consumption, lactate production and pyruvate content were significantly reduced
lactateProd↓,
Pyruv↓,
GLUT1↓, sodium citrate decreased both mRNA and protein expression levels of glycolysis-related proteins such as Glut1, HK2 and PFKP
HK2↓,
PFKP↓,
Glycolysis↓, sodium citrate inhibited glycolysis of SKOV3 and A2780 cells
Hif1a↓, HIF1α expression was decreased significantly after sodium citrate treatment
p‑Akt↓, phosphorylation of AKT and mTOR was notably suppressed after sodium citrate treatment.
p‑mTOR↓,
Iron↑, ovarian cancer cells treated with sodium citrate exhibited higher Fe2+ levels, LPO levels, MDA levels, ROS and mitochondrial H2O2 levels
lipid-P↑,
MDA↑,
ROS↑,
H2O2↑,
mtDam↑, shrunken mitochondria, an increase in mitochondrial membrane density and disruption of mitochondrial cristae
GSH↓, (GSH) levels, GPX activity and expression levels of GPX4 were significantly reduced in SKOV3 and A2780 cells with sodium citrate treatment
GPx↓,
GPx4↓,
NADPH/NADP+↓, significant elevation in the NADP+/NADPH ratio was observed with sodium citrate treatment
eff↓, Fer-1, NAC and NADPH significantly restored the cell viability inhibited by sodium citrate
FTH1↓, decreased expression of FTH1
LC3‑Ⅱ/LC3‑Ⅰ↑, sodium citrate increased the conversion of cytosolic LC3 (LC3-I) to the lipidated form of LC3 (LC3-II)
NCOA4↑, higher levels of NCOA4
eff↓, test whether Ca2+ supplementation could rescue sodium citrate-induced ferroptosis. The results showed that Ca2+ dramatically reversed the enhanced levels of MDA, LPO and ROS triggered by sodium citrate
TumCG↓, sodium citrate inhibited tumor growth by chelation of Ca2+ in vivo

2315- Citrate,    Why and how citrate may sensitize malignant tumors to immunotherapy
- Review, Var, NA
Bcl-2↓, SCT can induce silent apoptosis by reducing expression of key pro-apoptotic proteins (Bcl-2, surviving, MCL1), and promoting the activation of caspases-3 and −9 and −8, as showed in multiple cancer cell lines
Mcl-1↓,
survivin↓,
Casp3↑,
Casp9↑,
Ferroptosis↑, SCT can also trigger ferroptosis, an iron-dependent form of lytic cell death inducing lipid peroxidation (LPO)
lipid-P↑,
Ca+2↓, citrate lowers mitochondrial Ca2+ concentration by chelation
Akt↓, by chelating cytosolic Ca2+, citrate inhibits the Ca2+/CAMKK2/AKT/mTOR signaling pathway, thereby suppressing HIF1-α dependent glycolysis
mTOR↓,
Hif1a↓,
MCU↓, reduces the activity of the mitochondrial calcium uniporter (MCU), resulting in decreasing ATP production, increasing ROS production
ATP↓,
ROS↑,
eff↑, Of note, ferroptosis can enhance the effectiveness of immunotherapy, as showed in glioma models

1485- CUR,  Chemo,  Rad,    Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemoprotector and radioprotector for normal organs
- Review, Var, NA
ChemoSen↑, Such effects of curcumin were due to its ability to sensitize cancer cells for increased production of ROS
NF-kB↓, it downregulates various growth regulatory pathways and specific genetic targets including genes for NF-κB, STAT3, COX2, Akt
*STAT3↓, curcumin acts as a chemosensitizer and radiosensitizer has also been studied extensively. For example, it downregulates various growth regulatory pathways and specific genetic targets including genes for NF-kB, STAT3, COX2, Akt,
*COX2↓,
*Akt↓,
*NRF2↑, The protective effects of curcumin appear to be mediated through its ability to induce the activation of NRF2 and induce the expression of antioxidant enzymes (e.g., hemeoxygenase-1, glutathione peroxidase
*HO-1↑,
*GPx↑,
*NADPH↑,
*GSH↑, increase glutathione (a product of the modulatory subunit of gamma-glutamyl-cysteine ligase)
*ROS↓, dietary curcumin can inhibit chemotherapy-induced apoptosis via inhibition of ROS generation and blocking JNK signaling
*p300↓, inhibit p300 HAT activity
radioP↑, radioprotector for normal organs
chemoP↑, curcumin has also been shown to protect normal organs such as liver, kidney, oral mucosa, and heart from chemotherapy and radiotherapy-induced toxicity.
RadioS↑,

2688- CUR,    Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs
- Review, Var, NA - Review, AD, NA
*ROS↓, CUR reduced the production of ROS
*SOD↑, CUR also upregulated the expression of superoxide dismutase (SOD) genes
p16↑, The effects of CUR on gene expression in cancer-associated fibroblasts obtained from breast cancer patients has been examined. CUR increased the expression of the p16INK4A and other tumor suppressor proteins
JAK2↓, CUR decreased the activity of the JAK2/STAT3 pathway
STAT3↓,
CXCL12↓, and many molecules involved in cellular growth and metastasis including: stromal cell-derived factor-1 (SDF-1), IL-6, MMP2, MMP9 and TGF-beta
IL6↓,
MMP2↓,
MMP9↓,
TGF-β↓,
α-SMA↓, These effects reduced the levels of alpha-smooth muscle actin (alpha-SMA) which was attributed to decreased migration and invasion of the cells.
LAMs↓, CUR suppressed Lamin B1 and
DNAdam↑, induced DNA damage-independent senescence in proliferating but not quiescent breast stromal fibroblasts in a p16INK4A-dependent manner.
*memory↑, CUR has recently been shown to suppress memory decline by suppressing beta-site amyloid precursor protein cleaving enzyme 1 (BACE1= Beta-secretase 1, an important gene in AD) expression which is implicated in beta-amyoid pathology in 5xFAD transgenic
*cognitive↑, CUR was found to decrease adiposity and improve cognitive function in a similar fashion as CR in 15-month-old mice.
*Inflam↓, The effects of CUR and CR were positively linked with anti-inflammatory or antioxidant actions
*antiOx↓,
*NO↑, CUR treatment increased nNOS expression, acidity and NO concentration
*MDA↓, CUR treatment resulted in decreased levels of MDA
*ROS↓, CUR treatment was determined to cause reduction of ROS in the AMD-RPEs and protected the cells from H2O2-induced cell death by reduction of ROS levels.
DNMT1↓, CUR has been shown to downregulate the expression of DNA methyl transferase I (DNMT1)
ROS↑, induction of ROS and caspase-3-mediated apoptosis
Casp3↑,
Apoptosis↑,
miR-21↓, CUR was determined to decrease both miR-21 and anti-apoptotic protein expression.
LC3II↓, CUR also induced proteins associated with cell death such as LC3-II and other proteins in U251 cells
ChemoSen↑, The combined CUR and temozolomide treatment resulted in enhanced toxicity in U-87 glioblastoma cells.
NF-kB↓, suppression of NF-kappaB activity
CSCs↓, Dendrosomal curcumin increased the expression of miR-145 and decreased the expression of stemness genes including: NANOG, OCT4A, OCT4B1, and SOX2 [113]
Nanog↓,
OCT4↓,
SOX2↓,
eff↑, A synergistic interaction was observed when emodin and CUR were combined in terms of inhibition of cell growth, survival and invasion.
Sp1/3/4↓, CUR inducing ROS which results in suppression of specificity protein expression (SP1, SP3 and SP4) as well as miR-27a.
miR-27a-3p↓,
ZBTB10↑, downregulation of miR-27a by CUR, increased expression of ZBTB10 occurred
SOX9?, This resulted in decreased SOX9 expression.
ChemoSen↑, CUR used in combination with cisplatin resulted in a synergistic cytotoxic effect, while the effects were additive or sub-additive in combination with doxorubicin
VEGF↓, Some of the effects of CUR treatment are inhibition of NF-κB activity and downstream effector proteins, including: VEGF, MMP-9, XIAP, BCL-2 and Cyclin-D1.
XIAP↓,
Bcl-2↓,
cycD1↓,
BioAv↑, Piperine is an alkaloid found in the seeds of black pepper (Piper nigrum) and is known to enhance the bioavailability of several therapeutic agents, including CUR
Hif1a↓, CUR inhibits HIF-1 in certain HCC cell lines and in vivo studies with tumor xenografts. CUR also inhibited EMT by suppressing HIF-1alpha activity in HepG2 cells
EMT↓,
BioAv↓, CUR has a poor solubility in aqueous enviroment, and consequently it has a low bioavailability and therefore low concentrations at the target sites.
PTEN↑, CUR treatment has been shown to result in activation of PTEN, which is a target of miR-21.
VEGF↓, CUR treatment resulted in a decrease of VEGF and activated Akt.
Akt↑,
EZH2↓, CUR also suppressed EZH2 expression by induction of miR-let 7c and miR-101.
NOTCH1↓, The expression of NOTCH1 was inhibited upon EZH2 suppression [
TP53↑, CUR has been shown to activate the TP53/miR-192-5p/miR-215/XIAP pathway in NSCLC.
NQO1↑, CUR can also induce the demethylation of the nuclear factor erythroid-2 (NF-E2) related factor-2 (NRT2) gene which in turn activates (NQO1), heme oxygenase-1 (HO1) and an antioxidant stress pathway which can prevent growth in mouse TRAMP-C1 prostate
HO-1↑,

2979- CUR,  GB,    Curcumin overcome primary gefitinib resistance in non-small-cell lung cancer cells through inducing autophagy-related cell death
- in-vitro, Lung, H157 - in-vitro, Lung, H1299
EGFR↓, Combination treatment with curcumin and gefitinib markedly downregulated EGFR activity through suppressing Sp1 and blocking interaction of Sp1 and HADC1,
Sp1/3/4↓,
ERK↓, and markedly suppressed receptor tyrosine kinases as well as ERK/MEK and AKT/S6K pathways in the resistant NSCLC cells.
MEK↓,
Akt↓,
S6K↓,

3576- CUR,    Protective Effects of Indian Spice Curcumin Against Amyloid-β in Alzheimer's Disease
- Review, AD, NA
*Inflam↓, known to have protective effects, including anti-inflammatory, antioxidant, anti-arthritis, pro-healing, and boosting memory cognitive functions.
*antiOx↑,
*memory↑,
*Aβ↓, curcumin prevents Aβ aggregation and crosses the blood-brain barrier,
*BBB↑,
*cognitive↑, curcumin ameliorates cognitive decline and improves synaptic functions in mouse models of AD
*tau↓, curcumin's effect on inhibition of A and tau,copper binding ability, cholesterol lowering ability, anti-inflammatory and modulation of microglia, acetylcholinesterase (AChE) inhibition, antioxidant properties,
*LDL↓,
*AChE↓,
*IL1β↓, Curcumin reduced the levels of oxidized proteins and IL1B in the brains of APP mice
*IronCh↑, Curcumin binds to redox-active metals, iron and copper
*neuroP↑, Curcumin, a neuroprotective agent, has poor brain bioavailability.
*BioAv↝,
*PI3K↑, They found that curcumin significantly upregulates phosphatidylinositol 3-kinase (PI3K), Akt, nuclear factor E2-related factor-2 (Nrf2), heme oxygenase 1, and ferritin expression
*Akt↑,
*NRF2↑,
*HO-1↑,
*Ferritin↑,
*HO-2↓, and that it significantly downregulates heme oxygenase 2, ROS, and A40/42 expression.
*ROS↓,
*Ach↑, significant increase in brain ACh, glutathione, paraoxenase, and BCL2 levels with respect to untreated group associated with significant decrease in brain AChE activity,
*GSH↑,
*Bcl-2↑,
*ChAT↑, nvestigation revealed that the selected treatments caused marked increase in ChAT positive cells.

2821- CUR,    Antioxidant curcumin induces oxidative stress to kill tumor cells (Review)
- Review, Var, NA
*antiOx↑, Curcumin is a plant polyphenol in turmeric root and a potent antioxidant
*NRF2↑, regulation by nuclear factor erythroid 2-related factor 2, thereby suppressing reactive oxygen species (ROS) and exerting anti-inflammatory, anti-infective and other pharmacological effects
*ROS↓,
*Inflam↓,
ROS↑, Of note, curcumin induces oxidative stress in tumors. curcumin-induced accumulation of ROS in tumors to kill tumor cells has been noted in several studies
p‑ERK↑, Curcumin promoted ERK/JNK phosphorylation, causing elevated ROS levels and triggering mitochondria-dependent apoptosis
ER Stress↑, Curcumin triggered disturbances in Ca2+ homeostasis, leading to endoplasmic reticulum stress, mitochondrial damage and apoptosis
mtDam↑,
Apoptosis↑,
Akt↓, Curcumin inhibited the AKT/mTOR/p70S6K signaling pathway
mTOR↓,
HO-1↑, Curcumin-induced HO-1 overexpression led to a disturbed intracellular iron distribution and triggered the Fenton reaction
Fenton↑,
GSH↓, Non-small cell lung cancer: Curcumin induced a decrease in GSH and an increase in ROS levels and iron accumulation
Iron↑,
p‑JNK↑, Curcumin causes mitochondrial damage by promoting phosphorylation of ERK and JNK, resulting in the increased release of ROS and cytochrome c into the cytoplasm, thereby triggering a mitochondrion-dependent pathway of apoptosis
Cyt‑c↑,
ATF6↑, thyroid cancer with curcumin, both activating transcription factor (ATF) 6 and the ER stress marker C/EBP homologous protein (CHOP) were activated by curcumin and Ca2+-ATPase activity was also affected.
CHOP↑,

2654- CUR,    Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical Evidence
- Review, Var, NA
ROS↑, ROS induction has been implicated as one of the mechanisms of the anticancer activity of curcumin and its derivatives in various cancers
Catalase↓, Curcumin induces ROS by inhibiting the activity of various ROS-related metabolic enzymes, such as CAT, SOD1, glyoxalase 1, and NAD(P)H dehydrogenase [quinone] 1 [146,149]
SOD1↓,
GLO-I↓,
NADPH↓,
TumCCA↑, ROS accumulation further mediates G1 or G2/M cell cycle arrest [146,147,150,154], senescence [146], and apoptosis.
Apoptosis↑,
Akt↓, downregulation of AKT phosphorylation [145
ER Stress↑, endoplasmic reticulum stress (namely through the PERK–ATF4–CHOP axis)
JNK↑, activation of the JNK pathway [151],
STAT3↓, and inhibition of STAT3 [155].
BioAv↑, Additionally, the combination of curcumin and piperine, a pro-oxidative phytochemical that drastically increases the bioavailability of curcumin in humans

152- CUR,    Anti-cancer activity of curcumin loaded nanoparticles in prostate cancer
- in-vivo, Pca, NA
β-catenin/ZEB1↓,
AR↓,
STAT3↓,
p‑Akt↓,
Mcl-1↓,
Bcl-xL↓,
cl‑PARP↑, cleavage
miR-21↓,
miR-205↑,

12- CUR,    Curcumin inhibits the Sonic Hedgehog signaling pathway and triggers apoptosis in medulloblastoma cells
- in-vitro, MB, DAOY
HH↓,
Shh↓,
Gli1↓,
PTCH1↓,
cMyc↓,
n-MYC↓,
cycD1↓,
Bcl-2↓,
NF-kB↓,
Akt↓,
β-catenin/ZEB1↓,
survivin↓,

15- CUR,  UA,    Effects of curcumin and ursolic acid in prostate cancer: A systematic review
NF-kB↝,
Akt↝,
AR↝,
Apoptosis↝,
Bcl-2↝,
Casp3↝,
BAX↝,
P21↝,
ROS↝,
Apoptosis↝,
Bcl-xL↝,
JNK↝,
MMP2↝,
P53↝,
PSA↝,
VEGF↝,
COX2↝,
cycD1↝,
EGFR↝,
IL6↝,
β-catenin/ZEB1↝,
mTOR↝,
NRF2↝,
p‑Akt↝,
AP-1↝,
Cyt‑c↝,
PI3K↝,
PTEN↝,
Cyc↝,
TNF-α↝,

168- CUR,    Curcumin inhibits Akt/mammalian target of rapamycin signaling through protein phosphatase-dependent mechanism
- in-vitro, Pca, PC3
Akt↓,
mTOR↓,
AMPK↑,
TAp63α↑, MAP kinases

165- CUR,    Curcumin interrupts the interaction between the androgen receptor and Wnt/β-catenin signaling pathway in LNCaP prostate cancer cells
- in-vitro, Pca, LNCaP
AR↓,
β-catenin/ZEB1↓,
p‑Akt↓,
GSK‐3β↓,
p‑β-catenin/ZEB1↑, phosphorylated
cycD1↓,
cMyc↓,

424- CUR,    Curcumin inhibits autocrine growth hormone-mediated invasion and metastasis by targeting NF-κB signaling and polyamine metabolism in breast cancer cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
Src↓,
p‑STAT1↓, pSTAT-1
p‑Akt↓,
p‑p44↓, p-p44
p‑p42↓, p-p42
RAS↓,
Raf↓, c-RAF
Vim↓,
β-catenin/ZEB1↓,
P53↓,
Bcl-2↓,
Mcl-1↓,
PIAS-3↑,
SOCS-3↑,
SOCS1↑,
ROS↑,
NF-kB↓, NF-kB inactivation, ROS generation and PA depletion in MCF-7, MDA-MB-453 and MDA-MB-231 breast can- cer cells
PAO↑,
SSAT↑,
P21↑,
Bak↑,

425- CUR,    Curcumin inhibits proliferation and promotes apoptosis of breast cancer cells
- in-vitro, BC, T47D - in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, BC, MDA-MB-468
CDC25↓,
cDC2↓,
P21↑,
p‑Akt↓,
p‑mTOR↓, phosphorylation
Bcl-2↓,
BAX↑,
Casp3↑,

434- CUR,    Curcumin induces apoptosis in lung cancer cells by 14-3-3 protein-mediated activation of Bad
- in-vitro, Lung, A549
14-3-3 proteins↓,
p‑BAD↓, p-Bad
p‑Akt↓,
Akt↓,
cl‑Casp9↑, cleaved
cl‑PARP↑, cleaved

435- CUR,    Antitumor activity of curcumin by modulation of apoptosis and autophagy in human lung cancer A549 cells through inhibiting PI3K/Akt/mTOR pathway
- in-vitro, Lung, A549
Apoptosis↑,
TumAuto↑,
LC3‑Ⅱ/LC3‑Ⅰ↑,
Beclin-1↑,
p62↓,
PI3K↓,
Akt↓,
mTOR↓,
p‑Akt↓,
p‑mTOR↓,
NA↓,

463- CUR,    Curcumin induces autophagic cell death in human thyroid cancer cells
- in-vitro, Thyroid, K1 - in-vitro, Thyroid, FTC-133 - in-vitro, Thyroid, BCPAP - in-vitro, Thyroid, 8505C
TumAuto↑,
LC3II↑,
Beclin-1↑,
p‑p38↑,
p‑JNK↑,
p‑ERK↑, p-ERK1/2
p62↓,
p‑PDK1↓,
p‑Akt↓,
p‑p70S6↓,
p‑PIK3R1↓,
p‑S6↓,
p‑4E-BP1↓,

471- CUR,    Curcumin induces apoptotic cell death and protective autophagy by inhibiting AKT/mTOR/p70S6K pathway in human ovarian cancer cells
- in-vitro, Ovarian, SKOV3 - in-vitro, Ovarian, A2780S
Apoptosis↑,
TumAuto↑,
p62↓,
p‑Akt↓,
p‑mTOR↓,
p‑P70S6K↓,
Casp9↑,
PARP↑,
ATG3↑,
Beclin-1↑,
LC3‑Ⅱ/LC3‑Ⅰ↑,

476- CUR,    The effects of curcumin on proliferation, apoptosis, invasion, and NEDD4 expression in pancreatic cancer
- in-vitro, PC, PATU-8988 - in-vitro, PC, PANC1
TumCMig↓,
TumCI↓,
Apoptosis↑,
NEDD9↓,
p‑Akt↓,
p‑mTOR↓,
PTEN↑,
p73↑,
β-TRCP↑,

448- CUR,    Heat shock protein 27 influences the anti-cancer effect of curcumin in colon cancer cells through ROS production and autophagy activation
- in-vitro, CRC, HT-29
Apoptosis↑,
TumCCA↑, G2/M cell cycle arrest
p‑Akt↓,
Akt↓,
Bcl-2↓,
p‑BAD↓,
BAD↑,
cl‑PARP↑,
ROS↑,
HSP27↑,
Beclin-1↑,
p62↑,
GPx1↓,
GPx4↓,

452- CUR,    Curcumin downregulates the PI3K-AKT-mTOR pathway and inhibits growth and progression in head and neck cancer cells
- vitro+vivo, HNSCC, SCC9 - vitro+vivo, HNSCC, FaDu - vitro+vivo, HNSCC, HaCaT
TumCCA↑, arrested cell cycle at phase G2 /M
PI3k/Akt/mTOR↓,
Casp3↑,
EGFR↓, 0.18 fold
EGF↑, Curcumin induced a noticeable increase in the expression of EGF (11.3-fold change)
PRKCG↑, 13.2 fold
p‑Akt↓,
p‑mTOR↓,
RPS6KA1↓, 0.17 fold
EIF4E↓, 0.18 fold
proCasp3↓,

457- CUR,    Curcumin regulates proliferation, autophagy, and apoptosis in gastric cancer cells by affecting PI3K and P53 signaling
- in-vitro, GC, SGC-7901 - in-vitro, GC, BGC-823
TumCP↓,
Apoptosis↑,
TumAuto↑,
P53↑,
PI3K↓,
P21↑,
p‑Akt↓,
p‑mTOR↓,
Bcl-2↓,
Bcl-xL↓,
LC3I↓, LC3I
BAX↑,
Beclin-1↑,
cl‑Casp3↑,
cl‑PARP↑,
LC3II↑,
ATG3↑,
ATG5↑,

480- CUR,    Curcumin exerts its tumor suppressive function via inhibition of NEDD4 oncoprotein in glioma cancer cells
- in-vitro, GBM, SNB19
TumCP↓,
TumCMig↓,
Apoptosis↑,
TumCCA↑, G2/M phase
NEDD9↓,
NOTCH1↓,
p‑Akt↓,

485- CUR,  PDT,    Red Light Combined with Blue Light Irradiation Regulates Proliferation and Apoptosis in Skin Keratinocytes in Combination with Low Concentrations of Curcumin
- in-vitro, Melanoma, NA
NF-kB↓,
Casp8↑,
Casp9↑,
p‑Akt↓,
p‑ERK↓,

1871- DAP,    Targeting PDK1 with dichloroacetophenone to inhibit acute myeloid leukemia (AML) cell growth
- in-vitro, AML, U937 - in-vivo, AML, NA
TumCP↓, DAP significantly inhibited cell proliferation, increased apoptosis induction and suppressed autophagy in AML cells in vitro
Apoptosis↑,
TumCG↓, inhibited tumor growth in an AML mouse model in vivo
PDK1↓, inhibition of PDK1 with DAP
cl‑PARP↑, increased the cleavage of pro-apoptotic proteins (PARP and Caspase 3)
Bcl-xL↓, decreased the expression of the anti-apoptotic proteins (BCL-xL and BCL-2) and autophagy regulators (ULK1, Beclin-1 and Atg).
Bcl-2↓,
Beclin-1↓,
ATG3↓,
PI3K↓, DAP inhibited the PI3K/Akt signaling pathway
Akt↓,
eff↑, Importantly, 2,2-dichloroacetophenone (DAP) is a much more potent inhibitor of PDK1(than DCA). It is effective at concentrations in the micromolar (μM) range.

1445- Deg,    Deguelin--an inhibitor to tumor lymphangiogenesis and lymphatic metastasis by downregulation of vascular endothelial cell growth factor-D in lung tumor model
- in-vivo, lymphoma, NA - in-vitro, lymphoma, NA
Akt↓,
TumCP↓,
TumCMig↓,
VEGF↓, Deguelin significantly downregulated the expression of VEGF-D
TumCG↓, remarkable delay of tumor growth
OS↑, prolongation of life span.

1444- Deg,    Deguelin promotes apoptosis and inhibits angiogenesis of gastric cancer
- in-vitro, GC, MKN-28
Casp9↑,
Casp3↑,
Hif1a↓,
VEGF↓,
TumCCA↑, G2/M phase arrest
TumCG↓,
DNAdam↑,
p‑Akt↓,

1443- Deg,    Deguelin Action Involves c-Met and EGFR Signaling Pathways in Triple Negative Breast Cancer Cells
- vitro+vivo, BC, MDA-MB-231 - in-vitro, BC, MDA-MB-435 - in-vitro, BC, BT549
EGFR↓, EGFR-PAKT/c-Met p-ERK and NF-κB by down regulating their downstream targets such as p-STAT3, c-Myc, Survivin.
Akt↓, hown to inhibit AKT activation
p‑ERK↓,
NF-kB↓,
p‑STAT3↓,
survivin↓,
Myc↓,
TumCG↓,
cMET↓,

1446- Deg,    Efficacy and mechanism of action of Deguelin in suppressing metastasis of 4T1 cells
- in-vitro, BC, 4T1
cMET↓,
p‑ERK↓,
p‑Akt↓,
TumCMig↓,
TumCG↓, vivo
Weight∅, no difference in the body weight as well as liver and spleen weights between vehicle treated control and Deguelin treated animals indicating that Deguelin was nontoxic at the dose used
*toxicity∅, no difference in the body weight as well as liver and spleen weights between vehicle treated control and Deguelin treated animals indicating that Deguelin was nontoxic at the dose used
Hif1a↓, Deguelin inhibits both ERK and p-AKT pathway leading to reduced expression of HIF −1α.
TumMeta↓,

1184- DHA,    Syndecan-1-Dependent Suppression of PDK1/Akt/Bad Signaling by Docosahexaenoic Acid Induces Apoptosis in Prostate Cancer
- in-vitro, Pca, PC3 - in-vitro, Pca, LNCaP - in-vivo, NA, NA
SDC1↑,
p‑PCK1↓,
Akt↓,
BAD↓,

1854- dietFMD,    How Far Are We from Prescribing Fasting as Anticancer Medicine?
- Review, Var, NA
ChemoSideEff↓, ample nonclinical evidence indicating that fasting can mitigate the toxicity of chemotherapy and/or increase the efficacy of chemotherapy.
ChemoSen↑, Fasting-Induced Increase of the Efficacy of Chemotherapy
IGF-1↓,
IGFBP1↑, biological activity of IGF-1 is further compromised due to increased levels of insulin-like growth factor binding protein 1 (IGFBP1)
adiP↑, increased levels of adiponectin stimulate the fatty acid breakdown.
glyC↓, After depletion of stored glycogen, which occurs usually 24 h after initiation of fasting, the fatty acids serve as the main fuels for most tissues
E-cadherin↑, upregulation of E-cadherin expression via activation of c-Src kinase
MMPs↓, decrease of cytokines, chemokines, metalloproteinases, growth factors
Casp3↑, increase of level of activated caspase-3
ROS↑, it is postulated that the beneficial effects of fasting are ascribed to rapid metabolic and immunological response, triggered by a temporary increase in oxidative free radical production
ATP↓, Glucose deprivation leads to ATP depletion, resulting in ROS accumulation
AMPK↑, Additionally, ROS activate AMPK
mTOR↓, Under conditions of glucose deprivation, AMPK inhibits mTORC1
ROS↑, Beyond glucose deprivation, another mechanism increasing ROS levels is the AA (amino acids) starvation
Glycolysis↓, Indeed, in cancer cells, limited glucose sources impair glycolysis, decrease glycolysis-based NADPH production due to reduced utilization of the pentose phosphate pathway [88,89,90,91],
NADPH↓,
OXPHOS↝, and shift the metabolism from glycolysis to oxidative phosphorylation (OXPHOS) (“anti-Warburg effect”), leading to ROS overload [92,93,94,95].
eff↑, Fasting compared to long-term CR causes a more profound decrease in insulin (90% versus 40%, respectively) and blood glucose (50% versus 25%, respectively).
eff↑, FMD have been demonstrated to result in alterations of the serum levels of IGF-I, IGFBP1, glucose, and ketone bodies reminiscent of those observed in fasting
*RAS↓, A plausible explanation of the differential protective effect of fasting against chemotherapy is the attenuation of the Ras/MAPK and PI3K/Akt pathways downstream of decreased IGF-1 in normal cells
*MAPK↓,
*PI3K↓,
*Akt↓,
eff↑, Starvation combined with cisplatin has been shown in vitro to protect normal cells, promoting complete arrest of cellular proliferation mediated by p53/p21 activation in AMPK-dependent and ATM-independent manner
ROS↑, generation of ROS due to paradoxical activation of the AKT/S6K, partially via the AMPK-mTORC1 energy-sensing pathways malignant cells
Akt↑, cancer cells
Casp3↑, combination of fasting and chemotherapy was in part ascribed to enhanced apoptosis due to activation of caspase 3

1844- dietFMD,    Unlocking the Potential: Caloric Restriction, Caloric Restriction Mimetics, and Their Impact on Cancer Prevention and Treatment
- Review, NA, NA
Risk↓, CRMs were well tolerated, and metformin and aspirin showed the most promising effect in reducing cancer risk in a selected group of patients.
AMPK↑, the increased AMP levels activate AMPK
Akt↓, This activation results in the inhibition of AKT and mTOR pathways
mTOR↓,
SIRT1↑, energy deficit also activates the SIRT pathways, which downregulates HIF1α, and the Nrf2 pathway
Hif1a↓,
NRF2↓,
SOD↑, enhances antioxidant defenses (e.g., superoxide dismutase SOD1 and SOD2)
ROS↑, Additionally, in prostate cancer (PC) [55] and triple-negative breast cancer (TNBC) [56] cell lines glucose restriction (GR) has been shown to trigger an increase in ROS, leading to cell death.
IGF-1↓, CR decreases poor prognosis markers such as IGF1, pAKT, and PI3K
p‑Akt↓,
PI3K↑,
GutMicro↑, induces changes in the gut microbiome linked to anti-tumor effects
OS↑, Incorporating a nutraceutical regimen like CR or KD with CT has reduced tumor growth and relapse and improved the survival rate
eff↝, type of dietary intervention, with FMD being the first option, followed by KD and CR last. FMD has been considered the most cost-effective and applicable because it does not completely restrict food intake.
ROS↑, findings consistently indicating that dietary restrictions render highly proliferative tumor cells more susceptible to oxidative damage
TumCCA↑, CR has been reported to induce cell cycle arrest in the G0/G1 phases , enabling cells to undergo DNA repair more efficiently and diminishing DNA damage by CRT
*DNArepair↑,
DNAdam↑, In contrast, tumoral cells, which have an altered cell cycle, are unable to repair DNA, leading to cell death

1860- dietFMD,  Chemo,    Fasting-mimicking diet blocks triple-negative breast cancer and cancer stem cell escape
- in-vitro, BC, SUM159 - in-vitro, BC, 4T1
PI3K↑, FMD activates PI3K-AKT, mTOR, and CDK4/6 as survival/growth pathways, which can be targeted by drugs to promote tumor regression.
Akt↑,
mTOR↑,
CDK4↑,
CDK6↑,
hyperG↓, FMD cycles also prevent hyperglycemia and other toxicities caused by these drugs.
TumCG↓, cycles of FMD significantly slowed down tumor growth, reduced tumor size, and caused an increased expression of intratumor Caspase3
TumVol↓,
Casp3↑,
BG↓, confirming our hypothesis that lowering intracellular glucose levels (through reduced extracellular levels or reduced uptake) reduces CSC survival
eff↑, 2DG potentiated the effect of FMD both in terms of delaying tumor progression and in decreasing the number of mammospheres derived by tumor masses,
eff∅, metformin did not show any additive or synergistic antitumor effect when combined with the FMD, thus suggesting that FMD and metformin have redundant effects on blood glucose levels
PKA↓, We have previously shown that prolonged fasting reduces the activity of protein kinase A (PKA) in different types of normal cells
KLF5↓, PKA inhibition resulted in the downregulation of KLF5, a potential therapeutic target for TNBC
p‑GSK‐3β↑, (GSK3β) phosphorylation
Nanog↓, stemness-associated genes NANOG and OCT4, and KLF2 and TBX3,
OCT4↓,
KLF2↓,
eff↑, Combining FMD cycles with PI3K/AKT/mTOR inhibitors results in long-term animal survival and reduces treatment-induced side effects
ROS↑, FMD resulted in an increased expression of pro-apoptotic molecules, such as BIM, and ASK1, a critical cellular stress sensor frequently activated by ROS, whose production was previously shown to be increased by the FMD
BIM↑,
ASK1↑,
PI3K↑, FMD cycles upregulate PI3K-AKT and mTOR pathways and downregulate CCNB-CDK1 while upregulating CCND-CDK4/6 signaling axes
Akt↑,
mTOR↑,
CDK1↓,
CDK4↑,
CDK6↑,
eff↑, combining STS with pictilisib, ipatasertib, and rapamycin, selective inhibitors for PI3K, AKT, and mTOR, respectively, resulted in enhanced cancer cell death and reduction of mammosphere numbers in SUM159 cells

2269- dietMet,    Mechanisms of Increased In Vivo Insulin Sensitivity by Dietary Methionine Restriction in Mice
- in-vivo, Nor, NA
*adiP↑, metabolic responses include reduced adiposity, reduced circulating and tissue lipid levels, increased plasma adiponectin and fibroblast growth factor 21 (FGF-21), and reduced fasting insulin and blood glucose
*FGF↑,
*Insulin↓,
*glucose↓,
Akt↑, activation of Akt was significantly higher in methionine-restricted HepG2 cells
*GSH↓, MR produces a significant decrease in hepatic GSH
PTEN↓, MR in HepG2 cells limits the capacity of the cells to reactivate oxidized PTEN, resulting in amplification of insulin activation of Akt by increasing PIP3.
FGF21↑, MR produced a threefold increase in FGF-21 mRNA that was mirrored by a fourfold increase in serum FGF-21.
PIP3↑,

2263- dietMet,    Methionine Restriction and Cancer Biology
- Review, Var, NA
AntiCan↑, dependence of many tumor cells on an exogenous source of the sulfur amino acid, methionine, [9,10,11] makes dietary methionine restriction (MR) an exciting potential tool in the treatment of cancer.
TumCP↓, Proliferation and growth of several types of cancer cells are inhibited by MR,
TumCG↓,
selectivity↑, while normal cells are unaffected by limiting methionine as long as homocysteine is present
ChemoSen↓, MR has been shown to enhance efficacy of chemotherapy and radiation therapy in animal models
RadioS↑,
Insulin↓, MR may work by inhibiting prostate cancer cell proliferation, inhibiting the insulin/IGF-1 axis
*GlucoseCon↑, increase in tissue-specific glucose uptake measured during a hyperinsulinemic-euglycemic clamp
*ROS↓, MR does not increase oxidative stress, in part because MR enhances antioxidant capacity and increases proton leak in the liver, likely decreasing ROS production
*antiOx↑,
*GSH↑, ability of MR to increase GSH levels in red blood cells. Surprisingly, when methionine was restricted by 80% in the diet of rats, the level of GSH in the blood actually increased due to adaptations in sulfur-amino acid metabolism
GSH↑, However, GSH concentrations were reduced in the liver
eff↑, Of note, methionine restriction is effective when the non-essential amino acid, cysteine, is absent from the diet or media.
polyA↓, MR may work by inhibiting prostate cancer cell proliferation, inhibiting the insulin/IGF-1 axis, or by reducing polyamine synthesis. MR-induced depletion of polyamines
TS↓, MR selectively reduces TS activity in prostate cancer cells by ~80% within 48 h, but does not affect TS activity in normal prostate epithelial cells
Raf↓, MR inhibits Raf and Akt oncogenic pathways, while increasing caspase-9 and the mitochondrial pro-apoptotic protein, Bak
Akt↓,
Casp9↑,
Bak↑,
P21↑, MR upregulating p21 and p27 (cell cycle inhibitors that halt cell cycle progression) in LNCaP cells
p27↑,
Insulin↓, MR-induced reduction in circulating insulin and IGF1, which have both been linked to tumor growth
IGF-1↓,

1606- EA,    Ellagic acid inhibits proliferation and induced apoptosis via the Akt signaling pathway in HCT-15 colon adenocarcinoma cells
- in-vitro, Colon, HCT15
TumCP↓,
cycD1↓,
Apoptosis↑,
PI3K↓, strong inactivation of phosphatidylinositol 3-kinase (PI3K)/Akt pathway by EA
Akt↓,
ROS↑, production of reactive oxygen intermediates, which were examined by 2,7-dichlorodihydrofluorescein diacetate (H2DCF-DA), increased with time, after treatment with EA
Casp3↑, EA promoted the expression of Bax, caspase-3, and cytochrome c, and suppression of Bcl-2 activity in HCT-15 cells
Cyt‑c↑,
Bcl-2↓,
TumCCA↑, induces G2/M phase cell cycle arrest in HCT-15 cells
Dose∅, since 60 lM of the drug concentration could cause attentional loss of cells (60 and 45 % were viable in 12 and 24 h treatment, respectively) for crucial experiments, we used this dosage to assess the effect of EA in killing HCT-15 cells
ALP↓, significant decrease in the activity of ALP at 60 lM concentration of EA for the 12 h treatment
LDH↓, decrease in the activity of LDH in cells was proportional to increase in the incubation time with EA.
PCNA↓, EA down-regulated the expressions of PCNA and cyclin D1
P53↑, EA promoted p53 gene expression
Bax:Bcl2↑, increase in the Bcl-2/Bax ratio

1607- EA,    Exploring the Potential of Ellagic Acid in Gastrointestinal Cancer Prevention: Recent Advances and Future Directions
- Review, GC, NA
STAT3↓, EA inhibits STAT3 signaling
TumCP↓, EA inhibits cell proliferation, induces apoptosis
Apoptosis↑,
NF-kB↓, inhibiting nuclear factor-kappa B
EMT↓, suppressing epithelial–mesenchymal transition
RadioS↑, In liver cancer, EA exhibits radio-sensitizing effects
antiOx↑, As a potential antioxidant agent,
COX1↓, EA suppresses the expression of several factors, including COX1, COX2, c-myc, snail, and twist1
COX2↓,
cMyc↓,
Snail↓,
Twist↓,
MMP2↓, significantly decreased MMP-2 and MMP-9 expression and activity.
P90RSK↓,
CDK8↓, downregulate CDK8 expression and activity
PI3K↓, inactivating PI3K/Akt signaling
Akt↓,
TumCCA↑, promote cell cycle arrest
Casp8↑, ctivating caspase-8, and lowering proliferating cell nuclear antigen (PCNA) expression,
PCNA↓,
TGF-β↓,
Shh↓, suppression of the Akt, Shh, and Notch pathways, EA can prevent the growth, angiogenesis, and metastasis of pancreatic cancer
NOTCH↓,
IL6↓,
ALAT↓, decreasing liver injury biomarkers such as alanine transaminase (ALT), alkaline phosphatase (ALP), and aspartate aminotransferase (AST)
ALP↓,
AST↓,
VEGF↓,
P21↑,
*toxicity∅, no toxicity was found for a 50% effective dose by the intraperitoneal route inferior to 1 mg/kg/day

1608- EA,    Ellagic Acid from Hull Blackberries: Extraction, Purification, and Potential Anticancer Activity
- in-vitro, Cerv, HeLa - in-vitro, Liver, HepG2 - in-vitro, BC, MCF-7 - in-vitro, Lung, A549 - in-vitro, Nor, HUVECs
eff↑, Hull blackberry fruits into five growth periods according to color and determined the EA content in the fruits in each period. The EA content in the green fruit stage was the highest at 5.67 mg/g FW
Dose∅, EA inhibited HeLa cells with an IC50 of 35 μg/mL
*BioAv↑, EA is not sensitive to high temperatures and is not highly soluble in many solvents.
selectivity↑, selectivity index varied from 7.4 for Hela to about 1 for A549
TumCP↓, EA reduced the proliferation of human cervical cancer HeLa, SiHa, and C33A cells in a dose- and time-dependent manner, and the inhibitory effect was significantly more pronounced in HeLa cells than in SiHa and C33A cells
Casp↑, EA reduced the proliferation of human cervical cancer HeLa, SiHa, and C33A cells in a dose- and time-dependent manner, and the inhibitory effect was significantly more pronounced in HeLa cells than in SiHa and C33A cells
PTEN↑,
TSC1↑,
mTOR⇅,
Akt↓, AKT, PDK1 expression were down-regulated
PDK1↓,
E6↓, mRNA levels of E6/E7 were determined to decrease gradually with the increase in EA incubation time and concentration
E7↓,
DNAdam↑, When DNA damage is introduced into cells from exogenous or endogenous sources there is an increase in the amount of intracellular reactive oxygen species (ROS)
ROS↑,
*BioAv↓, EA cannot be exploited for in vivo therapeutic applications in the current situation because of its poor water solubility and accordingly low bioavailability.
*BioEnh↑, As Lei [52] reported that EA in pomegranate leaf is rapidly absorbed and distributed as well as eliminated in rats
*Half-Life∅, blood concentration peaked at 0.5 h with Cmax = 7.29 μg/mL, and the drug concentration decreased to half of the original after 57 min of administration

1610- EA,    Anticancer Effect of Pomegranate Peel Polyphenols against Cervical Cancer
- Review, Cerv, NA
TumCCA↑, EA had a dose-dependent apoptotic effect on HeLa cells caused by cell cycle arrest in the G1 phase via the regulation of STAT3
STAT3↓,
P21↑, increase in the expression of both p21 mRNA and protein
IGFBP7↑, increase in igfb7
Akt↓, inhibition of the Akt/mTOR signaling
mTOR↓,
ROS↑, increase in the production of ROS and DNA damage
DNAdam↑,
P53↑, restored activity of p53 and p21 genes and
P21↑,
BAX↑, increased expression of the Bax

1605- EA,    Ellagic Acid and Cancer Hallmarks: Insights from Experimental Evidence
- Review, Var, NA
*BioAv↓, Within the gastrointestinal tract, EA has restricted bioavailability, primarily due to its hydrophobic nature and very low water solubility.
antiOx↓, strong antioxidant properties [12,13], anti-inflammatory effects
Inflam↓,
TumCP↓, numerous studies indicate that EA possesses properties that can inhibit cell proliferation
TumCCA↑, achieved this by causing cell cycle arrest at the G1 phase
cycD1↓, reduction of cyclin D1 and E levels, as well as to the upregulation of p53 and p21 proteins
cycE↓,
P53↑,
P21↑,
COX2↓, notable reduction in the protein expression of COX-2 and NF-κB as a result of this treatment
NF-kB↓,
Akt↑, suppressing Akt and Notch signaling pathways
NOTCH↓,
CDK2↓,
CDK6↓,
JAK↓, suppression of the JAK/STAT3 pathway
STAT3↓,
EGFR↓, decreased expression of epidermal growth factor receptor (EGFR)
p‑ERK↓, downregulated the expression of phosphorylated ERK1/2, AKT, and STAT3
p‑Akt↓,
p‑STAT3↓,
TGF-β↓, downregulation of the TGF-β/Smad3
SMAD3↓,
CDK6↓, EA demonstrated the capacity to bind to CDK6 and effectively inhibit its activity
Wnt/(β-catenin)↓, ability of EA to inhibit phosphorylation of EGFR
Myc↓, Myc, cyclin D1, and survivin, exhibited decreased levels
survivin↓,
CDK8↓, diminished CDK8 level
PKCδ↓, EA has demonstrated a notable downregulatory impact on the expression of classical isoenzymes of the PKC family (PKCα, PKCβ, and PKCγ).
tumCV↓, EA decreased cell viability
RadioS↑, further intensified when EA was combined with gamma irradiation.
eff↑, EA additionally potentiated the impact of quercetin in promoting the phosphorylation of p53 at Ser 15 and increasing p21 protein levels in the human leukemia cell line (MOLT-4)
MDM2↓, finding points to the ability of reduced MDM2 levels
XIAP↓, downregulation of X-linked inhibitor of apoptosis protein (XIAP).
p‑RB1↓, EA exerted a decrease in phosphorylation of pRB
PTEN↑, EA enhances the protein phosphatase activity of PTEN in melanoma cells (B16F10)
p‑FAK↓, reduced phosphorylation of focal adhesion kinase (FAK)
Bax:Bcl2↑, EA significantly increases the Bax/Bcl-2 rati
Bcl-xL↓, downregulates Bcl-xL and Mcl-1
Mcl-1↓,
PUMA↑, EA also increases the expression of Bcl-2 inhibitory proapoptotic proteins PUMA and Noxa in prostate cancer cells
NOXA↑,
MMP↓, addition to the reduction in MMP, the release of cytochrome c into the cytosol occurs in pancreatic cancer cells
Cyt‑c↑,
ROS↑, induction of ROS production
Ca+2↝, changes in intracellular calcium concentration, leading to increased levels of EndoG, Smac/DIABLO, AIF, cytochrome c, and APAF1 in the cytosol
Endoglin↑,
Diablo↑,
AIF↑,
iNOS↓, decreased expression of Bcl-2, NF-кB, and iNOS were observed after exposure to EA at concentrations of 15 and 30 µg/mL
Casp9↑, increase in caspase 9 activity in EA-treated pancreatic cancer cells PANC-1
Casp3↑, EA-induced caspase 3 activation and PARP cleavage in a dose-dependent manner (10–100 µmol/L)
cl‑PARP↑,
RadioS↑, EA sensitizes and reduces the resistance of breast cancer MCF-7 cells to apoptosis induced by γ-radiation
Hif1a↓, EA reduced the expression of HIF-1α
HO-1↓, EA significantly reduced the levels of two isoforms of this enzyme, HO-1, and HO-2, and increased the levels of sEH (Soluble epoxide hydrolase) in LnCap
HO-2↓,
SIRT1↓, EA-induced apoptosis was associated with reduced expression of HuR and Sirt1
selectivity↑, A significant advantage of EA as a potential chemopreventive, anti-tumor, or adjuvant therapeutic agent in cancer treatment is its relative selectivity
Dose∅, EA significantly reduced the viability of cancer cells at a concentration of 10 µmol/L, while in healthy cells, this effect was observed only at a concentration of 200 µmol/L
NHE1↓, EA had the capacity to regulate cytosolic pH by downregulating the expression of the Na+/H+ exchanger (NHE1)
Glycolysis↓, led to intracellular acidification with subsequent impairment of glycolysis
GlucoseCon↓, associated with a decrease in the cellular uptake of glucose
lactateProd↓, notable reduction in lactate levels in supernatant
PDK1?, inhibit pyruvate dehydrogenase kinase (PDK) -bind and inhibit PDK3
PDK1?,
ECAR↝, EA has been shown to influence extracellular acidosis
COX1↓, downregulation of cancer-related genes, including COX1, COX2, snail, twist1, and c-Myc.
Snail↓,
Twist↓,
cMyc↓,
Telomerase↓, EA, might dose-dependently inhibit telomerase activity
angioG↓, EA may inhibit angiogenesis
MMP2↓, EA demonstrated a notable reduction in the secretion of matrix metalloproteinase (MMP)-2 and MMP-9.
MMP9↓,
VEGF↓, At lower concentrations (10 and 20 μM), EA led to a substantial increase in VEGF levels. However, at higher doses (40 and 100 μM), a notable reduction in VEGF
Dose↝, At lower concentrations (10 and 20 μM), EA led to a substantial increase in VEGF levels. However, at higher doses (40 and 100 μM), a notable reduction in VEGF
PD-L1↓, EA downregulated the expression of the immune checkpoint PD-L1 in tumor cells
eff↑, EA might potentially enhance the efficacy of anti-PD-L1 treatment
SIRT6↑, EA exhibited statistically significant upregulation of sirtuin 6 at the protein level in Caco2 cells
DNAdam↓, increase in DNA damage

1618- EA,    A comprehensive review on Ellagic acid in breast cancer treatment: From cellular effects to molecular mechanisms of action
- Review, BC, NA
TumCCA↑, suppresses the growth of BC cells by arresting the cell cycle in the G0/G1 phase,
TumCMig↓, suppresses migration, invasion, and metastatic
TumCI↓,
TumMeta↓,
Apoptosis↑, stimulates apoptosis in MCF-7 cells via TGF-β/Smad3 signaling axis
TGF-β↓,
SMAD3↓,
CDK6↓, inhibits CDK6 that is important in cell cycle regulation,
PI3K↓, inhibits the PI3K/AKT pathway
Akt↓,
angioG↓,
VEGFR2↓, reduces VEGFR-2 tyrosine kinase activity
MAPK↓,
NEDD9↓, downregulated protein 9 (NEDD-9)
NF-kB↓, EA suppressed NF-κB precursor protein p105
eff↑, They showed that the encapsulation of EA in biodegradable polymeric nanoparticles would improve the bioavailability after oral administration and also enhance the anticancer properties
eff↑, Chitosan nanoparticles and EA with high anticancer efficacy could be a suitable therapeutic strategy
RadioS↑, showed that the synergistic effect of EA combined with radiotherapy/chemotherapy resulted in increased DNA damage and apoptosis as well as decreased levels of MGMT expression
ChemoSen↑,
DNAdam↑,
eff↑, combination of Paclitaxel and EA has shown promise in inhibiting tumor growth and metastasis in experimental BC models.
*toxicity∅, 630 mg/kg is the LD50 of EA in the rat population.
*toxicity∅, no-observed adverse effect level of EA is 2000 mg/kg body weight

1621- EA,    The multifaceted mechanisms of ellagic acid in the treatment of tumors: State-of-the-art
- Review, Var, NA
AntiCan↑, Studies have shown its anti-tumor effect in gastric cancer, liver cancer, pancreatic cancer, breast cancer, colorectal cancer, lung cancer and other malignant tumors
Apoptosis↑,
TumCP↓,
TumMeta↓,
TumCI↓,
TumAuto↑,
VEGFR2↓, inhibition of VEGFR-2 signaling
MAPK↓, MAPK and PI3K/Akt pathways
PI3K↓,
Akt↓,
PD-1↓, Downregulation of VEGFR-2 and PD-1 expression
NOTCH↓, Inhibition of Akt and Notch
PCNA↓, regulation of the expression of proliferation-related proteins PCNA, Ki67, CyclinD1, CDK-2, and CDK-6
Ki-67↓,
cycD1↓,
CDK2↑,
CDK6↓,
Bcl-2↓,
cl‑PARP↑, up-regulated the expression of cleaved PARP, Bax, Active Caspase3, DR4, and DR5
BAX↑,
Casp3↑,
DR4↑,
DR5↑,
Snail↓, down-regulated the expression of Snail, MMP-2, and MMP-9
MMP2↓,
MMP9↓,
TGF-β↑, up-regulation of TGF-β1
PKCδ↓, Inhibition of PKC signaling
β-catenin/ZEB1↓, decreases the expression level of β-catenin
SIRT1↓, down-regulates the expression of anti-apoptotic protein, SIRT1, HuR, and HO-1 protein
HO-1↓,
ROS↑, up-regulates ROS
CHOP↑, activating the CHOP signaling pathway to induce apoptosis
Cyt‑c↑, releases cytochrome c
MMP↓, decreases mitochondrial membrane potential and oxygen consumption,
OCR↓,
AMPK↑, activates AMPK, and downregulates HIF-1α expression
Hif1a↓,
NF-kB↓, inhibition of NF-κB pathway
E-cadherin↑, Upregulates E-cadherin, downregulates vimentin and then blocks EMT progression
Vim↓,
EMT↓,
LC3II↑, Up-regulation of LC3 – II expression and down-regulation of CIP2A
CIP2A↓,
GLUT1↓, regulation of glycolysis-related gene GLUT1 and downstream protein PDH expression
PDH↝,
MAD↓, Downregulation of MAD, LDH, GR, GST, and GSH-Px related protein expressio
LDH↓,
GSTs↑,
NOTCH↓, inhibited the expression of Akt and Notch protein
survivin↓, survivin and XIAP was also significantly down-regulated
XIAP↓,
ER Stress↑, through ER stress
ChemoSideEff↓, could improve cisplatin-induced hepatotoxicity in colorectal cancer cells
ChemoSen↑, Enhancing chemosensitivity

27- EA,    Ellagic acid inhibits human pancreatic cancer growth in Balb c nude mice
- in-vivo, PC, NA
HH↓,
Gli1↓,
GLI2↓,
cycD1↓,
CDK1/2/5/9↓,
p‑Akt↓,
NOTCH1↓,
Akt↓,
Shh↓,
Snail↓,
MMP2↓,
MMP9↓,
BAX↑,
E-cadherin↑,
NOTCH3↓,
HEY1↓,

1036- EGCG,    Green Tea Catechin Is an Alternative Immune Checkpoint Inhibitor that Inhibits PD-L1 Expression and Lung Tumor Growth
- in-vitro, Lung, A549 - in-vitro, Lung, LU99
PD-L1↓, 50 µM EGCG decreased PD-L1 mRNA by 86% (from 5.8-fold to 0.8-fold) and PD-L1 protein by 79%
EGF↓,
Akt↓,

20- EGCG,    Potential Therapeutic Targets of Epigallocatechin Gallate (EGCG), the Most Abundant Catechin in Green Tea, and Its Role in the Therapy of Various Types of Cancer
- in-vivo, Liver, NA - in-vivo, Tong, NA
HH↓,
Gli1↓,
Smo↓,
TNF-α↓,
COX2↓, EGCG inhibits cyclooxygenase-2 without affecting COX-1 expression at both the mRNA and protein levels, in androgen-sensitive LNCaP and androgen-insensitive PC-3
*antiOx↑, EGCG is a well-known antioxidant and it scavenges most free radicals, such as ROS and RNS
Hif1a↓,
NF-kB↓,
VEGF↓,
STAT3↓,
Bcl-2↓,
P53↑, EGCG activates p53 in human prostate cancer cells
Akt↓,
p‑Akt↓,
p‑mTOR↓,
EGFR↓,
AP-1↓,
BAX↑,
ROS↑, apoptosis was convoyed by ROS production and caspase-3 cleavage
Casp3↑,
Apoptosis↑,
NRF2↑, pancreatic cancer cells via inducing cellular reactive oxygen species (ROS) accumulation and activating Nrf2 signaling
*H2O2↓, EGCG plays a role in the inhibition of H2O2 and NO production in human skin [10].
*NO↓, EGCG plays a role in the inhibition of H2O2 and NO production in human skin [10].
*SOD↑, fig 2
*Catalase↑, fig 2
*GPx↑, fig 2
*ROS↓, fig 2

692- EGCG,    EGCG: The antioxidant powerhouse in lung cancer management and chemotherapy enhancement
- Review, NA, NA
ROS↑,
Apoptosis↑,
DNAdam↑,
CTR1↑,
JWA↑,
β-catenin/ZEB1↓, downregulation of the Wnt/β-catenin pathway interferes with CSC traits
P53↑,
Vim↓,
VEGF↓,
p‑Akt↓,
Hif1a↓,
COX2↓,
ERK↓,
NF-kB↓,
Akt↓,
Bcl-xL↓,
miR-210↓,

688- EGCG,  GEM,    Akt_Pathway_and_Epithelial-Mesenchymal_Transition_Enhanced_Efficacy_whe">Epigallocatechin-3-Gallate (EGCG) Suppresses Pancreatic Cancer Cell Growth, Invasion, and Migration partly through the Inhibition of Akt Pathway and Epithelial–Mesenchymal Transition: Enhanced Efficacy When Combined with Gemcitabine
- in-vitro, PC, NA
Zeb1↓,
β-catenin/ZEB1↓,
Vim↓,
Akt↓,
p‑IGFR↓,
TumCG↓,
TumCMig↓,
TumCI↓,

684- EGCG,    Improving the anti-tumor effect of EGCG in colorectal cancer cells by blocking EGCG-induced YAP activation
- in-vitro, CRC, NA
eff↑, YAP blockade increases the sensitivity of CRC cells to EGCG treatment
Akt↓,
VEGFR2↓,
STAT3↓,
P53↓,
Hippo↓,
YAP/TEAD↑, activates downstream YAP : Activation of YAP impedes the anti-tumor effects of EGCG

680- EGCG,    Cancer preventive and therapeutic effects of EGCG, the major polyphenol in green tea
- Review, NA, NA
NF-kB↓,
STAT3↓,
PI3K↓,
HGF/c-Met↓,
Akt↓,
ERK↓,
MAPK↓,
AR↓,
Casp↑,
Ki-67↓,
PARP↑,
Bcl-2↓,
BAX↑,
PCNA↓,
p27↑,
P21↑,

2459- EGCG,    Epigallocatechin gallate inhibits human tongue carcinoma cells via HK2‑mediated glycolysis
- in-vitro, Tong, Tca8113 - in-vitro, Tong, TSCCa
EGFR↓, EGCG exposure substantially decreased EGF-induced EGF receptor (EGFR), Akt and ERK1/2 activation, as well as the downregulation of hexokinase 2 (HK2).
Akt↓,
ERK↓,
HK2↓,
GlucoseCon↓, EGCG dose-dependently inhibited the consumption of glucose (Fig. 2A and B, middle) and production of lactate
lactateProd↓,
Glycolysis↓, EGCG downregulates HK2 expression and decreases human tongue carcinoma cell glycolysis.

3205- EGCG,    The Role of Epigallocatechin-3-Gallate in Autophagy and Endoplasmic Reticulum Stress (ERS)-Induced Apoptosis of Human Diseas
- Review, Var, NA - Review, AD, NA
Beclin-1↑, EGCG not only regulates autophagy via increasing Beclin-1 expression and reactive oxygen species generation,
ROS↑,
Apoptosis↑, Apoptosis is a common cell function in biology and is induced by endoplasmic reticulum stress (ERS)
ER Stress↑,
*Inflam↓, EGCG has health benefits including anti-tumor [15], anti-inflammatory [16], anti-diabetes [17], anti-myocardial infarction [18], anti-cardiac hypertrophy [19], anti-atherosclerosis [20], and antioxidant
*cardioP↑,
*antiOx?,
*LDL↓, These effects are mainly related to (LDL) cholesterol inhibition, NF-κB inhibition, MPO activity inhibition, decreased levels of glucose and glycated hemoglobin in plasma, decreased inflammatory markers, and reduced ROS generation
*NF-kB↓,
*MPO↓,
*glucose↓,
*ROS↓,
ATG5↑, EGCG induced autophagy by enhancing Beclin-1, ATG5, and LC3B and promoted mitochondrial depolarization in breast cancer cells.
LC3B↑,
MMP↑,
lactateProd↓, 20 mg kg−1 EGCG significantly decreased glucose, lactic acid, and vascular endothelial growth factor (VEGF) levels
VEGF↓,
Zeb1↑, (20 uM) inhibited the proliferation through activating autophagy via upregulating ZEB1, WNT11, IGF1R, FAS, BAK, and BAD genes and inhibiting TP53, MYC, and CASP8 genes in SSC-4 human oral squamous cells [
Wnt↑,
IGF-1R↑,
Fas↑,
Bak↑,
BAD↑,
TP53↓,
Myc↓,
Casp8↓,
LC3II↑, increasing the LC3-II expression levels and induced apoptosis via inducing ROS in mesothelioma cell lines,
NOTCH3↓, but also could reduce partially Notch3/DLL3 to reduce drug-resistance and the stemness of tumor cells
eff↑, In combination therapies, low-intensity pulsed electric field (PEF) can improve EGCG to affect tumor cells; ultrasound (US) with tumor cells is the application of physical stimulation in cancer therapy.
p‑Akt↓, 20 μM EGCG increased intracellular ROS levels and LC3-II, and inhibited p-Akt in PANC-1 cells
PARP↑, 100 μM EGCG increased LC3-II, activated caspase-3 and PARP, and reduced p-Akt in HepG2
*Cyt‑c↓, EGCG protected neuronal cells against human viruses by inhibiting cytochrome c and Bax translocations, and reducing autophagy with increased LC3-II expression and decreased p62 expression
*BAX↓,
*memory↑, EGCG restored autophagy in the mTOR/p70S6K pathway to weaken memory and learning disorders induced by CUMS
*neuroP↑, Finally, EGCG increased the neurological scores through inhibiting cell death
*Ca+2?, EGCG treatment, [Ca2+]m and [Ca2+]i expressions were reduced and oxyhemoglobin-induced mitochondrial dysfunction lessened.
GRP78/BiP↑, MMe cells with EGCG treatment improved GRP78 expression in the endoplasmic reticulum, and induced EDEM, CHOP, XBP1, and ATF4 expressions, and increased the activity of caspase-3 and caspase-8.
CHOP↑, GRP78 accumulation converted UPR of MMe cells into pro-apoptotic ERS
ATF4↑,
Casp3↑,
Casp8↑,
UPR↑,

988- EMD,    Emodin Induced Necroptosis and Inhibited Glycolysis in the Renal Cancer Cells by Enhancing ROS
- in-vitro, RCC, NA
Necroptosis↑, emodin induces necroptosis, but not apoptosis, in renal cancer cells
p‑RIP1↑,
MLKL↑,
ROS↑, levels of ROS increased upon emodin treatment in a dose-dependent manner
Glycolysis↓,
GLUT1↓,
PI3K↓,
Akt↓,

1320- EMD,  SRF,    Emodin Sensitizes Hepatocellular Carcinoma Cells to the Anti-Cancer Effect of Sorafenib through Suppression of Cholesterol Metabolism
- vitro+vivo, HCC, HepG2 - in-vitro, HCC, Hep3B - in-vitro, HCC, HUH7 - vitro+vivo, Hepat, SK-HEP-1
SREBF2↓,
Akt↓,
TumCCA↑, increased cell cycle arrest in the G1 phase
TumCG↓, combination of emodin and sorafenib was sufficient to inhibit tumor growth.
STAT3↓,

1322- EMD,    The versatile emodin: A natural easily acquired anthraquinone possesses promising anticancer properties against a variety of cancers
- Review, Var, NA
Apoptosis↑,
TumCP↓,
ROS↑,
TumAuto↑,
EMT↓,
TGF-β↓,
DNAdam↑,
ER Stress↑,
TumCCA↑,
ATP↓,
NF-kB↓,
CYP1A1↑,
STAC2↓,
JAK↓,
PI3K↓,
Akt↓,
MAPK↓,
FASN↓,
HER2/EBBR2↓,
ChemoSen↑, DOX combined with emodin can improve the sensitivity of MDA-MB-231 and MCF-7 cells to chemotherapy
eff↑, emodin was reported to increase the anti-proliferative effect of an EGFR inhibitor (afatinib) against PC through downregulation of EGFR by promoting STAT3
ChemoSen↑, gemcitabine combined with emodin increased cell death
angioG↓,
VEGF↓,
MMP2↓,
eNOS↓,
FOXD3↑,
MMP9↓,
TIMP1↑,

1324- EMD,    Is Emodin with Anticancer Effects Completely Innocent? Two Sides of the Coin
- Review, Var, NA
*toxicity↑, however, it is known that emodin, which shows toxicity to cancer cells, may cause kidney toxicity, hepatotoxicity, and reproductive toxicity especially at high doses and long-term use.
*BioAv↓, poor oral bioavailability
Akt↓,
ERK↓,
ROS↑, pretreatment of cells with ascorbic acid prevented the induction of ROS by emodin and inhibited the upregulation of p53
MMP↓,
Bcl-2↓,
BAX↑,
TumCCA↑, increasing the percentage of both S and G2/M phase cells

1325- EMD,  PacT,    Emodin enhances antitumor effect of paclitaxel on human non-small-cell lung cancer cells in vitro and in vivo
- vitro+vivo, Lung, A549
TumCP↓,
Apoptosis↑,
BAX↑,
Casp3↑,
Bcl-2↓, decreasing the levels of Bcl-2, p-Akt and p-ERK
p‑Akt↓,
p‑ERK↓,
ChemoSideEff∅, without significant side effects in vivo.
ChemoSen↑, Combination of emodin with PTX synergistically inhibited the proliferation of A549 cells in vitro

1327- EMD,    Emodin induces apoptosis in human lung adenocarcinoma cells through a reactive oxygen species-dependent mitochondrial signaling pathway
- in-vitro, Lung, A549
Cyt‑c↑, pronounced release of cytochrome c
Casp2↑,
Casp3↑,
Casp9↑,
ERK↓,
Akt↓,
ROS↑, free radical scavenger ascorbic acid and N-acetylcysteine attenuated emodin-mediated ROS production, ERK and AKT inactivation, mitochondrial dysfunction, Bcl-2/Bax modulation, and apoptosis
MMP↓,
Bcl-2↓,
BAX↑,

1155- F,    The anti-cancer effects of fucoidan: a review of both in vivo and in vitro investigations
- Review, NA, NA
*toxicity↓, Sprague–Dawley rats, researchers didn’t observe significant side effects when taking 0–1000 mg/kg fucoidan orally for 28 days.
Casp3↑,
Casp7↑,
Casp8↑,
Casp9↑,
VEGF↓,
angioG↓,
PI3K↓,
Akt↓,
PARP↑,
Bak↑,
BID↑,
Fas↑,
Mcl-1↓,
survivin↓,
XIAP↓,
ERK↓,
EMT↓, Fucoidan can reverse the EMT effectively
EM↑,
IM↓,
Snail↓,
Slug↓,
Twist↓,

1656- FA,    Ferulic Acid: A Natural Phenol That Inhibits Neoplastic Events through Modulation of Oncogenic Signaling
- Review, Var, NA
tyrosinase↓,
CK2↓,
TumCP↓,
TumCMig↓,
FGF↓,
FGFR1↓,
PI3K↓,
Akt↓,
VEGF↓,
FGFR1↓,
FGFR2↓,
PDGF↓,
ALAT↓,
AST↓,
TumCCA↑, G0/G1 phase arrest
CDK2↓,
CDK4↓,
CDK6↓,
BAX↓,
Bcl-2↓,
MMP2↓,
MMP9↓,
P53↑,
PARP↑,
PUMA↑,
NOXA↑,
Casp3↑,
Casp9↑,
TIMP1↑,
lipid-P↑,
mtDam↑,
EMT↓,
Vim↓,
E-cadherin↓,
p‑STAT3↓,
COX2↓,
CDC25↓,
RadioS↑,
ROS↑,
DNAdam↑,
γH2AX↑,
PTEN↑,
LC3II↓,
Beclin-1↓,
SOD↓,
Catalase↓,
GPx↓,
Fas↑,
*BioAv↓, ferulic acid stability and limited solubility in aqueous media continue to be key obstacles to its bioavailability, preclinical efficacy, and clinical use.
cMyc↓,
Beclin-1↑, ferulic acid by elevating the levels of the apoptosis and autophagy biomarkers, including beclin-1, Light chain (LC3-I/LC3-II), PTEN-induced putative kinase 1 (PINK-1), and Parkin
LC3‑Ⅱ/LC3‑Ⅰ↓,

1654- FA,    Molecular mechanism of ferulic acid and its derivatives in tumor progression
- Review, Var, NA
AntiCan↑, FA has anti-inflammatory, analgesic, anti-radiation, and immune-enhancing effects and also shows anticancer activity,
Inflam↓,
RadioS↑,
ROS↑, FA can cause mitochondrial apoptosis by inducing the generation of intracellular reactive oxygen species (ROS)
Apoptosis↑,
TumCCA↑, G0/G1 phase
TumCMig↑, inducing autophagy; inhibiting cell migration, invasion, and angiogenesis
TumCI↓,
angioG↓,
ChemoSen↑, synergistically improving the efficacy of chemotherapy drugs and reducing adverse reactions.
ChemoSideEff↓,
P53↑, FA could increase the expression level of p53 in MIA PaCa-2 pancreatic cancer cells
cycD1↓, while reducing the expression levels of cyclin D1 and cyclin-dependent kinase (CDK) 4/6.
CDK4↓,
CDK6↓,
TumW↓, FA treatment was found to reduce tumor weight in a dose-dependent manner, increase miR-34a expression, downregulate Bcl-2 protein expression, and upregulate caspase-3 protein expression
miR-34a↑,
Bcl-2↓,
Casp3↑,
BAX↑,
β-catenin/ZEB1↓, isoferulic acid dose-dependently downregulated the expression of β-catenin and MYC proto-oncogene (c-Myc), inducing apoptosis
cMyc↓,
Bax:Bcl2↑, FXS-3 can inhibit the activity of A549 cells by upregulating the Bax/Bcl-2 ratio
SOD↓, After treatment with FA, Cao et al. [40] observed an increase in ROS production and a decrease in superoxide dismutase activity and glutathione content in EC-1 and TE-4 oesophageal cancer cells
GSH↓,
LDH↓, FA could promote the release of lactate dehydrogenase (LDH)
ERK↑, A can activate the ERK1/2 pathway
eff↑, conjugated zinc oxide nanoparticles with FA (ZnONPs-FA) to act on hepatoma Huh-7 and HepG2 cells. The results showed that ZnONPs-FA could induce oxidative DNA damage and apoptosis by inducing ROS production.
JAK2↓, by inhibiting the JAK2/STAT6 immune signaling pathway
STAT6↓,
NF-kB↓, thus inhibiting the activation of NF-κB
PYCR1↓, FA can target PYCR1 and inhibit its enzyme activity in a concentration-dependent manner.
PI3K↓, FA inhibits the activation of the PI3K/AKT pathway
Akt↓,
mTOR↓, FA could significantly reduce the expression level of mTOR mRNA and Ki-67 protein in A549 lung cancer graft tissue
Ki-67↓,
VEGF↓,
FGFR1↓, FA is a novel FGFR1 inhibitor
EMT↓, FA can inhibit EMT
CAIX↓, selectively inhibit CAIX
LC3II↑, Autophagy vacuoles and increased LC3-II and p62 autophagy proteins were observed after treatment with this compound
p62↑,
PKM2↓, FA could inhibit the expression of PKM2 and block aerobic glycolysis
Glycolysis↓,
*BioAv↓, FA has poor solubility in water and a poor ability to pass through biological barriers [118]; therefore, the extent to which it is metabolized in vivo after oral administration is largely unknown

2844- FIS,    Akt_signalling_pathways_in_human_osteosarcoma_U-2_OS_cells">Fisetin, a dietary flavonoid induces apoptosis via modulating the MAPK and PI3K/Akt signalling pathways in human osteosarcoma (U-2 OS) cells
- in-vitro, OS, U2OS
tumCV↓, Fisetin at 20-100 µM effectively reduced the viability of OS cells, and induced apoptosis by signifi-cantly inducing the expression of Caspases- 3,-8 and -9 and pro-apoptotic proteins (Bax and Bad) with subsequent down-regulation of Bcl-xL and Bcl-2
Apoptosis↑,
Casp3↑,
Casp8↑,
Casp9↑,
BAX↑,
BAD↑,
Bcl-2↓,
Bcl-xL↓,
PI3K↓, inhibited PI3K/Akt pathway and ERK1/2,
Akt↓,
ERK↓,
p‑JNK↑, it caused enhanced expressions of p-JNK, p-c-Jun and p-p38
p‑cJun↑,
p‑p38↑,
ROS↑, Fisetin-induced ROS generation and decrease in mitochondrial membrane potential
MMP↓, noticeable decline of mitochondrial transmembrane potential (ΔΨm) in a dose-dependent manner
mTORC1↓, fisetin at various concentrations (20-100 μM) caused a significant (p<0.05) decrease in the level of p-Akt and mTORC1 (an important effector protein of Akt), while up-regulated PTEN.
PTEN↑,
p‑GSK‐3β↓, Level of phosphorylated glycogensynthase kinase 3ǃ (GSK3ǃ), (a serine/threonine kinase) and cyclin D1 were potentially decreased by fisetin which is in line with raised non-phosphorylated levels of GSK3ǃ
GSK‐3β↑,
NF-kB↓, Down-regualtion of NF-κB along with significant up-regulations in IκB upon fisetin treatment correlates with the down-regulation of p-Akt levels.
IKKα↑,
Cyt‑c↑, activates the efflux of cytochrome C

2845- FIS,    Fisetin: A bioactive phytochemical with potential for cancer prevention and pharmacotherapy
- Review, Var, NA
PI3K↓, block multiple signaling pathways such as the phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) and p38
Akt↓,
mTOR↓,
p38↓,
*antiOx↑, antioxidant, anti-inflammatory, antiangiogenic, hypolipidemic, neuroprotective, and antitumor effect
*neuroP↑,
Casp3↑, U266 cancer cell line through activation of caspase-3, downregulation of Bcl-2 and Mcl-1L, upregulation of Bax, Bim and Bad
Bcl-2↓,
Mcl-1↓,
BAX↑,
BIM↑,
BAD↑,
AMPK↑, activation of 5'adenosine monophosphate-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC) and decreased phosphorylation of AKT and mTOR were also observed
ACC↑,
DNAdam↑, DNA fragmentation, mitochondrial membrane depolarizatio
MMP↓,
eff↑, fisetin in combination with a citrus flavanone, hesperetin mediated apoptosis by mitochondrial membrane depolarization and caspase-3 act
ROS↑, NCI-H460 human non-small cell lung cancer line, fisetin generated reactive oxygen species (ROS), endoplasmic reticulum (ER) stress
cl‑PARP↑, fisetin treatment resulted in PARP cleavage
Cyt‑c↑, release of cyt. c
Diablo↑, release of cyt. c and Smac/DIABLO from mitochondria,
P53↑, increased p53 protein levels
p65↓, reduced phospho-p65 and Myc oncogene expression
Myc↓,
HSP70/HSPA5↓, fisetin causes inhibition of proliferation by the modulation of heat shock protein 70 (HSP70), HSP27
HSP27↓,
COX2↓, anti-proliferative effects of fisetin through the activation of apoptosis via inhibition of cyclooxygenase-2 (COX-2) and Wnt/EGFR/NF-κB signaling pathways
Wnt↓,
EGFR↓,
NF-kB↓,
TumCCA↑, The anti-proliferative effects of fisetin and hesperetin were shown to be occurred through S, G2/M, and G0/G1 phase arrest in K562 cell progression
CDK2↓, decrease in levels of cyclin D1, cyclin A, Cdk-4 and Cdk-2
CDK4↓,
cycD1↓,
cycA1↓,
P21↑, increase in p21 CIP1/WAF1 levels in HT-29 human colon cancer cell
MMP2↓, fisetin has exhibited tumor inhibitory effects by blocking matrix metalloproteinase-2 (MMP- 2) and MMP-9 at mRNA and protein levels,
MMP9↓,
TumMeta↓, Antimetastasis
MMP1↓, fisetin also inhibited the MMP-14, MMP-1, MMP-3, MMP-7, and MMP-9
MMP3↓,
MMP7↓,
MET↓, promotion of mesenchymal to epithelial transition associated with a decrease in mesenchymal markers i.e. N-cadherin, vimentin, snail and fibronectin and an increase in epithelial markers i.e. E-cadherin
N-cadherin↓,
Vim↓,
Snail↓,
Fibronectin↓,
E-cadherin↑,
uPA↓, fisetin suppressed the expression and activity of urokinase plasminogen activator (uPA)
ChemoSen↑, combination treatment of fisetin and sorafenib reduced the migration and invasion of BRAF-mutated melanoma cells both in in-vitro
EMT↓, inhibited epithelial to mesenchymal transition (EMT) as observed by a decrease in N-cadherin, vimentin and fibronectin and an increase in E-cadherin
Twist↓, inhibited expression of Snail1, Twist1, Slug, ZEB1 and MMP-2 and MMP-9
Zeb1↓,
cFos↓, significant decrease in NF-κB, c-Fos, and c-Jun levels
cJun↓,
EGF↓, Fisetin inhibited epidermal growth factor (EGF)
angioG↓, Antiangiogenesis
VEGF↓, decreased expression of endothelial nitric oxide synthase (eNOS) and VEGF, EGFR, COX-2
eNOS↓,
*NRF2↑, significantly increased nuclear translocation of Nrf2 and antioxidant response element (ARE) luciferase activity, leading to upregulation of HO-1 expression
HO-1↑,
NRF2↓, Fisetin also triggered the suppression of Nrf2
GSTs↓, declined placental type glutathione S-transferase (GST-p) level in the liver of the fisetin- treated rats with hepatocellular carcinoma (HCC)
ATF4↓, Fisetin also rapidly increased the levels of both Nrf2 and ATF4

2847- FIS,    Fisetin-induced cell death, apoptosis, and antimigratory effects in cholangiocarcinoma cells
- in-vitro, CCA, NA
tumCV↓, Fisetin was significant in suppressing CCA cell viability and colony formation during the course of this experiment.
ChemoSen↑, fisetin significantly potentiated the cisplatin-induced CCA cells death
TumCMig↓, reduced the migration of cancer cells and demonstrated more pronounced effects on KKU-M452 cells
ROS↑, fisetin prompted cell death and apoptosis in CCA cells by stimulating the generation of ROS in KKU-100 cells at a dosage of 50 μM
TumCI↓, suppression of cell invasion and migration,prevention of angiogenesis
angioG↓,
CDK2↓, mechanisms including the suppression of cyclin-dependent kinases, the inhibition of PI3K/Akt/mTOR
PI3K↓,
Akt↓,
mTOR↓,
EGFR↓, suppression of the EGFR pathway, the stimulation of the caspase cascade
Casp↑,
mTORC1↓, suppressing the mTORC1 and 2 signaling
mTORC2↑,
cycD1↓, decreasing the level of the cyclin D1 and cyclin E mRNA
cycE↓,
MMP2↓, Matrix metalloproteinases (MMP) 2 and MMP 9 gene expression and enzyme activity are suppressed
MMP9↓,
ER Stress↑, Moreover, fisetin also caused endoplasmic reticulum (ER) stress-induced production of mitochondrial ROS generation and Ca2+, with the involvement of MAPK signaling
Ca+2↑,
eff↓, The ROS scavenger molecule N-acetyl cysteine decreased fisetin-activated apoptosis in multiple myeloma and oral cancer cells

2849- FIS,    Activation of reactive oxygen species/AMP activated protein kinase signaling mediates fisetin-induced apoptosis in multiple myeloma U266 cells
- in-vitro, Melanoma, U266
TumCD↑, Fisetin elicited the cytotoxicity in U266 cells, manifested as an increased fraction of the cells with sub-G1 content or stained positively with TUNEL labeling
TumCCA↑,
Casp3↑, Fisetin enhanced caspase-3 activation, downregulation of Bcl-2 and Mcl-1L, and upregulation of Bax, Bim and Bad
Bcl-2↓,
Mcl-1↓,
BAX↑,
BIM↑,
BAD↑,
AMPK↑, Fisetin activated AMPK as well as its substrate acetyl-CoA carboxylase (ACC), along with a decreased phosphorylation of AKT and mTOR.
ACC↑,
p‑Akt↓,
p‑mTOR↓,
ROS↑, Fisetin also stimulated generation of ROS in U266 cells
eff↓, Conversely, compound C or N-acetyl-l-cystein blocked fisetin-induced apoptosis

2857- FIS,    A review on the chemotherapeutic potential of fisetin: In vitro evidences
- Review, Var, NA
COX2↓, fisetin altered the expression of cyclooxygenase 2 (COX2) thereby suppressed the secretion of prostaglandin E2 ultimately resulting in the inhibition of epidermal growth factor receptor (EGFR) and NF-κB in human colon cancer cells HT29
PGE2↓,
EGFR↓,
Wnt↓, fisetin treatment inhibited the stimulation of Wnt signaling pathway via downregulating the expression of β-catenin and Tcell factor (TCF) 4
β-catenin/ZEB1↓,
TCF↑,
Apoptosis↑, fisetin triggers apoptosis in U266 cells through multiple pathways: enhancing the activation of caspase-3 and PARP cleavage, decreasing the expression of anti-apoptotic proteins (Bcl-2 and Mcl-1 L ),
Casp3↑,
cl‑PARP↑,
Bcl-2↓,
Mcl-1↓,
BAX↑, ncreasing the expression of pro-apoptotic proteins (Bax, Bim, and Bad)
BIM↑,
BAD↑,
Akt↓, decreasing the phosphorylation of AKT and mTOR and elevating the expression of acetyl CoA carboxylase (ACC
mTOR↓,
ACC↑,
Cyt‑c↑, release the cytochrome c and Smac/Diablo into the cytosol
Diablo↑,
cl‑Casp8↑, fisetin exhibited an increased level of cleaved caspase-8, Fas/Fas ligand, death receptor 5/TRAIL, and p53 levels in HCT-116 cells
Fas↑,
DR5↑,
TRAIL↑,
Securin↓, Securin gets degraded on exposure to fisetin in colon cancer cells.
CDC2↓, fisetin decreased the expression of cell division cycle proteins (CDC2 and CDC25C)
CDC25↓,
HSP70/HSPA5↓, Fisetin induced apoptosis as a result of the downregulation of HSP70 and BAG3 and the inhibition of Bcl-2, Bcl-x L and Mcl-1. T
CDK2↓, AGS 0, 25, 50, 75 μM – 24 and 48 h ↓CDK2, ↓CDK4, ↓cyclin D1, ↑casapse-3 cleavage
CDK4↓,
cycD1↓,
MMP2↓, A549 0, 1, 5, 10 μM- 24 and 48 hr: ↓MMP-2, ↓u-PA, ↓NF- κB, ↓c-Fos, ↓c-Jun
uPA↓,
NF-kB↓,
cFos↓,
cJun↓,
MEK↓, ↓ MEK1/2 and ERK1/2 phosphorylation, ↓N-cadherin, ↓vimentin, ↓snail, ↓fibronectin, ↑E-cadherin, ↑desmoglein
p‑ERK↓,
N-cadherin↓,
Vim↓,
Snail↓,
Fibronectin↓,
E-cadherin↓,
NF-kB↑, increased expression of NF-κB p65 leading to apoptosis was due to ROS generation on exposure to fisetin
ROS↑,
DNAdam↑, increased ROS triggered cell death through PARP cleavage, DNA damage and mitochondrial membrane depolarization.
MMP↓,
CHOP↑, Though fisetin upregulated CHOP expression and increased the production of ROS, these events fail to induce apoptosis in Caki cells.
eff↑, 50 μM fisetin + 1 mM melatonin Sk-mel-28 Enhances anti-tumour activity [54] 20 μM fisetin + 1 mM melatonin MeWo Enhances anti-tumour activity [54] 10 μM fisetin + 0.1 μM melatonin A549 Induces autophagic cell death
ChemoSen↑, 20 μM fisetin + 5 μM sorafenib A375, SK-MEL-28 Suppresses invasion and metastasis [44] 40 μM fisetin + 10 μM cisplatin A549, A549-CR Enhances apoptosis

2824- FIS,    Fisetin in Cancer: Attributes, Developmental Aspects, and Nanotherapeutics
- Review, Var, NA
*antiOx↑, Fisetin is one such naturally derived flavone that offers numerous pharmacological benefits, i.e., antioxidant, anti-inflammatory, antiangiogenic, and anticancer properties.
*Inflam↓,
angioG↓,
BioAv↓, poor bioavailability associated with its extreme hydrophobicity hampers its clinical utility
BioAv↑, The issues related to fisetin delivery can be addressed by adapting to the developmental aspects of nanomedicines, such as formulating it into lipid or polymer-based systems, including nanocochleates and liposomes
TumCP↓, fisetin also inhibits tumor proliferation by repressing tumor mass multiplication, invasion, migration, and autophagy.
TumCI↓,
TumCMig↓,
*neuroP↑, figure 2
EMT↓, It affects the cell cycle and thereby cell proliferation, microtubule assembly, cell migration and invasion, epithelial to mesenchymal transition (EMT), and cell death
ROS↑, cell death caused by fisetin is possibly due to the induction of apoptosis by fisetin or other signaling molecules and reactive oxygen species (ROS)
selectivity↑, Without influencing the growth of normal cells, fisetin has the capability to hinder the formation of colonies and inhibit the multiplication of cancer cells.
EGFR↓, fisetin restricts the multiplication of EGFR 2-overexpressing SK-BR-3 breast tumor masses
NF-kB↓, fisetin inhibits cancer metastasis by reducing the expressions of nuclear factor-kB (NF-kB)-modulated metastatic proteins in a variety of tumor cell types, including vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP)
VEGF↓,
MMP9↓,
MMP↓, rupturing the plasma membrane, depolarizing mitochondria, cleaving PARP, and activating caspase-7, -8, and -9.
cl‑PARP↑,
Casp7↑,
Casp8↑,
Casp9↑,
*ROS↓, Fisetin is a bioactive flavonol molecule that can easily penetrate the cell membrane due to its hydrophobic nature [51,52], reducing the generation of inflammatory cytokines and reactive oxygen species (ROS) in microglial cells, (normal cells)
uPA↓, Perhaps fisetin lowers angiogenesis, consequently suppressing tumor multiplication by urokinase plasminogen activator (uPA) inhibition
MMP1↓, powerful matrix metalloproteinase (MMP)-1 inhibitor
Wnt↓, Fisetin works on several cellular pathways, such as Wnt, Akt-PI3K, and ERK, as an inhibitor
Akt↓,
PI3K↓,
ERK↓,
Half-Life↝, Fisetin exhibits a very short terminal half-life of approximately 3 hrs in its free form. This half-life is found to be less than that of its metabolites

2825- FIS,    Exploring the molecular targets of dietary flavonoid fisetin in cancer
- Review, Var, NA
*Inflam↓, present in fruits and vegetables such as strawberries, apple, cucumber, persimmon, grape and onion, was shown to possess anti-microbial, anti-inflammatory, anti-oxidant
*antiOx↓, fisetin possesses stronger oxidant inhibitory activity than well-known potent antioxidants like morin and myricetin.
*ERK↑, inducing extracellular signal-regulated kinase1/2 (ERK)/c-myc phosphorylation, nuclear NF-E2-related factor-2 (Nrf2), glutamate cystine ligase and glutathione (GSH) levels
*p‑cMyc↑,
*NRF2↑,
*GSH↑,
*HO-1↑, activate Nrf2 mediated induction of hemeoxygenase-1 (HO-1) important for cell survival
mTOR↓, in our studies on fisetin in non-small lung cancer cells, we found that fisetin acts as a dual inhibitor PI3K/Akt and mTOR pathways
PI3K↓,
Akt↓,
TumCCA↑, fisetin treatment to LNCaP cells resulted in G1-phase arrest accompanied with decrease in cyclins D1, D2 and E and their activating partner CDKs 2, 4 and 6 with induction ofWAF1/p21 and KIP1/p27
cycD1↓,
cycE↓,
CDK2↓,
CDK4↓,
CDK6↓,
P21↑,
p27↑,
JNK↑, fisetin could inhibit the metastatic ability of PC-3 cells by suppressing of PI3 K/Akt and JNK signaling pathways with subsequent repression of matrix metalloproteinase-2 (MMP-2) and MMP-9
MMP2↓,
MMP9↓,
uPA↓, fisetin suppressed protein and mRNA levels of MMP-2 and urokinase-type plasminogen activator (uPA) in an ERK-dependent fashion.
NF-kB↓, decrease in the nuclear levels of NF-B, c-Fos, and c-Jun was noted in fisetin treated cells
cFos↓,
cJun↓,
E-cadherin↑, upregulation of E-cadherin and down-regulation of vimentin and N-cadherin.
Vim↓,
N-cadherin↓,
EMT↓, EMT inhibiting potential of fisetin has been reported in melanoma cells
MMP↓, The shift in mitochondrial membrane potential was accompanied by release of cytochrome c and Smac/DIABLO resulting in activation of the caspase cascade and cleavage of PARP
Cyt‑c↑,
Diablo↑,
Casp↑,
cl‑PARP↑,
P53↑, fisetin with induction of p53 protein
COX2↓, Fisetin down-regulated COX-2 and reduced the secretion of prostaglandin E2 without affecting COX-1 protein expression.
PGE2↓,
HSP70/HSPA5↓, It was shown that the induction of HSF1 target proteins, such as HSP70, HSP27 and BAG3 were inhibited in HCT-116 cells exposed to heat shock at 43 C for 1 h in the presence of fisetin
HSP27↓,
DNAdam↑, DNA fragmentation, an increase in the number of sub-G1 phase cells, mitochondrial membrane depolarization and activation of caspase-9 and caspase-3.
Casp3↑,
Casp9↑,
ROS↑, This was associated with production of intracellular ROS
AMPK↑, Fisetin induced AMPK signaling
NO↑, fisetin induced cytotoxicity and showed that fisetin induced apoptosis of leukemia cells through generation of NO and elevated Ca2+ activating the caspase
Ca+2↑,
mTORC1↓, Fisetin was shown to inhibit the mTORC1 pathway and its downstream components including p70S6 K, eIF4B and eEF2 K.
p70S6↓,
ROS↓, Others have also noted a similar decrease in ROS with fisetin treatment.
ER Stress↑, Induction of ER stress upon fisetin treatment, evident as early as 6 h, and associated with up-regulation of IRE1, XBP1s, ATF4 and GRP78, was followed by autophagy which was not sustained
IRE1↑,
ATF4↑,
GRP78/BiP↑,
eff↑, Combination of fisetin and the BRAF inhibitor sorafenib was found to be extremely effective in inhibiting the growth of BRAF-mutated human melanoma cells
eff↑, synergistic effect of fisetin and sorafenib was observed in human cervical cancer HeLa cells,
eff↑, Similarly, fisetin in combination with hesperetin induced apoptosis
RadioS↑, pretreatment with fisetin enhanced the radio-sensitivity of p53 mutant HT-29 cancer cells,
ChemoSen↑, potential of fisetin in enhancing cisplatin-induced cytotoxicity in various cancer models
Half-Life↝, intraperitoneal (ip) dose of 223 mg/kg body weight the maximum plasma concentration (2.53 ug/ml) of fisetin was reached at 15 min which started to decline with a first rapid alpha half-life of 0.09 h and a longer half-life of 3.12 h.

2826- FIS,    Fisetin induces apoptosis in breast cancer MDA-MB-453 cells through degradation of HER2/neu and via the PI3K/Akt pathway
- in-vitro, BC, MDA-MB-453
Apoptosis↑, fisetin induced apoptosis of these cells by various mechanisms, such as inactivation of the receptor, induction of proteasomal degradation, decreasing its half-life, decreasing enolase phosphorylation, and alteration of PI3K/AKT
p‑ENO1↓,
DNAdam↑, displaying DNA fragmentation pattern
PI3K↑, Fisetin increased PI3K activity at 10 uM, which gradually declines on treatment with higher concentrations (25 or 50 uM)
p‑Akt↑, Fisetin (10 uM) increased phosphorylation of Akt in MDA-MB-453 cells greater than control. Higher concentrations of fisetin (25 or 50 uM) gradually decreased the phosphorylation of Akt.
HER2/EBBR2↓, fisetin induced HER2 depletion

2828- FIS,    Fisetin, a Potent Anticancer Flavonol Exhibiting Cytotoxic Activity against Neoplastic Malignant Cells and Cancerous Conditions: A Scoping, Comprehensive Review
- Review, Var, NA
*neuroP↑, As a hydrophobic agent, FIS readily penetrates cell membranes and accumulates in cells to exert neuroprotective, neurotrophic and antioxidant effects
*antiOx↑,
*Inflam↓, FIS treatment may include alleviating inflammation, cell apoptosis and oxidative stress
RenoP↑, alleviates cell apoptosis and inflammation in acute kidney injury
COX2↓, FIS induces apoptosis in various tumor cells by, for example, inhibiting cyclooxygenase-2, inhibiting the Wnt/EGFR/NF-κB pathway, activating the caspase-3 cascade
Wnt↓,
EGFR↓,
NF-kB↓,
Casp3↑,
Ca+2↑, activating the caspase-3 and Ca2+ dependent endonuclease, and activating the caspase-8/caspase-3 dependent pathway via ERK1/2.
Casp8↑,
TumCCA↑, FIS controls the cell cycle and inhibits cyclin-dependent kinases (CDKs) in human cancer cell lines,
CDK1↓,
PI3K↓, by inhibition of PI3K/Akt/mTOR signaling [20], mitogen-activated protein kinases (MAPK) [21], and nuclear transcription factor (NF-κB)
Akt↓,
mTOR↓,
MAPK↓,
*P53↓, FIS inhibits aging by reducing p53, p21 and p16 expression in mouse and human tissues
*P21↓,
*p16↓,
mTORC1↓, FIS induces autophagic cell death by inhibiting both the mTORC1 and mTORC2 pathways
mTORC2↓,
P53↑, FIS significantly increases the expression of p53 and p21 proteins and lowers the levels of cyclin D1 [27,28], cyclin A, CDK4 and CDK2, thus contributing to cell-cycle arrest.
P21↑,
cycD1↓,
cycA1↓,
CDK2↓,
CDK4↓,
BAX↑, FIS also increases Bax [27,28] and Bak [27] protein expression, but reduces the levels of Bcl-2 [27,28], Bcl-xL [27] and PCNA [28], and then starts the mitochondrial apoptotic pathway.
Bcl-2↓,
PCNA↓,
HER2/EBBR2↓, FIS reduces HER2 tyrosine phosphorylation in a dose-dependent manner and aids in proteasomal degradation of HER2 rather than lysosomal degradation
Cyt‑c↑, FIS cells causes destabilization of the mitochondrial membrane and an increase in cytochrome c levels, which is consistent with the loss of mitochondrial membrane integrity.
MMP↓,
cl‑Casp9↑,
MMP2↓, FIS reduces the enzymatic activity of both MMP-2 and MMP-9.
MMP9↓,
cl‑PARP↑, cell membrane, mitochondrial depolarization, activation of caspase-7, -8 and -9, and cleavage of PARP
uPA↓, interestingly, the promoter activity of the uPA gene is suppressed by FIS
DR4↑, induces upregulation of DR4 and DR5 death receptor expression in a dose-dependent manner
DR5↑,
ROS↓, FIS induces an increase in intracellular Ca2+ but reduces the production of ROS in WEHI-3 cells (myelomonocytic leukemia)
AIF↑, It also increases the levels of caspase-3 and AIF mRNA, but also increases necrosis markers including RIP3 and PARP1
CDC25↓, FIS reduces the expression of cdc25a, but increases the expression of p-p53, Chk1, p21 and p27, which may lead to a G0/G1 arrest.
Dose↑, FIS in concentrations from 0 to 10 μM does not affect cell viability; however, its use at concentrations of 20–40 μM significantly reduces the viability of lung cancer cells
CHOP↑, CaKi : FIS induces upregulation of CHOP expression and ROS production
ROS↑, NCI-H460 :FIS increases the ER stress signaling FIS increases the level of mitochondrial ROS FIS induces mitochondrial Ca2+ overloading and ER stress FIS induced ER stress-mediated cell death via activation of the MAPK pathway
cMyc↓, FIS influences proliferation related genes such as cyclin D1, c-myc and cyclooxygenase (COX)-2 by downregulating them.
cardioP↑, cardioprotective activity

2829- FIS,    Fisetin: An anticancer perspective
- Review, Var, NA
TumCP↓, Being a potent anticancer agent, fisetin has been used to inhibit stages in the cancer cells (proliferation, invasion), prevent cell cycle progression, inhibit cell growth, induce apoptosis, cause polymerase (PARP) cleavage
TumCI↓,
TumCCA↑,
TumCG↓,
Apoptosis↑,
cl‑PARP↑,
PKCδ↓, fisetin also suppresses the activation of the PKCα/ROS/ERK1/2 and p38 MAPK signaling pathways, reduces the NF‐κB activation, and down‐regulates the level of the oncoprotein securin
ROS↓,
ERK↓,
NF-kB↓,
survivin↓,
ROS↑, In human multiple myeloma U266 cells, fisetin stimulated the production of free radical species that led to apoptosis
PI3K↓, Multiple studies also authenticated the anticancer role of fisetin through various signaling pathways such as blocking of mammalian target of rapamycin (PI3K/Akt/mTOR)
Akt↓,
mTOR↓,
MAPK↓, phosphatidylinositol‐3‐kinase/protein kinase B, mitogen‐activated protein kinases (MAPK)‐dependent nuclear factor kappa‐light‐chain‐enhancer of activated B cells (NF‐κB), and p38, respectively,
p38↓,
HER2/EBBR2↓, (HER2)/neu‐overexpressing breast cancer cell lines. Fisetin caused induction through inactivating the receptor, inducing the degradation of the proteasomes, reducing its half‐life
EMT↓, In addition, mutation of epithelial‐to‐mesenchymal transition (EMT)
PTEN↑, up‐regulation of expression of PTEN mRNA and protein were reported after fisetin treatment
HO-1↑, In breast cancer cells (4T1 and JC cells), fisetin increased HO‐1 mRNA and protein expressions, elevated Nrf2 expression
NRF2↑,
MMP2↓, fisetin reduced MMP‐2 and MMP‐9 enzyme activity and gene expression for both mRNA levels and protein
MMP9↓,
MMP↓, fisetin treatment further led to permeabilization of mitochondrial membrane, activation of caspase‐8 and caspase‐9, as well as the cleavage of poly(ADP‐ribose) polymerase 1
Casp8↑,
Casp9↑,
TRAILR↑, enhanced the levels of TRAIL‐R1
Cyt‑c↑, mitochondrial releasing of cytochrome c into cytosol, up‐regulation and down‐regulation of X‐linked inhibitor of apoptosis protein
XIAP↓,
P53↑, fisetin also enhanced the protein p53 levels
CDK2↓, lowered cell number, the activities of CDK‐2,4)
CDK4↓,
CDC25↓, it also decreased cell division cycle protein levels (CDC)2 and CDC25C, and CDC2 activity (Lu et al., 2005)
CDC2↓,
VEGF↓, down‐regulating the expressions of p‐ERK1/2, vascular endothelial growth factor receptor 1(VEGFR1), p38, and pJNK, respectively
DNAdam↑, Fisetin (80 microM) showed dose‐dependently caused DNA fragmentation, induced cellular swelling and apoptotic death, and showed characteristics of apoptosis.
TET1↓, lowered the TET1 expression levels
CHOP↑, caused up‐regulation of (C/EBP) homologous protein (CHOP) expression and reactive oxygen species production,
CD44↓, down‐regulation of CD44 and CD133 markers
CD133↓,
uPA↓, down‐regulation of levels of matrix metalloproteinase‐2 (MMP‐2), urokinase‐type plasminogen activator (uPA),

2830- FIS,    Biological effects and mechanisms of fisetin in cancer: a promising anti-cancer agent
- Review, Var, NA
TumCG↓, suppressing cell growth, triggering programmed cell death, reducing the formation of new blood vessels, protecting against oxidative stress, and inhibiting cell migration.
angioG↓,
*ROS↓,
TumCMig↓,
VEGF↓, including vascular endothelial growth factor (VEGF), mitogen-activated protein kinase (MAPK), nuclear factor-kappa B (NF-κB), PI3K/Akt/mTOR, and Nrf2/HO-1.
MAPK↑, including the activation of MAPK. activation of MAPK is crucial for mediating cancer cell proliferation, apoptosis, and invasion
NF-kB↓, ability of fisetin to suppress NF-κB activity has been demonstrated in various diseases
PI3K↓, fisetin has been shown to inhibit the metastasis of PC3 prostate cancer cells by reducing the activity of the PI3K/AKT
Akt↓,
mTOR↓, Fisetin has been shown to be effective against PI3K expression, AKT phosphorylation, and mTOR activation in various cancer cells,
NRF2↑, effects of fisetin on the activation of Nrf2 and upregulation of HO-1 have been demonstrated in various diseases
HO-1↑,
ROS↓, Liver cancer Resist proliferation, migration and invasion, induce apoptosis, attenuate ROS and inflammation
Inflam↓,
ER Stress↑, Oral cancer Induce apoptosis and autophagy, promote ER stress and ROS, suppress proliferation
ROS↑, Multiple studies have demonstrated that fisetin has the ability to induce apoptosis in cancer cells, and various mechanisms are involved, including the activation of MAPK, NF-κB, p53, and the generation of reactive oxygen species (ROS)
TumCP↓,
ChemoSen↑, Breast cancer Promote apoptosis and invasion and metastasis, enhance chemotherapeutic effects
PTEN↑,
P53↑, activation of MAPK, NF-κB, p53,
Casp3↑,
Casp8↑,
Casp9↑,
COX2↓, fisetin inhibits COX2 expression
Wnt↓, regulating a number of important angiogenesis-related factors in cancer cells, such as VEGF, MMP2/9, eNOS, wingless and Wnt-signaling.
EGFR↓,
Mcl-1↓,
survivin↓, fisetin interferes with NF-κB signaling, resulting in the reduction of survivin, TRAF1, Bcl-xl, Bcl-2, and IAP1/2 levels, ultimately inhibiting apoptosis
IAP1↓,
IAP2↓,
PGE2↓, fisetin inhibits COX2 expression, leading to the down-regulation of PGE2 secretion and inactivation of β-catenin, thereby inducing apoptosis
β-catenin/ZEB1↓,
DR5↑, fisetin markedly induces apoptosis in renal carcinoma through increased expression of DR5, which is regulated by p53.
MMP2↓, fisetin has been shown to inhibit the metastasis of PC3 prostate cancer cells by reducing the activity of the PI3K/AKT and JNK pathways, resulting in the suppression of MMP-2 and MMP-9 expression
MMP9↓,
FAK↓, fisetin can inhibit cell migration and reduce focal adhesion kinase (FAK) phosphorylation levels
uPA↓, fisetin significantly suppresses the invasion of U-2 cells by decreasing the expression of NF-κB, urokinase-type plasminogen activator (uPA), FAK, and MMP-2/9
EMT↓, Fisetin has been shown to have the ability to reverse EMT, thereby inhibiting the invasion and migration of cancer cells
ERK↓, fisetin has the ability to suppress ERK1/2 activation and activate JNK/p38 pathways
JNK↑,
p38↑,
PKCδ↓, fisetin reduces the expression of MMP-9 by inhibiting PKCα/ROS/ERK1/2 and p38 MAPK activation
BioAv↓, low water solubility of fisetin poses a significant challenge for its administration, which can limit its biological effects
BioAv↑, Compared to free fisetin, fisetin nanoemulsion has demonstrated a 3.9-fold increase in the generation of reactive oxygen species (ROS) and induction of apoptosis, highlighting its enhanced efficacy
BioAv↑, Liposomal encapsulation has shown potential in enhancing the anticancer therapeutic effects of fisetin

2832- FIS,    Fisetin's Promising Antitumor Effects: Uncovering Mechanisms and Targeting for Future Therapies
- Review, Var, NA
MMP↓, fraction of cells with reduced mitochondrial membrane potential also increased, indicating that fisetin-induced apoptosis also destroys mitochondria.
mtDam↑,
Cyt‑c↑, Cytochrome c and Smac/DIABLO levels are also released when the mitochondrial membrane potential changes, and this results in the activation of the caspase cascade and the cleavage of poly [ADP-ribose] polymerase (PARP)
Diablo↑,
Casp↑,
cl‑PARP↑,
Bak↑, Fisetin induced apoptosis in HCT-116 human colon cancer cells by upregulating proapoptotic proteins Bak and BIM and downregulating antiapoptotic proteins B cell lymphoma (BCL)-XL and -2.
BIM↑,
Bcl-xL↓,
Bcl-2↓,
P53↑, fisetin through the activation of p53
ROS↑, over generation of ROS, which is also directly initiated by fisetin, the stimulation of AMPK
AMPK↑,
Casp9↑, activating caspase-9 collectively, then activating caspase-3, leading to apopotosis
Casp3↑,
BID↑, Bid, AIF and the increase of the ratio of Bax to Bcl-2, causing the activation of caspase 3–9
AIF↑,
Akt↓, The inhibition of the Akt/mTOR/MAPK/
mTOR↓,
MAPK↓,
Wnt↓, Fisetin has been shown to degrade the Wnt/β/β-catenin signal
β-catenin/ZEB1↓,
TumCCA↑, fisetin triggered G1 phase arrest in LNCaP cells by activating WAF1/p21 and kip1/p27, followed by a reduction in cyclin D1, D2, and E as well as CDKs 2, 4, and 6
P21↑,
p27↑,
cycD1↓,
cycE↓,
CDK2↓,
CDK4↓,
CDK6↓,
TumMeta↓, reduces PC-3 cells' capacity for metastasis
uPA↓, fisetin decreased MMP-2 protein, messenger RNA (mRNA), and uPA levels through an ERK-dependent route
E-cadherin↑, Fisetin can upregulate the epithelial marker E-cadherin, downregulate the mesenchymal marker vimentin, and drastically lower the EMT regulator twist protein level at noncytotoxic dosages, studies have revealed.
Vim↓,
EMT↓,
Twist↓,
DNAdam↑, Fisetin induces apoptosis in the human nonsmall lung cancer cell line NCI-H460, which causes DNA breakage, the growth of sub-G1 cells, depolarization of the mitochondrial membrane, and activation of caspases 9, 3, which are involved in prod of iROS
ROS↓, fisetin therapy has been linked to a reduction in ROS, according to other research.
COX2↓, Fisetin lowered the expression of COX-1 protein, downregulated COX-2, and decreased PGE2 production
PGE2↓,
HSF1↓, Fisetin is a strong HSF1 inhibitor that blocks HSF1 from binding to the hsp70 gene promoter.
cFos↓, NF-κB, c-Fos, c-Jun, and AP-1 nuclear levels were also lowered by fisetin treatment
cJun↓,
AP-1↓,
Mcl-1↓, inhibition of Bcl-2 and Mcl-1 all contribute to an increase in apoptosis
NF-kB↓, Fisetin's ability to prevent NF-κB activation in LNCaP cells
IRE1↑, fisetin (20–80 µM) was accompanied by brief autophagy and the production of ER stress, which was shown by elevated levels of IRE1 α, XBP1s, ATF4, and GRP78 in A375 and 451Lu cells
ER Stress↑,
ATF4↑,
GRP78/BiP↑,
MMP2↓, lowering MMP-2 and MMP-9 proteins in melanoma cell xenografts
MMP9↓,
TCF-4↓, fisetin therapy reduced levels of β-catenin, TCF-4, cyclin D1, and MMP-7,
MMP7↓,
RadioS↑, fisetin treatment could radiosensitize human colorectal cancer cells that are resistant to radiotherapy.
TOP1↓, fisetin blocks DNA topoisomerases I and II in leukemia cells.
TOP2↓,

2839- FIS,    Dietary flavonoid fisetin for cancer prevention and treatment
- Review, Var, NA
DNAdam↑, Fisetin induced DNA fragmentation, ROS generation, and apoptosis in NCI-H460 cells via a reduction in Bcl-2 and increase in Bax expression
ROS↑,
Apoptosis↑,
Bcl-2↓,
BAX↑,
cl‑Casp9↑, Fisetin treatment increased cleavage of caspase-9 and caspase-3 thereby increasing caspase-3 activation
cl‑Casp3↑,
Cyt‑c↑, leading to cytochrome-c release
lipid-P↓, Fisetin (25 mg/kg body weight) decreased histological lesions and levels of lipid peroxidation and modulated the enzymatic and nonenzymatic anti-oxidants in B(a)P-treated Swiss Albino mice
TumCG↓, We observed that fisetin treatment (5–20 μM) inhibits cell growth and colony formation in A549 NSC lung cancer cells.
TumCA↓, Another study showed that fisetin inhibits adhesion, migration, and invasion in A549 lung cancer cells by downregulating uPA, ERK1/2, and MMP-2
TumCMig↓,
TumCI↓,
uPA↓,
ERK↓,
MMP9↓,
NF-kB↓, Treatment with fisetin also decreased the nuclear levels of NF-kB, c-Fos, c-Jun, and AP-1 and inhibited NF-kB binding.
cFos↓,
cJun↓,
AP-1↓,
TumCCA↑, Our laboratory has previously shown that treatment of LNCaP cells with fisetin caused inhibition of PCa by G1-phase cell cycle arrest
AR↓, inhibited androgen signaling and tumor growth in athymic nude mice
mTORC1↓, induced autophagic cell death in PCa cells through suppression of mTORC1 and mTORC2
mTORC2↓,
TSC2↑, activated the mTOR repressor TSC2, commonly associated with inhibition of Akt and activation of AMPK
EGF↓, Fisetin also inhibits EGF and TGF-β induced YB-1 phosphorylation and EMT in PCa cells
TGF-β↓,
EMT↓, Fisetin also inhibits EGF and TGF-β induced YB-1 phosphorylation and EMT in PCa cells
P-gp↓, decrease the P-gp protein in multidrug resistant NCI/ADR-RES cells.
PI3K↓, Fisetin also inhibited the PI3K/AKT/NFkB signaling
Akt↓,
mTOR↓, Fisetin inhibited melanoma progression in a 3D melanoma skin model with downregulation of mTOR, Akt, and upregulation of TSC
eff↑, combinational treatment study of melatonin and fisetin demonstrated enhanced antitumor activity of fisetin
ROS↓, Fisetin inhibited ROS and augmented NO generation in A375 melanoma cells
ER Stress↑, induction of ER stress evidenced by increased IRE1α, XBP1s, ATF4, and GRP78 levels in A375 and 451Lu cells.
IRE1↑,
ATF4↑,
GRP78/BiP↑,
ChemoSen↑, combination of fisetin with sorafenib effectively inhibited EMT and augmented the anti-metastatic potential of sorafenib by reducing MMP-2 and MMP-9 proteins in melanoma cell xenografts
CDK2↓, Fisetin (0–60 μM) was shown to inhibit activity of CDKs dose-dependently leading to cell cycle arrest in HT-29 human colon cancer cells
CDK4↓, Fisetin treatment decreased activities of CDK2 and CDK4 via decreased levels of cyclin-E, cyclin-D1 and increase in p21 (CIP1/WAF1) levels.
cycE↓,
cycD1↓,
P21↑,
COX2↓, fisetin (30–120 μM) induces apoptosis in colon cancer cells by inhibiting COX-2 and Wnt/EGFR/NF-kB -signaling pathways
Wnt↓,
EGFR↓,
β-catenin/ZEB1↓, Fisetin treatment inhibited Wnt/EGFR/NF-kB signaling via downregulation of β-catenin, TCF-4, cyclin D1, and MMP-7
TCF-4↓,
MMP7↓,
RadioS↑, fisetin treatment was found to radiosensitize human colorectal cancer cells which are resistant to radiotherapy
eff↑, Combined treatment of fisetin with NAC increased cleaved caspase-3, PARP, reduced mitochondrial membrane potential with induction of caspase-9 in COLO25 cells

2843- FIS,    Fisetin and Quercetin: Promising Flavonoids with Chemopreventive Potential
- Review, Var, NA
NRF2↑, fisetin increased the protein level and accumulation Nrf2 and down regulated the protein levels of Keap1
Keap1↓,
ChemoSen↑, In vitro studies showed that fisetin and quercetin could also act against chemotherapeutic resistance in several cancers
BioAv↓, Fisetin has low aqueous solubility and bioavailability
Cyt‑c↑, release of cytochrome c from mitochondria, caspase-3 and caspase-9 mRNA and protein expression, and B-cell lymphoma 2 (Bcl-2) and Bcl-2 associated X (Bax) levels, were found to be regulated in the fisetin-treated cancer cell line
Casp3↑,
Casp9↑,
BAX↑,
tumCV↓, fisetin at 5–80 µM significantly reduced the viability of A431 human epidermoid carcinoma cells by the release of cytochrome c,
Mcl-1↓, reducing the anti-apoptotic protein expression of Bcl-2, Bcl-xL, and Mcl-1 along with elevation of pro-apoptotic protein expression (Bax, Bak, and Bad) and caspase cleavage and poly-ADP-ribose polymerase (PARP) protein
cl‑PARP↑,
IGF-1↓, fisetin promoted caspase-8 and cytochrome c expression, possibly by impeding the aberrant activation of insulin growth factor receptor 1 and Akt
Akt↓,
CDK6↓, fisetin binds with CDK6, which in turn blocks its activity with an inhibitory concentration (IC50) at a concentration of 0.85 μM
TumCCA↑, fisetin is identified as a regulator of cell cycle checkpoints, leading to cell arrest through CDK inhibition in HL60 cells and astrocyte cells over the G0/G1, S, and G2/M phases
P53?, exhibiting elevated levels of p53
cycD1↓, 10–60 μM fisetin concentration, prostate cancer cells PC3, LNCaP, and CWR22Ry1 had decreased cellular viability and decreased levels of D1, D2, and E cyclins and their activating partners CDK2, and CDKs 4/ 6,
cycE↓,
CDK2↓, decreased levels of D1, D2, and E cyclins and their activating partners CDK2, and CDKs 4/ 6,
CDK4↓,
CDK6↓,
MMP2↓, fisetin displayed tumor inhibitory effects by blocking MMP-2 and MMP-9 at mRNA and protein levels in prostate PC-3 cells
MMP9↓,
MMP1↓, Similarly, fisetin can also inhibit MMP-1, MMP-9, MMP-7, MMP-3, and MMP-14 gene expression linked with ECM remodeling in human umbilical vascular endothelial cells (HUVECs) and HT-1080 fibrosarcoma cells [9
MMP7↓,
MMP3↓,
VEGF↓, fisetin in a concentration-dependent manner (10–50 μM concentration) significantly inhibited regular serum, growth-enhancing supplement, and vascular endothelial growth factor (VEGF)
PI3K↓, fisetin inhibited PI3K expression and phosphorylation of Akt
mTOR↓, fisetin treatment activated the apoptotic process through inhibiting both PI3K and mammalian target of rapamycin (mTOR) signaling pathways
COX2↓, fisetin resulted in activation of apoptosis and inhibition of COX-2 and the Wnt/EGFR/NF-kB pathway
Wnt↓,
EGFR↓,
NF-kB↓,
ERK↓, Fisetin is one of the flavonoids that has been found to suppress ERK1/2 signaling in human gastric (SGC7901), hepatic (HepG2), colorectal (Caco-2)
ROS↑, fisetin induced ROS generation and suppressed ERK through its phosphorylation
angioG↓, fisetin-induced anti-angiogenesis led to reduced VEGF and epidermal growth factor receptor (EGFR) expression
TNF-α↓, Fisetin suppressed IL-1β-mediated expression of inducible nitric oxide synthase, nitric oxide, interleukin-6, tumor necrotic factor-α, prostaglandin E2, cyclooxygenase-2 (iNOS, NO, IL-6, TNF-α, PGE2, and COX-2),
PGE2↓,
iNOS↓,
NO↓,
IL6↓,
HSP70/HSPA5↝, fisetin-mediated inhibition of cellular proliferation by HSP70 and HSP27 regulation
HSP27↝,

949- FIS,  ATAGJ,  Cisplatin,    Ai-Tong-An-Gao-Ji and Fisetin Inhibit Tumor Cell Growth in Rat CIBP Models by Inhibiting the AKT/HIF-1α Signaling Pathway
- in-vivo, BC, Walker256 - in-vitro, BC, Walker256
Akt↓,
Hif1a↓,
p‑Akt↓,

2313- Flav,    Flavonoids against the Warburg phenotype—concepts of predictive, preventive and personalised medicine to cut the Gordian knot of cancer cell metabolism
- Review, Var, NA
Warburg↓, Flavonoids modulate key pathways involved in the Warburg phenotype including but not limited to PKM2, HK2, GLUT1 and HIF-1.
antiOx↑, Flavonoids represent a diverse group of phytochemicals (Fig. 3) that exhibit antioxidative, antiangiogenic and overall antineoplastic efficacy
angioG↓,
Glycolysis↓, Apigenin (AP) blocked glycolysis through regulation of PKM2 activity and expression in a colon cancer cell line (HCT116)
PKM2↓,
PKM2:PKM1↓, AP is regarded as a potential allosteric inhibitor of PKM2. AP could maintain a low PKM2/PKM1 ratio as a consequence of inhibition of the β-catenin/c-Myc/PTBP1 pathway
β-catenin/ZEB1↓,
cMyc↓,
HK2↓, QUE reduced the level of HK2 and suppressed Akt/mTOR signalling in hepatocellular cancer lines (SMMG-7721, BEL-7402) in vitro.
Akt↓,
mTOR↓,
GLUT1↓, EGCG demonstrated anticancer efficacy against 4T1 via reduction of GLUT1 expression
Hif1a↓, BA suppressed glycolysis via PTEN/Akt/HIF-1α, it is a possible therapeutic sensitiser against gastric cancer

997- GA,    The Inhibitory Mechanisms of Tumor PD-L1 Expression by Natural Bioactive Gallic Acid in Non-Small-Cell Lung Cancer (NSCLC) Cells
- in-vitro, Lung, A549 - in-vitro, Lung, H292 - in-vitro, Nor, HUVECs
PD-L1↓, GA strongly decreases the expression levels of PD-L1 protein in A549 and H292 NSCLC cells
p‑EGFR↓,
p‑PI3K↓,
p‑Akt↓,
P53↑, GA upregulates the expression levels of p53 protein in a concentration-dependent manner
miR-34a↑, p53 indirectly regulates the expression levels of PD-L1 through inducing miR-34a in cancer cells
*toxicity↓, 400 μM GA inducing around 8% cell death which indicated that this concentration does not make much toxicity in normal cells

1091- GA,    Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cells
- in-vitro, Cerv, HeLa - in-vitro, Cerv, HTB-35
tumCV↓, decreased cell viability in a dose-dependent manner.
TumCP↓,
ADAM17↓,
EGFR↓,
p‑Akt↓,
p‑ERK↓,

947- GA,    Gallic acid, a phenolic compound, exerts anti-angiogenic effects via the PTEN/AKT/HIF-1α/VEGF signaling pathway in ovarian cancer cells
- in-vitro, Ovarian, OVCAR-3 - in-vitro, Melanoma, A2780S - in-vitro, Nor, IOSE364 - Human, NA, NA
TumCG↓,
VEGF↓,
angioG↓,
p‑Akt↓,
Hif1a↓,
PTEN↑,
BioAv↑, ~8–10 μM of GA was detected in the serum of healthy volunteers, after oral intake of a combination of a dietary herbal supplement and 800 mg GA
*toxicity↓, GA did not have a significant inhibitory effect on the normal cell line

1969- GamB,    Gambogic acid promotes apoptosis and resistance to metastatic potential in MDA-MB-231 human breast carcinoma cells
- in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
AntiTum↑, (GA) is considered a potent anti-tumor agent for its multiple effects on cancer cells in vitro and in vivo
TumCI↓, Low concentrations of GA (0.3-1.2 µmol/L) can suppress invasion of human breast carcinoma cells without affecting cell viability
Apoptosis↑, GA (3 and 6 µmol/L) induced apoptosis in MDA-MB-231 cells and the accumulation of reactive oxygen species (ROS).
ROS↑,
Cyt‑c↑, release of cytochrome c (Cyt c) from mitochondria
Akt↓, GA also inhibited cell survival via blocking Akt/mTOR signaling
mTOR↓,
TumCG↓, In vivo, GA significantly inhibited the xenograft tumor growth and lung metastases in athymic BALB/c nude mice bearing MDA-MB-231 cells.
TumMeta↓,

828- GAR,  Cisplatin,    Garcinol Alone and in Combination With Cisplatin Affect Cellular Behavior and PI3K/AKT Protein Phosphorylation in Human Ovarian Cancer Cells
- in-vitro, Ovarian, OVCAR-3
tumCV↓,
cl‑PARP↑,
cl‑Casp3↑,
BAX↑,
p‑PI3K↓,
p‑Akt↓,
NF-kB↓,

795- GAR,    Garcinol—A Natural Histone Acetyltransferase Inhibitor and New Anti-Cancer Epigenetic Drug
- Review, NA, NA
HATs↓, HAT inhibitor
BAX↑,
PARP↑, PARP (proapoptotic) expression
Bcl-2↓,
Casp3↑,
Casp9↑,
DR5↑,
cFLIP↓,
MMP2↓,
MMP9↓,
STAT3↓,
p‑Akt↓,

802- GAR,    Garcinol acts as an antineoplastic agent in human gastric cancer by inhibiting the PI3K/AKT signaling pathway
- in-vitro, GC, HGC27
TumCP↓,
TumCI↓,
Apoptosis↑,
PI3K/Akt↓, garcinol may inhibit gastric tumorigenesis by suppressing the PI3K/AKT signaling pathway
Akt↓, inhibited the levels of AKTp-Thr308 and AKTp-ser473
p‑mTOR↓, while the expression of total mTOR remained stable
cycD1↓,
MMP2↓,
MMP9↓,
BAX↑,
Bcl-2↓,

1118- Ge,    Grape Seed Proanthocyanidins Inhibit Migration and Invasion of Bladder Cancer Cells by Reversing EMT through Suppression of TGF- β Signaling Pathway
- in-vitro, Bladder, T24 - in-vitro, Bladder, 5637
TumCMig↓,
TumCI↓,
MMP2↓,
MMP9↓,
EMT↓,
N-cadherin↓,
Vim↓,
Slug↓,
E-cadherin↑,
ZO-1↑,
p‑SMAD2↓,
p‑SMAD3↓,
p‑Akt↓,
p‑ERK↓,
p‑p38↓,

2998- GEN,    Cellular and Molecular Mechanisms Modulated by Genistein in Cancer
- Review, Var, NA
Hif1a↓, genistein can bind to hypoxia-inducible factor-1α (HIF-1α)
VEGF↓, the compound repressed the expression/secretion of different angiogenic factors (including VEGF and PDGF) and matrix-degrading enzymes (such as urokinase-type plasminogen activator (uPA), MMP-2, and MMP-9) in human bladder cancer cells,
PDGF↓,
uPA↓,
MMP2↓,
MMP9↓,
chemoP↑, genistein’s inhibitory effect on tumor angiogenesis as part of its chemopreventive efficacy
TumCI↓, Genistein Inhibits Cancer Invasion and Metastases
TumMeta↓,
NF-kB↓, suppression of nuclear factor-κB (NF-κB) and activating protein-1 (AP-1) transcription factors and inhibition of MAPK, IκB, and PI3K/Akt signaling pathways in an HCC model
AP-1↓,
IKKα↓,
PI3K↓,
Akt↓,
EMT↓, in human HCC, genistein dose-dependently reversed EMT
CSCs↓, Genistein Eradicates Cancer Stem Cells

845- Gra,    A Review on Annona muricata and Its Anticancer Activity
- Review, NA, NA
GlucoseCon↓, decreased glucose absorption
ATP↓,
HIF-1↓,
GLUT1↓,
GLUT4↓,
HK2↓,
LDHA↓,
ERK↓,
Akt↓,
Apoptosis↑,
NF-kB↓,
ROS↑, increases ROS production
Bax:Bcl2↑,
MMP↓,
Casp3↑,
Casp9↑,
p‑JNK↓,

2521- H2,    Oxyhydrogen Gas: A Promising Therapeutic Approach for Lung, Breast and Colorectal Cancer
- Review, CRC, NA - Review, Lung, NA - Review, BC, NA
Inflam↑, Oxyhydrogen gas, a mixture of 66% molecular hydrogen (H2) and 33% molecular oxygen (O2) has shown exceptional promise as a novel therapeutic agent due to its ability to modulate oxidative stress, inflammation, and apoptosis.
ROS↓, neutralises reactive oxygen and nitrogen species
ChemoSen↑, enhancing existing treatments and reducing harmful oxidative states in cancer cells. boosting the effectiveness of conventional therapies
p‑PI3K↓, inhibiting the PI3K/Akt phosphorylation cascade.
p‑Akt↓,
QoL↑, Similar results have been observed in breast cancer, where patients reported improved quality of life.
GutMicro↑, improves intestinal microflora dysbiosis.
chemoP↑, reduced oxidative stress and mitigated tissue damage, suggesting its potential as a cytoprotective agent in cancer patients undergoing radiation therapy or chemotherapy
radioP↑,
*NRF2↑, documented role in activating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway.
*Catalase↑, consequently, hydrogen can enhance the expression of endogenous antioxidant enzymes, including catalase (CAT), glutathione peroxidase (GPx), haem oxygenase (e.g., HO-1), and superoxide dismutase (SOD) [45]
*GPx↑,
*HO-1↑,
*SOD↑,
*TNF-α↓, reducing the expression of proinflammatory mediators such as chemokines (e.g., CXCL15), cytokines (e.g., TNF-α), interleukins (e.g., IL-4, IL-6)
*IL4↓,
*IL6↓,
ChemoSen↑, further research demonstrates that oxyhydrogen gas enhanced the sensitivity of lung cancer cells to chemotherapy drugs, suggesting its potential as an adjuvant therapy
Appetite↑, inhaled oxyhydrogen gas over a minimum of 3 months. The results indicated substantial improvements in appetite, cognition, fatigue, pain, and sleeplessness
cognitive↑,
Pain↓,
Sleep↑,
other?, It is recommended that hydrogen should not exceed 4.6% in air or 4.1% by volume in pure oxygen gas (explosion risk)

1643- HCAs,    Mechanisms involved in the anticancer effects of sinapic acid
- Review, Var, NA
*BioAv↓, Studies have shown that SA is poorly soluble in water, but soluble in carbitol and freely soluble in DMSO
*toxicity↓, SA is found to be generally non-toxic
Dose∅, oral administration of SA up to 80 mg/kg body weight reduced the number of aberrant crypt foci up to 34.55%
ROS⇅, Other than its potent antioxidant function, SA also possesses pro-oxidant effect that has been identified to affect the redox state of tumor cells
ROS↑, SA at higher concentrations acts as a potent pro-oxidant agent, resulting in increased generation of free radicals. (50 and 75 μM) increased ROS accumulation
Igs↑, SA administration markedly improved the levels of IgG and IgA in
TumCCA↑, SA induced G2/M phase cell cycle arrest
TumAuto↑, autophagy inducing effect of SA has been reported by Zhao et al. (2021) in HepG2 and SMMC-7721 cells
eff↑, Beclin, Atg 5 increased and expression of p62 decreased in SA along with cisplatin treated HepG2 and SMMC-7721 cells
angioG↓, SA has been demonstrated to inhibit angiogenesis, cell invasion and metastasis in cancer cells
TumCI↓,
TumMeta↓,
EMT↓, SA (10 mM) treated cells showed decreased protein expression of EMT related proteins such as vimentin, MMP-9, MMP-2, and Snail and increased expression of E-cadherin in PANC-1 and SW1990 cell lines.
Vim↓,
MMP9↓,
MMP2↓,
Snail↓,
E-cadherin↑,
p‑Akt↓, SA treatment downregulated phosphorylated AKT and Gsk-3β in PANC-1 and SW1990 prostate cancer cell lines.
GSK‐3β↓,
TumCP↓, SA can inhibit cell proliferation in prostate cancer
ChemoSen↑, SA acts in collaboration with other chemotherapeutic agents to improve treatment sensitivity

1153- HNK,    Honokiol Eliminates Glioma/Glioblastoma Stem Cell-Like Cells via JAK-STAT3 Signaling and Inhibits Tumor Progression by Targeting Epidermal Growth Factor Receptor
- in-vitro, GBM, U251 - in-vitro, GBM, U87MG - in-vivo, NA, NA
tumCV↓,
Apoptosis↑,
TumCMig↓,
TumCI↓,
Bcl-2↓,
EGFR↓,
CD133↓,
Nestin↓,
Akt↓,
ERK↓,
Casp3↑,
p‑STAT3↓,
TumCG↓, in vivo

2894- HNK,    Pharmacological features, health benefits and clinical implications of honokiol
- Review, Var, NA - Review, AD, NA
*BioAv↓, HNK showed poor aqueous solubility due to phenolic hydroxyl groups forming intramolecular hydrogen bonds and poor solubility in water (
*neuroP↑, HNK has the accessibility to reach the neuronal tissue by crossing the BBB and showing neuroprotective effects
*BBB↑,
*ROS↓, fig 2
*Keap1↑,
*NRF2↑,
*Casp3↓,
*SIRT3↑,
*Rho↓,
*ERK↓,
*NF-kB↓,
angioG↓,
RAS↓,
PI3K↓,
Akt↓,
mTOR↓,
*memory↑, oral administration of HNK (1 mg/kg) in senescence-accelerated mice prevents age-related memory and learning deficits
*Aβ↓, in Alzheimer’s disease, HNK significantly reduces neurotoxicity of aggregated Ab
*PPARγ↑, Furthermore, the expression of PPARc and PGC1a was increased by HNK, suggesting its beneficial impact on energy metabolism
*PGC-1α↑,
NF-kB↓, activation of NFjB was suppressed by HNK via suppression of nuclear translocation and phosphorylation of the p65 subunit and further instigated apoptosis by enhancing TNF-a
Hif1a↓, HNK has anti-oxidative properties and can downregulate the HIF-1a protein, inhibiting hypoxia- related signaling pathways
VEGF↓, renal cancer, via decreasing the vascular endothelial growth factor (VEGF) and heme-oxygenase-1 (HO-1)
HO-1↓,
Foxm1↓, HNK interaction with the FOXM1 oncogenic transcription factor inhibits cancer cells
p27↑, HNK treatment upregulates the expression of CDK inhibitor p27 and p21, whereas it downregulates the expression of CDK2/4/6 and cyclin D1/2
P21↑,
CDK2↓,
CDK4↓,
CDK6↓,
cycD1↓,
Twist↓, HNK averted the invasion of urinary bladder cancer cells by downregulating the steroid receptor coactivator, Twist1 and Matrix metalloproteinase-2
MMP2↓,
Rho↑, By activating the RhoA, ROCK and MLC signaling, HNK inhibits the migration of highly metastatic renal cell carcinoma
ROCK1↑,
TumCMig↓,
cFLIP↓, HNK can be used to suppress c-FLIP, the apoptosis inhibitor.
BMPs↑, HNK treatment increases the expression of BMP7 protein
OCR↑, HNK might increase the oxygen consumption rate while decreasing the extracellular acidification rate in breast cancer cells.
ECAR↓,
*AntiAg↑, It also suppresses the platelet aggregation
*cardioP↑, HNK is an attractive cardioprotective agent because of its strong antioxidative properties
*antiOx↑,
*ROS↓, HNK treatment reduced cellular ROS production and decreased mitochondrial damage in neonatal rat cardiomyocytes exposed to hypoxia/reoxygenation
P-gp↓, The expres- sion of P-gp at mRNA and protein levels is reduced in HNK treatment on human MDR and MCF-7/ADR breast cancer cell lines

2883- HNK,    Honokiol targets mitochondria to halt cancer progression and metastasis
- Review, Var, NA
ChemoSen↑, Combination of HNK with many traditional chemotherapeutic drugs as well as radiation sensitizes cancer cells to apoptotic death
BBB↓, HNK is also capable of crossing the BBB
Ca+2↑, HNK promotes human glioblastoma cancer cell apoptosis via regulation of Ca(2+) channels
Cyt‑c↑, release of mitochondrial cytochrome c and activation of caspase-3
Casp3↑,
chemoP↑, potent chemopreventive agent against lung SCC development in a carcinogen-induced lung SCC murine model
OCR↓, HNK treatment results in a decreased oxygen consumption rate (OCR) in whole intact cells, rapidly, and persistently inhibiting mitochondrial respiration, which leads to the induction of apoptosis
mitResp↓,
Apoptosis↑,
RadioS↑, Honokiol as a chemo- and radiosensitizer
NF-kB↓, HNK as an anticancer drug is its potential to inhibit multiple important survival pathways, such as NF-B and Akt
Akt↓,
TNF-α↓, by inhibiting TNF-induced nerve growth factor IB expression in breast cancer cells
PGE2↓, reduced prostaglandin E2 (PGE2) and vascular endothelial growth factor (VEGF) secretion levels
VEGF↓,
NO↝, HNK inhibits cancer cell migration by targeting nitric oxide and cyclooxygenase-2 or Ras GTPase-activating-like protein (IQGAP1) [
COX2↓,
RAS↓,
EMT↓, HNK can reverse the epithelial-mesenchymal-transition (EMT) process, which is a key step during embryogenesis, cancer invasion, and metastasis,
Snail↓, HNK reduced the expression levels of Snail, N-cadherin and -catenin, which are mesenchymal markers, but increased E-cadherin,
N-cadherin↓,
β-catenin/ZEB1↓,
E-cadherin↑,
ER Stress↑, induction of ER stress
p‑STAT3↓, HNK inhibited STAT3 phosphorylation
EGFR↓, inhibiting EGFR phosphorylation and its downstream signaling pathways such as the mTOR signaling pathway
mTOR↓,
mt-ROS↑, We demonstrated that HNK treatment suppresses mitochondrial respiration and increases generation of ROS in the mitochondria, leading to the induction of apoptosis in lung cancer cells
PI3K↓, inhibition of PI3K/Akt/ mTOR, EMT, and Wnt signaling pathways.
Wnt↓,

2885- HNK,    Honokiol: a novel natural agent for cancer prevention and therapy
NF-kB↓, Honokiol targets multiple signaling pathways including nuclear factor kappa B (NF-κB), signal transducers and activator of transcription 3 (STAT3), epidermal growth factor receptor (EGFR) and mammalian target of rapamycin (m-TOR)
STAT3↓,
EGFR↓,
mTOR↓,
BioAv↝, honokiol has revealed a desirable spectrum of bioavailability after intravenous administration in animal models, thus making it a suitable agent for clinical trials
Inflam↓, inflammation, proliferation, angiogenesis, invasion and metastasis.
TumCP↓,
angioG↓,
TumCI↓,
TumMeta↓,
cSrc↓, STAT3 inhibition by honokiol has also been correlated with the repression of upstream protein tyrosine kinases c-Src, JAK1 and JAK2
JAK1↓,
JAK2↓,
ERK↓, by inhibiting ERK and Akt pathways (31) or by upregulation of PTEN
Akt↓,
PTEN↑,
ChemoSen↑, Chemopreventive/ chemotherapeutic effects of honokiol in various malignancies: preclinical studies
chemoP↑,
COX2↓, honokiol was found to inhibit UVB-induced expression of cyclooxygenase-2, prostaglandin E2, proliferating cell nuclear antigen and pro-inflammatory cytokines, such as TNF-α, interleukin (IL)-1β and IL-6 in the skin
PGE2↓,
TNF-α↓,
IL1β↓,
IL6↓,
Casp3↑, release of caspases-3, -8 and -9as well as poly (ADP-ribose) polymerase (PARP) cleavage and p53 activation upon honokiol treatment that led to DNA fragmentation
Casp8↑,
Casp9↑,
cl‑PARP↑,
DNAdam↑,
Cyt‑c↑, translocation of cytochrome c to cytosol in human melanoma cell lines
RadioS↑, liposomal honokiol for 24 h showed a higher radiation enhancement ratio (~ two-fold) as compared to the radiation alone,
RAS↓, Honokiol also caused suppression of Ras activation
BBB↑, honokiol could effectively cross BBB and BCSFB and inhibit brain tumor growth
BioAv↓, Due to the concerns about poor aqueous solubility, liposomal formulations of honokiol have been developed and tested for their pharmacokinetics
Half-Life↝, In another comparative study, plasma honokiol concentrations was maintained above 30 and 10 μg/mL for 24 and 48 hours, respectively, in liposomal honokiol-treated mice, whereas it fell quickly (less than 5 μg/mL) by 12 hours in free honokiol-treated
Half-Life↝, free honokiol has poor GIT absorption, bio-transformed in liver to mono-glucuronide honokiol and sulphated mono-hydroxyhonokiol, ~ 50% is secreted in bile, ~ 60-65% plasma protein bound with elimination half life of (t1/2) of 49.05 – 56.24 minutes.
toxicity↓, These studies suggest that honokiol either alone or as a part of magnolia bark extract does not induce toxicity in animal models and thus could be clinically safe

2886- HNK,    Liposomal honokiol inhibits non-small cell lung cancer progression and enhances PD-1 blockade via suppressing M2 macrophages polarization
- in-vitro, Lung, A549 - in-vitro, Lung, H460 - in-vivo, NA, NA
eff↑, Lipo-HNK, with enhanced solubility and bioavailability, demonstrated potent cytotoxicity against NSCLC cell lines.
BioAv↑,
eff↑, Lipo-HNK exhibited synergistic anti-cancer effects when combined with anti-PD-1 therapy
PI3K↓, inhibiting the PI3K/Akt
Akt↓,

2897- HNK,    Honokiol Inhibits Proliferation, Invasion and Induces Apoptosis Through Targeting Lyn Kinase in Human Lung Adenocarcinoma Cells
- in-vitro, Lung, PC9 - in-vitro, Lung, A549
TumCP↓, Honokiol Inhibits Cell Proliferation in Both A549 Cells and PC-9 Cells
Apoptosis↑, Honokiol Induces Apoptosis in PC-9 Cells
EGFR↓, Honokiol Suppresses Lyn Kinase and EGFR Signaling Pathway in PC-9 Cells
PI3K↓, led to a reduction of EGFR/PI3K/AKT and STAT3, and their phosphorylation status.
Akt↓,
STAT3↓,
TumCI↓, honokiol inhibits PC-9 cell proliferation, invasion and induces apoptosis through targeting Lyn kinase and Lyn-mediated EGFR signaling pathway.
TNF-α↑, Honokiol has efficacy to enhance the activation of TNF-α, in this way, honokiol inhibits activation of NF-κB and Akt. As a result, honokiol dramatically decreases expression level of NF-κB target genes, such as VEGF, MMP-9, and COX-2.
NF-kB↓,
VEGF↓,
MMP9↓,
COX2↓,

2898- HNK,    Honokiol Suppression of Human Epidermal Growth Factor Receptor 2 (HER2)-Positive Gastric Cancer Cell Biological Activity and Its Mechanism
- in-vitro, GC, AGS - in-vitro, GC, NCI-N87 - in-vitro, BC, MGC803 - in-vitro, GC, SGC-7901
TumCP↓, Honokiol suppressed cell proliferation via increasing cell apoptosis, invasion, and migration with dose dependence.
Apoptosis↑,
TumCI↓,
TumCMig↓,
HER2/EBBR2↓, HER2 protein expression was significantly depressed in honokiol-treated groups
TumCCA↑, results show that Hon kept the cell cycle in G1 phase, which might be the cause of the cell apoptosis rate increase.
PI3K↓, PI3K, AKT, and MMP-9 protein and mRNA expression of Hon-treated groups were significantly suppressed
Akt↓,
MMP9↓,
P21↑, increase P21 protein and gene expression

2868- HNK,    Honokiol: A review of its pharmacological potential and therapeutic insights
- Review, Var, NA - Review, Sepsis, NA
*P-gp↓, reduction in the expression of defective proteins like P-glycoproteins, inhibition of oxidative stress, suppression of pro-inflammatory cytokines (TNF-α, IL-10 and IL-6),
*ROS↓,
*TNF-α↓,
*IL10↓,
*IL6↓,
eIF2α↑, Bcl-2, phosphorylated eIF2α, CHOP,GRP78, Bax, cleaved caspase-9 and phosphorylated PERK
CHOP↑,
GRP78/BiP↑,
BAX↑,
cl‑Casp9↑,
p‑PERK↑,
ER Stress↑, endoplasmic reticulum stress and proteins in apoptosis in 95-D and A549 cells
Apoptosis↑,
MMPs↓, decrease in levels of matrix metal-mloproteinases, P-glycoprotein expression, the formation of mammosphere, H3K27 methyltransferase, c-FLIP, level of CXCR4 receptor,pluripotency-factors, Twist-1, class I histone deacetylases, steroid receptor co
cFLIP↓,
CXCR4↓,
Twist↓,
HDAC↓,
BMPs↑, enhancement in Bax protein, and (BMP7), as well as interference with an activator of transcription 3 (STAT3), (mTOR), (EGFR), (NF-kB) and Shh
p‑STAT3↓, secreased the phosphorylation of STAT3
mTOR↓,
EGFR↓,
NF-kB↓,
Shh↓,
VEGF↓, induce apoptosis, and regulate the vascular endothelial growth factor-A expression (VEGF-A)
tumCV↓, human glioma cell lines (U251 and U-87 MG) through inhibition of colony formation, glioma cell viability, cell migration, invasion, suppression of ERK and AKT signalling cascades, apoptosis induction, and reduction of Bcl-2 expression.
TumCMig↓,
TumCI↓,
ERK↓,
Akt↓,
Bcl-2↓,
Nestin↓, increased the Bax expression, lowered the CD133, EGFR, and Nesti
CD133↓,
p‑cMET↑, HKL through the downregulating the phosphorylation of c-Met phosphorylation and stimulation of Ras,
RAS↑,
chemoP↑, Cheng and coworker determined the chemopreventive role of HKL against the proliferation of renal cell carcinoma (RCC) 786‑0 cells through multiple mechanism
*NRF2↑, , HKL also effectively activate the Nrf2/ARE pathway and reverse this pancreatic dysfunction in in vivo and in vitro model
*NADPH↓, (HUVECs) such as inhibition of NADPH oxidase activity, suppression of p22 (phox) protein expression, Rac-1 phosphorylation, reactive oxygen species production, inhibition of degradation of Ikappa-B-alpha, and suppression of activity of of NF-kB
*p‑Rac1↓,
*ROS↓,
*IKKα↑,
*NF-kB↓,
*COX2↓, Furthermore, HKL treatment the inhibited cyclooxygenase (COX-2) upregulation, reduces prostaglandin E2 production, enhanced caspase-3 activity reduction
*PGE2↓,
*Casp3↓,
*hepatoP↑, compound also displayed hepatoprotective action against oxidative injury in tert-butyl hydroperoxide (t-BHP)-injured AML12 liver cells in in vitro model
*antiOx↑, compound reduces the level of acetylation on SOD2 to stimulate its antioxidative action, which results in reduced reactive oxygen species aggregation in AML12 cells
*GSH↑, HKL prevents oxidative damage induced by H2O2 via elevating antioxidant enzymes levels which includes glutathione and catalase and promotes translocation and activation transcription factor Nrf2
*Catalase↑,
*RenoP↑, imilarly, the compound protects renal reperfusion/i-schemia injury (IRI) in adult male albino Wistar rats via reducing theactivities of serum alkaline phosphatase (ALP), aspartate aminotrans- ferase (AST) and alanine aminotransferase (ALT)
*ALP↓,
*AST↓,
*ALAT↓,
*neuroP↑, Several reports and works have shown that HKL displays some neuroprotective properties
*cardioP↑, Cardioprotection
*HO-1↑, the expression level of heme oxygenase-1 (HO-1)was remarkably up-regulated and miR-218-5p was significantly down-regulated in septic mice treated with HKL
*Inflam↓, anti-inflammatory action of HKL at dose of 10 mg/kg in the muscle layer of mice

2869- HNK,    Nature's neuroprotector: Honokiol and its promise for Alzheimer's and Parkinson's
- Review, AD, NA - Review, Park, NA
*neuroP↑, neuroprotective, anti-oxidant, anti-apoptotic, neuromodulating, anti-inflammatory, and many more qualities, honokiol,
*Inflam↓,
*motorD↑, degradation of dopaminergic neurons in Parkinson's disease and improving motor function.
*Aβ↓, Alzheimer's disease, honokiol showed promise in lowering the production of amyloid-beta (Aβ) plaques, phosphorylating tau, and enhancing cognitive performance
*p‑tau↓,
*cognitive↑,
*memory↑, prevented Acetylcholinesterase activity from elevation as well as improved acetylcholine levels, and improved learning, and memory deficits via increased ERK1/2 and Akt phosphorylation
*ERK↑,
*p‑Akt↑,
*PPARγ↑, honokiol has been reported to elevate PPARγ levels in APPswe/PS1dE9 mice as PPARγ is related to ani-inflammatory
*PGC-1α↑, honokiol boosted the expression of PGC1α and PPARγ
*MMP↑, as well as reduced elevated mitochondrial membrane potential and mitochondrial ROS
*mt-ROS↓,
*SIRT3↑, Honokiol has been found as a dual SIRT-3 activator and PPAR-γ agonist that reduced oxidative stress markers within cells and changed the AMPK pathway
*IL1β↓, honokiol prevented restraint stress-induced cognitive dysfunction by reducing the hippocampus's production of IL-1β, TNF-α, glucose-regulated protein (GRP78), and C/EBP homologous protein (CHOP)
*TNF-α↓,
*GRP78/BiP↓,
*CHOP↓,
*NF-kB↓, Additionally, the neuroprotective benefits of honokiol in mice with Aβ-induced learning and memory impairment have been attributed to the inactivation of NF-κB
*GSK‐3β↓, Treatment of honokiol in PC12 cells resulted in reduced GSK-3β and induced β-catenin which effectively showed the neuroprotective and anti-oxidant effect in AD therapy
*β-catenin/ZEB1↑,
*Ca+2↓, , anti-apoptotic effect via reduced caspase 3 levels, and protected membrane injury by reduced calcium level has been investigated in PC12 cells of AD models
*AChE↓, protective effects by serving as an antioxidant, reduced AchE levels, repaired neurofibrillary tangles, reduced NF-kB which downregulates Aβ plaque
*SOD↑, fig1
*Catalase↑,
*GPx↑,

2180- itraC,    Repurposing Drugs in Oncology (ReDO)—itraconazole as an anti-cancer agent
- Review, Var, NA
Dose↝, generally it is used in the range 100 mg–600 mg daily, for between one to 30 days.
toxicity↝, ITZ is generally well-tolerated, though caution is advised with patients at high risk of heart failure or impaired hepatic function
BioAv↑, Bioavailability of ITZ is maximised by taking with food for the encapsulated form, or on an empty stomach for the oral solution.
Half-Life↝, produces an average peak plasma concentration of 239 ng/mL (0.34μM) within 4.5 hours
BioAv↑, mean absolute bioavailability is around 55%, and as a highly lipophilic molecule ITZ has a high affinity for tissues, achieving concentrations two to ten times higher than those in plasma
Dose↝, recommended, therefore, that for long-term treatment patients be regularly monitored for plasma levels
HH↓, identified ITZ as an inhibitor of the Hedgehog pathway at a clinically relevant concentration of 800 nM
TumAuto↑, Induction of autophagy is shown to be related to inhibition of the AKT-mTOR pathway, possibly related to ITZ-induced changes in cholesterol trafficking.
Akt↓,
mTOR↓,
angioG↓, Anti-angiogenic
MDR1↓, Reversal of multi-drug resistance
TumCP↓, ITZ inhibited proliferation, with an IC50 of 0.16 μM
eff↑, Combination therapy with cisplatin was superior to cisplatin monotherapy to a statistically significant extent (P ≤ 0.001 compared to ITZ or cisplatin alone) resulting in over 95% growth inhibition but no tumour regression.

974- JG,    Juglone down-regulates the Akt-HIF-1α and VEGF signaling pathways and inhibits angiogenesis in MIA Paca-2 pancreatic cancer in vitro
- in-vitro, PC, MIA PaCa-2
Hif1a↓, juglone significantly decreased the level of HIF-1α compared to the untreated control
VEGF↓, juglone significantly inhibited VEGF expression in MIA Paca-2 cells
p‑Akt↓, juglone by itself is very effective in inhibiting p-Akt at 5μM in pancreatic cancer MIA Paca-2 cells
TumCP↓,
TumCI↓,

1924- JG,    Juglone triggers apoptosis of non-small cell lung cancer through the reactive oxygen species -mediated PI3K/Akt pathway
- in-vitro, Lung, A549
TumCMig↓, substantially suppressed the migration and invasion of these two lung cancer cells
TumCI↓,
TumCCA↑, juglone arrested the cell cycle, induced apoptosis, increased the cleavage of caspase 3
Apoptosis↑,
cl‑Casp3↑,
BAX↑, protein expression of Bax and Cyt c
Cyt‑c↑,
ROS↑, juglone treatment considerably increased intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) levels
MDA↑,
GPx4↓, suppressed glutathione peroxidase 4 (GPX4) and superoxide dismutase (SOD) activities
SOD↓,
PI3K↓, inhibited the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway
Akt↓,
eff↓, N-acetylcysteine (a ROS scavenger) partially reversed the positive effects of juglone in terms of migration, invasion, ROS production, apoptosis, and PI3K/Akt pathway-associated protein expression

862- Lae,    Molecular mechanism of amygdalin action in vitro: review of the latest research
- Review, NA, NA
BAX↑,
Casp3↑,
Bcl-2↓,
Akt↓,
mTOR↓,
p19↑,
TumCCA↑, inhibition of cell transfer from G1-phase to S-phase
other↓, studies have shown that HCN is also released in normal cells, therefore it may not be safe for human organism

2453- LE,    The Promoting Role of HK II in Tumor Development and the Research Progress of Its Inhibitors
- Review, Var, NA
HK2↓, Therefore, it can be concluded that GA can inhibit HK II through the PI3K/AKT pathway, thus inhibiting the proliferation and glycolysis metabolism of LC cells [160]
PI3K↓,
Akt↓,
TumCP↓,
Glycolysis↓,

2916- LT,    Antioxidative and Anticancer Potential of Luteolin: A Comprehensive Approach Against Wide Range of Human Malignancies
- Review, Var, NA - Review, AD, NA - Review, Park, NA
proCasp9↓, , by inactivating proteins; such as procaspase‐9, CDC2 and cyclin B or upregulation of caspase‐9 and caspase‐3, cytochrome C, cyclin A, CDK2, and APAF‐1, in turn inducing cell cycle
CDC2↓,
CycB↓,
Casp9↑,
Casp3↑,
Cyt‑c↑,
cycA1↑,
CDK2↓, inhibit CDK2 activity
APAF1↑,
TumCCA↑,
P53↑, enhances phosphorylation of p53 and expression level of p53‐targeted downstream gene.
BAX↑, Increasing BAX protein expression; decreasing VEGF and Bcl‐2 expression it can initiate cell cycle arrest and apoptosis.
VEGF↓,
Bcl-2↓,
Apoptosis↑,
p‑Akt↓, reduce expression levels of p‐Akt, p‐EGFR, p‐Erk1/2, and p‐STAT3.
p‑EGFR↓,
p‑ERK↓,
p‑STAT3↓,
cardioP↑, Luteolin plays positive role against cardiovascular disorders by improving cardiac function
Catalase↓, It can reduce activity levels of catalase, superoxide dismutase, and GS4
SOD↓,
*BioAv↓, bioavailability of luteolin is very low. Due to the momentous first pass effect, only 4.10% was found to be available from dosage of 50 mg/kg intake of luteolin
*antiOx↓, luteolin classically exhibits antioxidant features
*ROS↓, The antioxidant potential of luteolin and its glycosides is mainly due to scavenging activity against reactive oxygen species (ROS) and nitrogen species
*NO↓,
*GSTs↑, Luteolin may also have a role in protection and enhancement of endogenous antioxidants such as glutathione‐S‐transferase (GST), glutathione reductase (GR), superoxide dismutase (SOD), and catalase (CAT)
*GSR↑,
*SOD↑,
*Catalase↑,
*lipid-P↓, Luteolin supplementation significantly suppressed the lipid peroxidation
PI3K↓, inhibits PI3K/Akt signaling pathway to induce apoptosis
Akt↓,
CDK2↓, inhibit CDK2 activity
BNIP3↑, upregulation of BNIP3 gene
hTERT↓, Suppress hTERT in MDA‐MB‐231 breast cancer cel
DR5↑, Boost DR5 expression
Beclin-1↑, Activate beclin 1
TNF-α↓, Block TNF‐α, NF‐κB, IL‐1, IL‐6,
NF-kB↓,
IL1↓,
IL6↓,
EMT↓, Suppress EMT essentially notable in cancer metastasis
FAK↓, Block EGFR‐signaling pathway and FAK activity
E-cadherin↑, increasing E‐cadherin expression by inhibiting mdm2
MDM2↓,
NOTCH↓, Inhibit NOTCH signaling
MAPK↑, Activate MAPK to inhibit tumor growt
Vim↓, downregulation of vimentin, N‐cadherin, Snail, and induction of E‐cadherin expressions
N-cadherin↓,
Snail↓,
MMP2↓, negatively regulated MMP2 and TWIST1
Twist↓,
MMP9↓, Inhibit matrix metalloproteinase‐9 expressions;
ROS↑, Induce apoptosis, reactive oxygen development, promotion of mitochondrial autophagy, loss of mitochondrial membrane potential
MMP↓,
*AChE↓, Reduce AchE activity to slow down inception of Alzheimer's disease‐like symptoms
*MMP↑, Reverse mitochondrial membrane potential dissipation
*Aβ↓, Inhibit Aβ25‐35
*neuroP↑, reduces neuronal apoptosis; inhibits Aβ generation
Trx1↑, luteolin against human bladder cancer cell line T24 was due to induction cell‐cycle arrest at G2/M, downregulation of p‐S6, suppression of cell survival, upregulation of p21 and TRX1, reduction in ROS levels.
ROS↓,
*NRF2↑, Luteolin reduced renal injury by inhibiting XO activity, modulating uric acid transporters, as well as activating Nrf2 HO‐1/NQO1 antioxidant pathways and renal SIRT1/6 cascade.
NRF2↓, Luteolin exerted anticancer effects in HT29 cells as it inhibits nuclear factor‐erythroid‐2‐related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway
*BBB↑, Luteolin can be used to treat brain cancer due to ability of this molecule to easily cross the blood–brain barrier
ChemoSen↑, In ovarian cancer cells, luteolin chemosensitizes the cells through repressing the epithelial‐mesenchymal transition markers
GutMicro↑, Luteolin was also observed to modulate gut microbiota which reduce the number of tumors in case of colorectal cancer by enhancing the number of health‐related microbiota and reduced the microbiota related to inflammation

2919- LT,    Luteolin as a potential therapeutic candidate for lung cancer: Emerging preclinical evidence
- Review, Var, NA
RadioS↑, it can be used as an adjuvant to radio-chemotherapy and helps to ameliorate cancer complications
ChemoSen↑,
chemoP↑,
*lipid-P↓, ↓LPO, ↑CAT, ↑SOD, ↑GPx, ↑GST, ↑GSH, ↓TNF-α, ↓IL-1β, ↓Caspase-3, ↑IL-10
*Catalase↑,
*SOD↑,
*GPx↑,
*GSTs↑,
*GSH↑,
*TNF-α↓,
*IL1β↓,
*Casp3↓,
*IL10↑,
NRF2↓, Lung cancer model ↓Nrf2, ↓HO-1, ↓NQO1, ↓GSH
HO-1↓,
NQO1↓,
GSH↓,
MET↓, Lung cancer model ↓MET, ↓p-MET, ↓p-Akt, ↓HGF
p‑MET↓,
p‑Akt↓,
HGF/c-Met↓,
NF-kB↓, Lung cancer model ↓NF-κB, ↓Bcl-XL, ↓MnSOD, ↑Caspase-8, ↑Caspase-3, ↑PARP
Bcl-2↓,
SOD2↓,
Casp8↑,
Casp3↑,
PARP↑,
MAPK↓, LLC-induced BCP mouse model ↓p38 MAPK, ↓GFAP, ↓IBA1, ↓NLRP3, ↓ASC, ↓Caspase1, ↓IL-1β
NLRP3↓,
ASC↓,
Casp1↓,
IL6↓, Lung cancer model ↓TNF‑α, ↓IL‑6, ↓MuRF1, ↓Atrogin-1, ↓IKKβ, ↓p‑p65, ↓p-p38
IKKα↓,
p‑p65↓,
p‑p38↑,
MMP2↓, Lung cancer model ↓MMP-2, ↓ICAM-1, ↓EGFR, ↓p-PI3K, ↓p-Akt
ICAM-1↓,
EGFR↑,
p‑PI3K↓,
E-cadherin↓, Lung cancer model ↑E-cadherin, ↑ZO-1, ↓N-cadherin, ↓Claudin-1, ↓β-Catenin, ↓Snail, ↓Vimentin, ↓Integrin β1, ↓FAK
ZO-1↑,
N-cadherin↓,
CLDN1↓,
β-catenin/ZEB1↓,
Snail↓,
Vim↑,
ITGB1↓,
FAK↓,
p‑Src↓, Lung cancer model ↓p-FAK, ↓p-Src, ↓Rac1, ↓Cdc42, ↓RhoA
Rac1↓,
Cdc42↓,
Rho↓,
PCNA↓, Lung cancer model ↓Cyclin B1, ↑p21, ↑p-Cdc2, ↓Vimentin, ↓MMP9, ↑E-cadherin, ↓AIM2, ↓Pro-caspase-1, ↓Caspase-1 p10, ↓Pro-IL-1β, ↓IL-1β, ↓PCNA
Tyro3↓, Lung cancer model ↓TAM RTKs, ↓Tyro3, ↓Axl, ↓MerTK, ↑p21
AXL↓,
CEA↓, B(a)P induced lung carcinogenesis ↓CEA, ↓NSE, ↑SOD, ↑CAT, ↑GPx, ↑GR, ↑GST, ↑GSH, ↑Vitamin E, ↑Vitamin C, ↓PCNA, ↓CYP1A1, ↓NF-kB
NSE↓,
SOD↓,
Catalase↓,
GPx↓,
GSR↓,
GSTs↓,
GSH↓,
VitE↓,
VitC↓,
CYP1A1↓,
cFos↑, Lung cancer model ↓Claudin-2, ↑p-ERK1/2, ↑c-Fos
AR↓, ↓Androgen receptor
AIF↑, Lung cancer model ↑Apoptosis-inducing factor protein
p‑STAT6↓, ↓p-STAT6, ↓Arginase-1, ↓MRC1, ↓CCL2
p‑MDM2↓, Lung cancer model ↓p-PI3K, ↓p-Akt, ↓p-MDM2, ↑p-P53, ↓Bcl-2, ↑Bax
NOTCH1↓, Lung cancer model ↑Bax, ↑Cleaved-caspase 3, ↓Bcl2, ↑circ_0000190, ↓miR-130a-3p, ↓Notch-1, ↓Hes-1, ↓VEGF
VEGF↓,
H3↓, Lung cancer model ↑Caspase 3, ↑Caspase 7, ↓H3 and H4 HDAC activities
H4↓,
HDAC↓,
SIRT1↓, Lung cancer model ↑Bax/Bcl-2, ↓Sirt1
ROS↑, Lung cancer model ↓NF-kB, ↑JNK, ↑Caspase 3, ↑PARP, ↑ROS, ↓SOD
DR5↑, Lung cancer model ↑Caspase-8, ↑Caspase-3, ↑Caspase-9, ↑DR5, ↑p-Drp1, ↑Cytochrome c, ↑p-JNK
Cyt‑c↑,
p‑JNK↑,
PTEN↓, Lung cancer model 1/5/10/30/50/80/100 μmol/L ↑Cleaved caspase-3, ↑PARP, ↑Bax, ↓Bcl-2, ↓EGFR, ↓PI3K/Akt/PTEN/mTOR, ↓CD34, ↓PCNA
mTOR↓,
CD34↓,
FasL↑, Lung cancer model ↑DR 4, ↑FasL, ↑Fas receptor, ↑Bax, ↑Bad, ↓Bcl-2, ↑Cytochrome c, ↓XIAP, ↑p-eIF2α, ↑CHOP, ↑p-JNK, ↑LC3II
Fas↑,
XIAP↓,
p‑eIF2α↑,
CHOP↑,
LC3II↑,
PD-1↓, Lung cancer model ↓PD-L1, ↓STAT3, ↑IL-2
STAT3↓,
IL2↑,
EMT↓, Luteolin exerts anticancer activity by inhibiting EMT, and the possible mechanisms include the inhibition of the EGFR-PI3K-AKT and integrin β1-FAK/Src signaling pathways
cachexia↓, luteolin could be a potential safe and efficient alternative therapy for the treatment of cancer cachexi
BioAv↑, A low-energy blend of castor oil, kolliphor and polyethylene glycol 200 increases the solubility of luteolin by a factor of approximately 83
*Half-Life↝, ats administered an intraperitoneal injection of luteolin (60 mg/kg) absorbed it rapidly as well, with peak levels reached at 0.083 h (71.99 ± 11.04 μg/mL) and a prolonged half-life (3.2 ± 0.7 h)
*eff↑, Luteolin chitosan-encapsulated nano-emulsions increase trans-nasal mucosal permeation nearly 6-fold, drug half-life 10-fold, and biodistribution of luteolin in brain tissue 4.4-fold after nasal administration

2914- LT,    Therapeutic Potential of Luteolin on Cancer
- Review, Var, NA
*antiOx↑, As an antioxidant, Luteolin and its glycosides can scavenge free radicals caused by oxidative damage and chelate metal ions
*IronCh↑,
*toxicity↓, The safety profile of Luteolin has been proven by its non-toxic side effects, as the oral median lethal dose (LD50) was found to be higher than 2500 and 5000 mg/kg in mice and rats, respectively, equal to approximately 219.8−793.7 mg/kg in humans
*BioAv↓, One major problem related to the use of flavonoids for therapeutic purposes is their low bioavailability.
*BioAv↑, Resveratrol, which functions as the inhibitor of UGT1A1 and UGT1A9, significantly improved the bioavailability of Luteolin by decreasing the major glucuronidation metabolite in rats
DNAdam↑, Luteolin’s anticancer properties, which involve DNA damage, regulation of redox, and protein kinases in inhibiting cancer cell proliferation
TumCP↓,
DR5↑, Luteolin was discovered to promote apoptosis of different cancer cells by increasing Death receptors, p53, JNK, Bax, Cleaved Caspase-3/-8-/-9, and PARP expressions
P53↑,
JNK↑,
BAX↑,
cl‑Casp3↑,
cl‑Casp8↑,
cl‑Casp9↑,
cl‑PARP↑,
survivin↓, downregulating proteins involved in cell cycle progression, including Survivin, Cyclin D1, Cyclin B, and CDC2, and upregulating p21
cycD1↓,
CycB↓,
CDC2↓,
P21↑,
angioG↓, suppress angiogenesis in cancer cells by inhibiting the expression of some angiogenic factors, such as MMP-2, AEG-1, VEGF, and VEGFR2
MMP2↓,
AEG1↓,
VEGF↓,
VEGFR2↓,
MMP9↓, inhibit metastasis by inhibiting several proteins that function in metastasis, such as MMP-2/-9, CXCR4, PI3K/Akt, ERK1/2
CXCR4↓,
PI3K↓,
Akt↓,
ERK↓,
TumAuto↑, can promote the conversion of LC3B I to LC3B II and upregulate Beclin1 expression, thereby causing autophagy
LC3B-II↑,
EMT↓, Luteolin was identified to suppress the epithelial to mesenchymal transition by upregulating E-cadherin and downregulating N-cadherin and Wnt3 expressions.
E-cadherin↑,
N-cadherin↓,
Wnt↓,
ROS↑, DNA damage that is induced by reactive oxygen species (ROS),
NICD↓, Luteolin can block the Notch intracellular domain (NICD) that is created by the activation of the Not
p‑GSK‐3β↓, Luteolin can inhibit the phosphorylation of the GSK3β induced by Wnt, resulting in the prevention of GSK3β inhibition
iNOS↓, Luteolin in colon cancer and the complications associated with it, particularly the decreasing effect on the expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2)
COX2↓,
NRF2↑, Luteolin has been identified to increase the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), which is a crucial transcription factor with anticarcinogenic properties related
Ca+2↑, caused loss of the mitochondrial membrane action potential, enhanced levels of mitochondrial calcium (Ca2+),
ChemoSen↑, Luteolin enhanced the effect of one of the most effective chemotherapy drugs, cisplatin, on CRC cells
ChemoSen↓, high dose of Luteolin application negatively affected the oxaliplatin-based chemotherapy in a p53-dependent manner [52]. They suggested that the flavonoids with Nrf2-activating ability might interfere with the chemotherapeutic efficacy of anticancer
IFN-γ↓, decreased the expression of interferon-gamma-(IFN-γ)
RadioS↑, suggested that Luteolin can act as a radiosensitizer, promoting apoptosis by inducing p38/ROS/caspase cascade
MDM2↓, Luteolin treatment was associated with increased p53 and p21 and decreased MDM4 expressions both in vitro and in vivo.
NOTCH1↓, Luteolin suppressed the growth of lung cancer cells, metastasis, and Notch-1 signaling pathway
AR↓, downregulating the androgen receptor (AR) expression
TIMP1↑, Luteolin inhibits the migration of U251MG and U87MG human glioblastoma cell lines by downregulating MMP-2 and MMP-9 and upregulating the tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2.
TIMP2↑,
ER Stress↑, Luteolin caused oxidative stress and ER stress in the Hep3B cells,
CDK2↓, Luteolin’s ability to decrease Akt, polo-like kinase 1 (PLK1), cyclin B1, cyclin A, CDC2, cyclin-dependent kinase 2 (CDK2) and Bcl-xL
Telomerase↓, Luteolin dose-dependently inhibited the telomerase levels and caused the phosphorylation of NF-κB and the target gene of NF-κB, c-Myc to suppress the human telomerase reverse transcriptase (hTERT)
p‑NF-kB↑,
p‑cMyc↑,
hTERT↓,
RAS↓, Luteolin was found to suppress the expressions of K-Ras, H-Ras, and N-Ras, which are the activators of PI3K
YAP/TEAD↓, Luteolin caused significant inhibition of yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ)
TAZ↓,
NF-kB↓, Luteolin was found to have a strong inhibitory effect on the NF-κB
NRF2↓, Luteolin-loaded nanoparticles resulted in a significant reduction in the Nrf2 levels compared to Luteolin alone.
HO-1↓, The expressions of the downstream genes of Nrf2, Ho1, and MDR1 were also reduced, where inhibition of Nrf2 expression significantly increased the cell death of breast cancer cells
MDR1↓,

2905- LT,    Luteolin blocks the ROS/PI3K/AKT pathway to inhibit mesothelial-mesenchymal transition and reduce abdominal adhesions
- in-vivo, NA, HMrSV5
*ROS↓, It attenuated H2O2-induced ROS production and reversed mesothelial-mesenchymal transition (MMT) in HMrSV5 cells.
*p‑Akt↓, Phosphorylated Akt levels were significantly reduced in LUT-treated HMrSV5 cells
*Vim↓, LUT also significantly reduced the expression of vimentin and collagen I in adherent tissues and upregulated E-cadherin expression
*E-cadherin↑,
*PI3K↓, LUT blocks the ROS/PI3K/AKT pathway, thereby inhibiting MMT and reducing PAA.

2906- LT,    Luteolin, a flavonoid with potentials for cancer prevention and therapy
- Review, Var, NA
*Inflam↓, anti-inflammation, anti-allergy and anticancer, luteolin functions as either an antioxidant or a pro-oxidant biochemically
AntiCan↑,
antiOx⇅, With low Fe ion concentrations (< 50 μM), luteolin behaves as an antioxidant while high Fe concentrations (>100 μM) induce luteolin's pro-oxidative effect
Apoptosis↑, induction of apoptosis, and inhibition of cell proliferation, metastasis and angiogenesis.
TumCP↓,
TumMeta↓,
angioG↓,
PI3K↓, , luteolin sensitizes cancer cells to therapeutic-induced cytotoxicity through suppressing cell survival pathways such as phosphatidylinositol 3′-kinase (PI3K)/Akt, nuclear factor kappa B (NF-κB), and X-linked inhibitor of apoptosis protein (XIAP)
Akt↓,
NF-kB↓,
XIAP↓, luteolin inhibits PKC activity, which results in a decrease in the protein level of XIAP by ubiquitination and proteasomal degradation of this anti-apoptotic protein
P53↑, stimulating apoptosis pathways including those that induce the tumor suppressor p53
*ROS↓, Direct evidence showing luteolin as a ROS scavenger was obtained in cell-free systems
*GSTA1↑, Third, luteolin may exert its antioxidant effect by protecting or enhancing endogenous antioxidants such as glutathione-S-transferase (GST), glutathione reductase (GR), superoxide dismutase (SOD) and catalase (CAT)
*GSR↑,
*SOD↑,
*Catalase↑,
*other↓, luteolin may chelate transition metal ions responsible for the generation of ROS and therefore inhibit lipooxygenase reaction, or suppress nontransition metal-dependent oxidation
ROS↑, Luteolin has been shown to induce ROS in untransformed and cancer cells
Dose↝, It is believed that flavonoids could behave as antioxidants or pro-oxidants, depending on the concentration and the source of the free radicals
chemoP↑, may act as a chemopreventive agent to protect cells from various forms of oxidant stresses and thus prevent cancer development
NF-kB↓, We found that luteolin-induced oxidative stress causes suppression of the NF-κB pathway while it triggers JNK activation, which potentiates TNF-induced cytotoxicity in lung cancer cells
JNK↑,
p27↑, Table 1
P21↑,
DR5↑,
Casp↑,
Fas↑,
BAX↑,
MAPK↓,
CDK2↓,
IGF-1↓,
PDGF↓,
EGFR↓,
PKCδ↓,
TOP1↓,
TOP2↓,
Bcl-xL↓,
FASN↓,
VEGF↓,
VEGFR2↓,
MMP9↓,
Hif1a↓,
FAK↓,
MMP1↓,
Twist↓,
ERK↓,
P450↓, Recently, it was determined that luteolin potently inhibits human cytochrome P450 (CYP) 1 family enzymes such as CYP1A1, CYP1A2, and CYP1B1, thereby suppressing the mutagenic activation of carcinogens
CYP1A1↓,
CYP1A2↓,
TumCCA↑, Luteolin is able to arrest the cell cycle during the G1 phase in human gastric and prostate cancer, and in melanoma cells

2912- LT,    Luteolin: a flavonoid with a multifaceted anticancer potential
- Review, Var, NA
ROS↑, induction of oxidative stress, cell cycle arrest, upregulation of apoptotic genes, and inhibition of cell proliferation and angiogenesis in cancer cells.
TumCCA↑,
TumCP↓,
angioG↓,
ER Stress↑, Luteolin induces mitochondrial dysfunction and activates the endoplasmic reticulum stress response in glioblastoma cells, which triggers the generation of intracellular reactive oxygen species (ROS)
mtDam↑,
PERK↑, activate the expression of stress-related proteins by mediating the phosphorylation of PERK, ATF4, eIF2α, and cleaved-caspase 12.
ATF4↑,
eIF2α↑,
cl‑Casp12↑,
EMT↓, Luteolin is known to reverse epithelial-to-mesenchymal transition (EMT), which is associated with the cancer cell progression and metastasis.
E-cadherin↑, upregulating the biomarker E-cadherin expression, followed by a significant downregulation of the N-cadherin and vimentin expression
N-cadherin↓,
Vim↓,
*neuroP↑, Furthermore, luteolin holds potential to improve the spinal damage and brain trauma caused by 1-methyl-4-phenylpyridinium due to its excellent neuroprotective properties.
NF-kB↓, downregulation and suppression of cellular pathways such as nuclear factor kappa B (NF-kB), phosphatidylinositol 3’-kinase (PI3K)/Akt, and X-linked inhibitor of apoptosis protein (XIAP)
PI3K↓,
Akt↑,
XIAP↓,
MMP↓, Furthermore, the membrane action potential of mitochondria depletes in the presence of luteolin, Ca2+ levels and Bax expression upregulate, the levels of caspase-3 and caspase-9 increase, while the downregulation of Bcl-2
Ca+2↑,
BAX↑,
Casp3↑,
Casp9↑,
Bcl-2↓,
Cyt‑c↑, cause the cytosolic release of cytochrome c from mitochondria
IronCh↑, Luteolin serves as a good metal-chelating agent owing to the presence of dihydroxyl substituents on the aromatic ring framework
SOD↓, luteolin further triggered an early phase accumulation of ROS due to the suppression of the activity of cellular superoxide dismutase.
*ROS↓, Luteolin reportedly demonstrated an optimal 43.7% inhibition of the accumulation of ROS, 24.5% decrease in malondialdehyde levels, and 38.7% lowering of lactate dehydrogenase levels at a concentration of 30 µM
*LDHA↑,
*SOD↑, expression of superoxide dismutase ameliorated by 73.7%, while the activity of glutathione improved by 72.3% at the same concentration of luteolin
*GSH↑,
*BioAv↓, Poor bioavailability of luteolin limits its optimal therapeutic efficacy and bioactivity
Telomerase↓, MDA-MB-231 cells with luteolin led to dose dependent arrest of cell cycle in S phase by reducing the levels of telomerase and by inhibiting the phosphorylation of NF-kB inhibitor α along with its target gene c-Myc
cMyc↓,
hTERT↓, These events led to the suppression of the expression of human telomerase reverse transcriptase (hTERT) encoding for the catalytic subunit of telomerase
DR5↑, luteolin upregulated the expression of caspase cascades and death receptors, including DR5
Fas↑, expression of proapoptotic genes such as FAS, FADD, BAX, BAD, BOK, BID, TRADD upregulates, while the anti-apoptotic genes NAIP, BCL-2, and MCL-1 experience downregulation.
FADD↑,
BAD↑,
BOK↑,
BID↑,
NAIP↓,
Mcl-1↓,
CDK2↓, expression of cell cycle regulatory genes CDK2, CDKN2B, CCNE2, CDKN1A, and CDK4 decreased on incubation with luteolin
CDK4↓,
MAPK↓, expression of MAPK1, MAPK3, MAP3K5, MAPK14, PIK3C2A, PIK3C2B, AKT1, AKT2, and ELK1 downregulated
AKT1↓,
Akt2↓,
*Beclin-1↓, luteolin led to downregulation of the expression of hypoxia-inducible factor-1α and autophagy-associated proteins, Beclin 1, and LC3
Hif1a↓,
LC3II↑, LC3-II is upregulated following the luteolin treatment in p53 wild type HepG2 cells i
Beclin-1↑, Luteolin treatment reportedly increased the number of intracellular autophagosomes, as indicated by an increased expression of Beclin 1, and conversion of LC3B-I to LC3B-II in hepatocellular carcinoma SMMC-7721 cells.

1126- Lyco,    Lycopene Inhibits Epithelial–Mesenchymal Transition and Promotes Apoptosis in Oral Cancer via PI3K/AKT/m-TOR Signal Pathway
- vitro+vivo, Oral, NA
TumCP↓,
TumCMig↓,
TumCI↓,
Apoptosis↑,
EMT↓,
PI3K↓,
Akt↓,
mTOR↓,
E-cadherin↓,
BAX↑,
N-cadherin↓,
p‑PI3K↓,
p‑Akt↓,
p‑mTOR↓,
Bcl-2↓,

3528- Lyco,    The Importance of Antioxidant Activity for the Health-Promoting Effect of Lycopene
- Review, Nor, NA - Review, AD, NA - Review, Park, NA
*antiOx↑, the antioxidant effect of lycopene
*ROS↓, Lycopene has the ability to reduce reactive oxygen species (ROS) and eliminate singlet oxygen, nitrogen dioxide, hydroxyl radicals, and hydrogen peroxide
*BioAv↝, human body cannot synthesize lycopene. It must be supplied with the diet
*Half-Life↑, half-life of lycopene in human plasma is 12–33 days
*BioAv↓, bioavailability decreases with age and in the case of certain diseases
*BioAv↑, heat treatment process of food increases the bioavailability of lycopene
*cardioP↑, positive effect on cardiovascular diseases, including the regulation of blood lipid levels
*neuroP↑, beneficial effects in nervous system disorders, including neurodegenerative diseases such as Parkinson′s disease and Alzheimer′s disease
*H2O2↓, Lycopene has the ability to reduce reactive oxygen species (ROS) and eliminate singlet oxygen, nitrogen dioxide, hydroxyl radicals, and hydrogen peroxide
*VitC↑, ability to regenerate non-enzymatic antioxidants such as vitamin C and E.
*VitE↑,
*GPx↑, increase in cardiac GSH-Px activity and an increase in cardiac GSH levels
*GSH↑,
*MPO↓, also a decrease in the level of cardiac myeloperoxidase (MPO), cardiac H2O2, and a decrease in cardiac glutathione S transferase (GSH-ST) activity.
*GSTs↓,
*SOD↑, increasing the activity of GSH-Px and SOD in the liver
*NF-kB↓, reducing the expression of NF-κB mRNA in the heart
*IL1β↓, decreased the level of IL-1β and IL-6 and increased the level of anti-inflammatory IL-10 in the heart
*IL6↓,
*IL10↑,
*MAPK↓, inhibited the activation of the ROS-dependent pro-hypertrophic mitogen-activated protein kinase (MAPK) and protein kinase B (Akt) signaling pathways.
*Akt↓,
*COX2↓, decrease in the levels of pro-inflammatory mediators in heart: COX-2, TNF-α, IL-6, and IL-1β and an increase in the anti-inflammatory cardiac TGF-β1.
*TNF-α↓,
*TGF-β1↑,
*NO↓, reduced NO levels in heart and cardiac NOS activity
*GSR↑, increase in the level of cardiac and hepatic SOD, CAT, GSH, GPx, and glutathione reductase (GR)
*NRF2↑, It also activated nuclear factor-erythroid 2 related factor 2 (Nrf2). This affected the downstream expression of HO-1 [97].
*HO-1↑,
*TAC↑, Researchers observed an increase in the liver in TAC and GSH levels and an increase in GSH-Px and SOD activity
*Inflam↓, study showed that lycopene was anti-inflammatory
*BBB↑, Lycopene is a lipophilic compound, which makes it easier to penetrate the blood–brain barrier.
*neuroP↑, Lycopene had also a neuroprotective effect by restoring the balance of the NF-κB/Nrf2 pathway.
*memory↑, lycopene on LPS-induced neuroinflammation and oxidative stress in C57BL/6J mice. The tested carotenoid prevented memory loss

3532- Lyco,    Lycopene alleviates oxidative stress via the PI3K/Akt/Nrf2pathway in a cell model of Alzheimer’s disease
- in-vitro, AD, NA
*ROS↓, Lycopene alleviated OS and apoptosis, activated the PI3K/Akt/Nrf2 signaling pathway, upregulated antioxidant and antiapoptotic proteins and downregulated proapoptotic proteins.
*PI3K↑,
*Akt↑,
*NRF2↑,
*antiOx↑,
*Aβ↓, Lycopene possibly prevents Aβ-induced damage by activating the PI3K/Akt/Nrf2 signaling pathway and reducing the expression of BACE in M146L cells.
*Apoptosis↓, Lycopene alleviates apoptosis in M146L cells
*neuroP↑, lycopene shows the neuroprotective effects of antioxidative damage and antiapoptotic by reducing the phosphorylation of PI3K/Akt

3275- Lyco,    Multifaceted Effects of Lycopene: A Boulevard to the Multitarget-Based Treatment for Cancer
- Review, Var, NA
TumCCA↑, lycopene impedes the progress of the cell cycle from the G1 to the S phase, primarily by diminishing the cyclin D and cyclin E levels.
cycD1↓,
cycE↓,
CDK2↓, causes a subsequent inactivation of CDK4 and CDK2 through a reduced phosphorylation of Rb
CDK4↓,
P21↑, lycopene elevates CDK inhibitor, p21, and p53 (tumor suppressor) levels
P53↑,
GSK‐3β↓, Finally, GSK3β, p21, p27, Bad, caspase 9, and p53 (via Mdm2) are inactivated
p27↓,
Akt↓, lycopene inhibits AKT (protein kinase B) and mTOR
mTOR↓,
ROS↓, ability of lycopene to minimize ROS formation and mitigate oxidative stress
MMPs↓, lycopene may decrease the activity of metalloproteinases of the matrix and prevent SK-Hep1 cellular adhesion, invasion, and migration
TumCI↓,
TumCMig↓,
NF-kB↓, well-documented that lycopene inhibits NF-kB binding activity
*iNOS↓, They also claimed that the lycopene caused a decline in the LPS-induced protein and mRNA expression of iNOS,
*COX2↓, Lycopene can therefore decrease the gene expression of iNOS and COX-2 as a non-toxic agent via controlling pro-inflammatory genes
lipid-P↓, suppress gastric cancer by multimodal mechanisms of reduction in lipid peroxidation, elevation in the levels of antioxidants, and enhanced GSH
GSH↑,
NRF2↑, Reportedly, lycopene is known to “upregulate” this ARE system via Nrf2 in vitro (HepG2 and MCF-7 cells)

3274- Lyco,    Lycopene enhances the sensitivity of castration-resistant prostate cancer to enzalutamide through the AKT/EZH2/ androgen receptor signaling pathway
- in-vitro, Pca, 22Rv1 - in-vitro, Pca, C4-2B
Akt↓, enhanced antitumor effects of enzalutamide by lycopene may be related to the reduction of AR protein levels through lycopene-mediated inhibition of AKT/EZH2 pathway,
EZH2↓,

3267- Lyco,    Lycopene inhibits angiogenesis both in vitro and in vivo by inhibiting MMP-2/uPA system through VEGFR2-mediated PI3K-Akt and ERK/p38 signaling pathways
- in-vitro, Nor, HUVECs
*VEGF↓, highest dose used (400 μg/plug) completely inhibited the formation of vascular endothelial cells induced by vascular endothelial growth factor (VEGF).
*MMP2↓, lycopene inhibited tube formation, invasion, and migration in HUVECs, and such actions were accompanied by reduced activities of matrix metalloproteinase-2, urokinase-type plasminogen activator, and protein expression of Rac1
*uPA↓,
*Rac1↑,
*TIMP2↑, and by enhancing protein expression of tissue inhibitors of metalloproteinase-2 and plasminogen activator inhibitor-1.
*p38↓, lycopene attenuated VEGF receptor-2 (VEGFR2)-mediated phosphorylation of extracellular signal-regulated kinase (ERK), p38, and Akt as well as protein expression of PI3K.
*Akt↓,
*angioG↓, anti-angiogenic effect of lycopene both in vitro and in vivo.

1089- MAG,    Magnolol potently suppressed lipopolysaccharide-induced iNOS and COX-2 expression via downregulating MAPK and NF-κB signaling pathways
- in-vitro, AML, RAW264.7
p‑IκB↓,
NF-kB↓,
p‑ERK↓,
p‑JNK↓,
p‑PI3K↓,
p‑Akt↓,
iNOS↓,
COX2↓,

972- MAG,    Magnolol suppresses hypoxia-induced angiogenesis via inhibition of HIF-1α/VEGF signaling pathway in human bladder cancer cells
- vitro+vivo, Bladder, T24
angioG↓,
VEGF↓,
H2O2↓,
Hif1a↓,
VEGFR2↓,
Akt↓,
mTOR↓,
P70S6K↓,
4E-BP1↓,
TumCG↓,
CD31↓,
CA↓, carbonic anhydrase IX

2643- MCT,    Medium Chain Triglycerides enhances exercise endurance through the increased mitochondrial biogenesis and metabolism
- Review, Nor, NA
*Akt↑, increased mitochondrial biogenesis and metabolism is mediated through the activation of Akt and AMPK signaling pathways and inhibition of TGF-β signaling pathway.
*AMPK↓,
*TGF-β↓, MCT downregulates TGF-β signaling
eff↑, beneficial effect of dietary MCT in exercise performance through the increase of mitochondrial biogenesis and metabolism.
*BioEnh↑, Furthermore, addition of the combination of chilli and MCT to meals increased diet-induced thermogenesis by over 50% in heathy normal-weight humans
*ATP↑, a key regulator of energy metabolism and mitochondrial membrane ATP synthase (ATP5α) were significantly upregulated by MCT.
*PGC-1α↑, also observed a significant increase in protein level of PGC-1α and ATP5α
*p‑mTOR↑, increased levels in both total and phosphorylated Akt and mTOR
*SMAD3↓, a compensatory response of the huge reduction in Smad3.

1782- MEL,    Melatonin in Cancer Treatment: Current Knowledge and Future Opportunities
- Review, Var, NA
AntiCan↑, involvement of melatonin in different anticancer mechanisms
Apoptosis↑, apoptosis induction, cell proliferation inhibition, reduction in tumor growth and metastases
TumCP↓,
TumCG↑,
TumMeta↑,
ChemoSideEff↓, reduction in the side effects associated with chemotherapy and radiotherapy, decreasing drug resistance in cancer therapy,
radioP↑,
ChemoSen↑, augmentation of the therapeutic effects of conventional anticancer therapies
*ROS↓, directly scavenge ROS and reactive nitrogen species (RNS)
*SOD↑, melatonin can regulate the activities of several antioxidant enzymes like superoxide dismutase, glutathione reductase, glutathione peroxidase, and catalase
*GSH↑,
*GPx↑,
*Catalase↑,
Dose∅, demonstrated that 1 mM melatonin concentration is the pharmacological concentration that is able to produce anticancer effects
VEGF↓, downregulatory action on VEGF expression in human breast cancer cells
eff↑, tumor-bearing mice were treated with (10 mg/kg) of melatonin and (5 mg/kg) of cisplatin. The results have shown that melatonin was able to reduce DNA damage
Hif1a↓, MDA-MB-231-downregulation of the HIF-1α gene and protein expression coupled with the production of GLUT1, GLUT3, CA-IX, and CA-XII
GLUT1↑,
GLUT3↑,
CAIX↑,
P21↑, upregulation of p21, p27, and PTEN protein is another way of melatonin to promote cell programmed death in uterine leiomyoma
p27↑,
PTEN↑,
Warburg↓, FIGURE 3
PI3K↓, in colon cancer cells by downregulation of PI3K/AKT and NF-κB/iNOS
Akt↓,
NF-kB↓,
cycD1↓,
CDK4↓,
CycB↓,
CDK4↓,
MAPK↑,
IGF-1R↓,
STAT3↓,
MMP9↓,
MMP2↓,
MMP13↓,
E-cadherin↑,
Vim↓,
RANKL↓,
JNK↑,
Bcl-2↓,
P53↑,
Casp3↑,
Casp9↑,
BAX↑,
DNArepair↑,
COX2↓,
IL6↓,
IL8↓,
NO↓,
T-Cell↑,
NK cell↑,
Treg lymp↓,
FOXP3↓,
CD4+↑,
TNF-α↑,
Th1 response↑, FIGURE 3
BioAv↝, varies 1% to 50%?
RadioS↑, melatonin’s radio-sensitizing properties
OS↑, In those individuals taking melatonin, the overall tumor regression rate and the 5-year survival were elevated

1777- MEL,    Melatonin as an antioxidant: under promises but over delivers
- Review, NA, NA
*ROS↓, uncommonly effective in reducing oxidative stress under a remarkably large number of circumstances
*Fenton↓, reportedly chelates transition metals, which are involved in the Fenton/Haber-Weiss reactions
*antiOx↑, credible evidence to suggest that melatonin should be classified as a mitochondria-targeted antioxidant
*toxicity∅, uncommonly high-safety profile of melatonin also bolsters this conclusion.
*GPx↑, melatonin was found to stimulate antioxidative enzymes including glutathione peroxidase and glutathione reductase
*GSR↑,
*GSH↑, melatonin upregulates the synthesis of glutathione
*NO↓, neutralize nitrogen-based toxicants, i.e., nitric oxide
*Iron↓, Melatonin chelates both iron (III) and iron (II), which is the form that participates in the Fenton reaction to generate the hydroxyl radical
*Copper↓, copper-chelating ability of melaton
*IL1β↓, significant reductions in plasma cardiac troponin 1, interleukin 1 beta, inducible nitric oxide synthase (iNOS) and caspase 3 due to melatonin
*iNOS↓,
*Casp3↓,
*BBB↑, melatonin readily crosses the blood-brain barrier;
*RenoP↑, Published reports haveshown that the lung,231, 232 liver, 233- 235 kidney,236 pancreas,237 intestine,238 urinary bladder,239,240 corpus cavernosum,241 skeletal muscle242, 243 spinal cord244, 245 and stem cells246 are alsoprotected by melatonin.
chemoP↑, Melatonin has not been found to interfere with the efficacy of prescription drugs. Doxorubicin, if given it in combination with melatonin may allow the use of a larger dose with greater efficacy.
*Ca+2↝, Moreover, melatonin regulates free Ca2+ movement intracellularly
eff↑, elatonin was found to exaggerate the cancer inhibiting actions of pitavastatin270 and pravastatin271 against breast cancer in experimental studies
*PKCδ?, major targets by which melatonin reduces methamphetamine-related neuronal damage is due to the inhibition of the PKCδ gene
ChemoSen↑, at least some cases melatonin reduces the toxicity of these pharmacological agents in normal cells256, 289, 290 while enhancing the cancer-killing actions (also, see below) of conventional chemotherapeutic agents.256, 291-293
eff↑, TRAIL was combined with melatonin for the treatment of A172 and U87 human glioblastoma cells, however, apoptotic cell death was greatly exaggerated over that caused by TRAIL alone
Akt↓, in GBM: observed effect was related to a modulation of protein kinase c which reduced Akt activation resulting in a rise in death receptor 5 (DR5) levels;
DR5↑,
selectivity↑, The pro-oxidant action of melatonin is common in cancer cells while in normal cells the indoleamine is a powerful antioxidant.
ROS↑, cancer cells
eff↑, human lung adenocarcinoma cells (SK-LV-1) showed that melatonin also increased their sensitivity to the chemotherapy, cisplatin.

2375- MET,    Metformin inhibits gastric cancer via the inhibition of HIF1α/PKM2 signaling
- in-vitro, GC, SGC-7901
tumCV↓, Metformin reduced gastric cancer cell viability, invasion and migration.
TumCI↓,
TumCMig↓,
Apoptosis↑, Metformin induced apoptosis and cell cycle arrest in part through inhibiting PARP expression
PARP↓,
PI3K↓, Metformin downregulated PI3K, Akt, HIF1α, PARP, PKM2 and COX expression
Akt↓,
Hif1a↓,
PKM2↓,
COX2↓,

2243- MF,    Pulsed electromagnetic fields increase osteogenetic commitment of MSCs via the mTOR pathway in TNF-α mediated inflammatory conditions: an in-vitro study
- in-vitro, Nor, NA
*eff↑, PEMF exposure increased cell proliferation and adhesion
*mTOR↑, PEMFs contribute to activation of the mTOR pathway via upregulation of the proteins AKT, MAPP kinase, and RRAGA, suggesting that activation of the mTOR pathway is required for PEMF-stimulated osteogenic differentiation.
*Akt↑,
*PKA↑, PEMFs increase the activity of certain kinases belonging to known intracellular signaling pathways, such as the protein kinase A (PKA) and the MAPK ERK1/2
*MAPK↑,
*ERK↑,
*BMP2↑, PEMFs stimulation also upregulates BMP2 expression in association with increased differentiation in mesenchymal stem cells (MSCs
*Diff↑,
*PKCδ↓, Decrease in PKC protein (involved on Adipogenesis)
*VEGF↑, Increase on VEGF (involved on angiogenesis)
*IL10↑, PEMF induced a significant increase of in vitro expression of IL-10 (that exerts anti-inflammatory activity)

3480- MF,    Cellular and Molecular Effects of Magnetic Fields
- Review, NA, NA
ROS↑, 50 Hz, 1 mT for 24/48/72 h SH-SY5Y (neuroblastoma Significantly increased ROS levels
*Ca+2↑, There is experimental proof that extremely low-frequency (ELF-MF) magnetic fields interact with Ca2+ channels, leading to increased Ca2+ efflux
*Inflam↓, PEMF stimulates the anti-inflammatory response of mesenchymal stem cells.
*Akt↓, nasopharyngeal carcinoma cell line. Potentially, these alterations were caused by inhibition of the Akt/mTOR signaling pathway
*mTOR↓,
selectivity↑, Ashdown and colleagues observed disruptions in the human lung cancer cell line after PMF (20 mT) exposure; in comparison, normal cells were insensitive to PMF
*memory↑, Ahmed and colleagues proved that PMF has an impact on the hippocampus, the brain region responsible for spatial orientation and memory acquisition.
*MMPs↑, In wound closure, epithelial cells, connective tissue cells, and immune cells, which promote collagen production, matrix metalloproteinase activity, growth factor release (e.g., VEGF, FGF, PDGF, TNF, HGF, and IL-1), and inflammatory environment pro
*VEGF↑,
*FGF↑,
*PDGF↑,
*TNF-α↑,
*HGF/c-Met↑,
*IL1↑,

496- MF,    Low-Frequency Magnetic Fields (LF-MFs) Inhibit Proliferation by Triggering Apoptosis and Altering Cell Cycle Distribution in Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, ZR-75-1 - in-vitro, BC, T47D - in-vitro, BC, MDA-MB-231
ROS↑, attenuated by ROS scavenger NAC
PI3K↓,
Akt↓,
GSK‐3β↑,
Apoptosis↑,
cl‑PARP↑, cleaved PARP-1
cl‑Casp3↑,
BAX↑,
Bcl-2↓,
CycB↓, Cyclin B1
TumCCA↑, failure of the transition from the G2 phase to M phase
p‑Akt↓,
p‑Akt↓,

486- MF,    mTOR Activation by PI3K/Akt and ERK Signaling in Short ELF-EMF Exposed Human Keratinocytes
- in-vitro, Nor, HaCaT
*mTOR↑,
*PI3K↑, HaCaT cells exposed for 1h to 50Hz/1mT showed an increased percentage of cells in the S phase, through a significantly activation of the PI3K, JNK and ERK pathways
*Akt↑,
*p‑ERK↑,
*other↑, increases in the percentage of cells in the S phase and decrease in the percentage of cells in G0/G1 phase
*p‑JNK↑,
*p‑P70S6K↑,

194- MF,    Electromagnetic Field as a Treatment for Cerebral Ischemic Stroke
- Review, Stroke, NA
*BAD↓,
*BAX↓,
*Casp3↓,
*Bcl-xL↑,
*p‑Akt↑,
*MMP9↓, EMF significantly decreased levels of IL-1β and MMP9 in the peri-infarct area at 24 h and 3rd day of the experiment
*p‑ERK↑, ERK1/2
*HIF-1↓,
*ROS↓, n a similar experiment, ELF-MF (50 Hz/1 mT) increased cell viability and decreased intracellular ROS/RNS in mesenchymal stem cells submitted to OGD conditions and 3 h ELF-MF exposure
*VEGF↑,
*Ca+2↓,
*SOD↑,
*IL2↑,
*p38↑,
*HSP70/HSPA5↑,
*Apoptosis↓, PEMF decreased apoptosis
*ROS↓, Nevertheless, in the presence of ischemia, EMF decreased NO and ROS concentrations.
*NO↓,

225- MFrot,    Extremely low frequency magnetic fields regulate differentiation of regulatory T cells: Potential role for ROS-mediated inhibition on AKT
- vitro+vivo, Lung, NA
MMP2↓,
MMP9↓,
FOXP3↓,
ROS↑,
p‑Akt↓,

3488- MFrot,    Rotating magnetic field improves cognitive and memory impairments in APP/PS1 mice by activating autophagy and inhibiting the PI3K/AKT/mTOR signaling pathway
- in-vivo, AD, NA
*cognitive↑, RMF treatment significantly ameliorated their cognitive and memory impairments, attenuated neuronal damage, and reduced amyloid deposition.
*memory↑,
*neuroP↑,
*Aβ↓,
*PI3K↓, RMF improves cognitive and memory dysfunction in APP/PS1 mice by activating autophagy and inhibiting the PI3K/AKT/mTOR signaling pathway, thus highlighting the potential of RMF as a clinical treatment for hereditary AD.
*Akt↓,
*mTOR↓,

1128- Myr,    Myricetin suppresses TGF-β-induced epithelial-to-mesenchymal transition in ovarian cancer
- vitro+vivo, Ovarian, NA
MAPK↓,
ERK↓,
PI3K↓,
Akt↓,
p‑PARP↑,
cl‑Casp3↑,
Bax:Bcl2↑,
TumCMig↓,
SMAD3↓,

1141- Myr,    Myricetin: targeting signaling networks in cancer and its implication in chemotherapy
- Review, NA, NA
*PI3K↑, apoptotic potential of myricetin is specific for affected cells. In healthy cells, it activates PI3K/Akt signaling and inhibits ERK/JNK pathway to induce cytoprotective influence
*Akt↑,
p‑Akt↓,
SIRT3↑,
p‑ERK↓,
p38↓,
VEGF↓,
MEK↓, MEK1
MKK4↓,
MMP9↓,
Raf↓,
F-actin↓,
MMP2↓,
COX2↓,
BMP2↓,
cycD1↓,
Bax:Bcl2↑,
EMT↓,
EGFR↓,
TumAuto↑,

1311- NarG,  Rad,    Naringenin sensitizes lung cancer NCI-H23 cells to radiation by downregulation of akt expression and metastasis while promoting apoptosis
- in-vitro, Lung, H23
tumCV↓,
ROS↑,
Casp3↑,
p‑Akt↓,
Akt↓,
MMP2↓,
P21↓,

1807- NarG,    A Systematic Review of the Preventive and Therapeutic Effects of Naringin Against Human Malignancies
- Review, NA, NA
AntiTum↑, antitumor ability of naringin
TumCP↓,
tumCV↓,
TumCCA↑,
Mcl-1↓,
RAS↓,
e-Raf↓, suppressing the Ras/Raf/extracellular
VEGF↓,
AntiAg↑,
MMP2↓,
MMP9↓,
TIMP2↑,
TIMP1↑,
p38↓,
Wnt↓,
β-catenin/ZEB1↑,
Casp↑,
P53↑,
BAX↑,
COX2↓,
GLO-I↓,
CYP1A1↑,
lipid-P↓,
p‑Akt↓,
p‑mTOR↓,
VCAM-1↓,
P-gp↓,
survivin↓,
Bcl-2↓,
ROS↑, ↑oxidative stress, Prostate DU145 cell line 50–250 μM
ROS↑, ↑ROS, Stomach (Gastric) AGS cell line, 1–3 mM
MAPK↑,
STAT3↓,
chemoP↑, flavonoids have excellent radical scavenging and iron-chelating properties (Kaiserová et al., 2007), and they can act as an effective modulator for DOX-induced toxicity

1803- NarG,    Naringin and naringenin as anticancer agents and adjuvants in cancer combination therapy: Efficacy and molecular mechanisms of action, a comprehensive narrative review
- Review, Var, NA
JAK↓,
STAT↓,
PI3K↓,
Akt↓,
mTOR↓,
NF-kB↓,
COX2↓,
NOTCH↓,
TumCCA↑,

1801- NarG,    A Narrative Review on Naringin and Naringenin as a Possible Bioenhancer in Various Drug-Delivery Formulations
- Review, Var, NA
AntiCan↓, Naringenin exhibits lipid-lowering and insulin-like characteristics and is used to treat osteoporosis, cancer and cardiovascular disorders
CYP19↓, controlling breast and prostate cancer by inhibition of CYP19
PI3K↓, naringin suppresses the PI3K/AKT signalling pathway
Akt↓,
TumAuto↑, triggers autophagy
eff↑, Naringin and naringenin co-administration or pre-administration has enhanced the target drug’s potency and produced a synergistic effect
BioEnh↑, potential applications of Naringin and Naringenin as recognized bio-enhancers.
NA↓,

1799- NarG,    Naringenin as potent anticancer phytocompound in breast carcinoma: from mechanistic approach to nanoformulations based therapeutics
- Review, NA, NA
TumCCA↑, inhibition of the cell cycle
BioAv↑, oral bioavailability was determined to be 5.81%.Novel delivery strategies such as nanoparticles, liposomes, and micelles have been investigated to improve their bioavailability
Half-Life∅, researchers recorded a maximum concentration (Cmax) of 2009.51 ng/mL in 3.67 h after administration. elimination half-life was found to be 2.31 h.
TNF-α↓,
Casp8↑,
BAX↑,
Bak↑,
EGF↓,
mTOR↓,
PI3K↓,
ERK↓,
Akt↓,
NF-kB↓,
VEGF↓,
angioG↓,
antiOx↑,
EMT↓, Naringenin reduces the metastatic efficacy of breast cancer cells by EMT suppression
OS↑, Oral administration of naringenin dramatically reduced the number of metastatic tumor cells in the lungs and prolonged the lifespan of mice that had their tumors removed
MAPK↓, Naringenin inhibited the MAPK and PI3K pathways
ChemoSen↑, In MCF-7 breast cancer cells, combination therapy using NGE and tamoxifen was more effective than either drug alone
MMP9↓, downregulating the expression of MMP-9 and MMP-2
MMP2↓,
ROS↑, combination treatment increases ROS generation
ROS↑, demonstrated the antitumor effects of naringenin nanoparticles through increased ROS levels, GSH attenuation, and caspase-3 activation, which ultimately induced apoptosis
GSH↓,
Casp3↑,
ROS↑, This review concludes that naringenin can reduce carcinogenesis through pleiotropic processes such as antioxidative, apoptotic-inducing ROS generation, and cell cycle arrest

150- NRF,  CUR,  docx,    Subverting ER-Stress towards Apoptosis by Nelfinavir and Curcumin Coexposure Augments Docetaxel Efficacy in Castration Resistant Prostate Cancer Cells
- in-vitro, Pca, C4-2B
p‑Akt↓,
p‑eIF2α↑, phosphorylated
ER Stress↑, ER stress
ATFs↑, ATF4
CHOP↑,
TRIB3↑,

959- PACs,    Grape seed extract inhibits VEGF expression via reducing HIF-1α protein expression
- in-vitro, GBM, U251 - in-vitro, BC, MDA-MB-231
Hif1a↓,
p‑Akt↓,
p‑S6K↓,
p‑S6↓,
VEGF↓,

1993- Part,    Parthenolide induces apoptosis and autophagy through the suppression of PI3K/Akt signaling pathway in cervical cancer
- in-vitro, Cerv, HeLa
tumCV↓, Parthenolide inhibits HeLa cell viability in a dose dependent-manner and was confirmed by MTT assay.
TumAuto↑, Parthenolide (6 µM) induces mitochondrial-mediated apoptosis and autophagy by activation of caspase-3, upregulation of Bax, Beclin-1, ATG5, ATG3
Casp3↑,
BAX↑,
Beclin-1↑,
ATG3↑,
ATG5↑,
Bcl-2↓, and down-regulation of Bcl-2 and mTOR
mTOR↓,
PI3K↓, inhibits PI3K and Akt expression through activation of PTEN expression.
Akt↓,
PTEN↑,
ROS↑, parthenolide induces generation of reactive oxygen species that leads to the loss of mitochondrial membrane potential
MMP↓,

1987- Part,  Rad,    A NADPH oxidase dependent redox signaling pathway mediates the selective radiosensitization effect of parthenolide in prostate cancer cells
- in-vitro, Pca, PC3 - in-vitro, Nor, PrEC
selectivity↑, parthenolide (PN), a sesquiterpene lactone, selectively exhibits a radiosensitization effect on prostate cancer PC3 cells but not on normal prostate epithelial PrEC cells.
RadioS↑,
ROS↑, oxidative stress in PC3 cells but not in PrEC cells
*ROS∅, oxidative stress in PC3 cells but not in PrEC cells
NADPH↑, In PC3 but not PrEC cells, PN activates NADPH oxidase leading to a decrease in the level of reduced thioredoxin, activation of PI3K/Akt and consequent FOXO3a phosphorylation, which results in the downregulation of FOXO3a targets, MnSOD, CAT
Trx↓,
PI3K↑,
Akt↑,
p‑FOXO3↓, downregulation of FOXO3a targets, antioxidant enzyme manganese superoxide dismutase (MnSOD) and catalase
SOD2↓, MnSOD
Catalase↓,
radioP↑, when combined with radiation, PN further increases ROS levels in PC3 cells, while it decreases radiation-induced oxidative stress in PrEC cells
*NADPH∅, Parthenolide activates NADPH oxidase in PC3 cells but not in PrEC cells
*GSH↑, increases glutathione (GSH) in PrEC cells(normal cells)
*GSH/GSSG↑, GSH/GSSG ratio is not significantly changed by parthenolide in PC3 cells but is increased 2.4 fold in PrEC cells (normal cells)
*NRF2↑, The induction of GSH may be due to the activation of the Nrf2/ARE (antioxidant/electrophile response element) pathway

1664- PBG,    Anticancer Activity of Propolis and Its Compounds
- Review, Var, NA
Apoptosis↑,
TumCMig↓,
TumCCA↑,
TumCP↓,
angioG↓,
P21↑, upregulating p21 and p27 expression
p27↑,
CDK1↓, thanol-extracted Cameroonian propolis increased the amount of DU145 and PC3 cells in G0/G1 phase, down-regulated cell cycle proteins (CDK1, pCDK1, and their related cyclins A and B)
p‑CDK1↓,
cycA1↓,
CycB↓,
P70S6K↓, Caffeic acid phenylethyl ester has been shown to inhibit the S6 beta-1 ribosomal protein kinase (p70S6K),
CLDN2↓, inhibition of NF-κB may be involved in the decrease of claudin-2 mRNA level
HK2↓, Chinese poplar propolis has been shown to significantly reduce the level of glycolysis at the stage of action of hexokinase 2 (HK2), phosphofructokinase (PFK), muscle isozyme pyruvate kinase M2 (PKM2), and lactate dehydrogenase A (LDHA)
PFK↓,
PKM2↓,
LDHA↓,
TLR4↓, hinese propolis, as well as CAPE, inhibits breast cancer cell proliferation in the inflammatory microenvironment by inhibiting the Toll-like receptor 4 (TLR4) signal pathway
H3↓, Brazilian red propolis bioactive isoflavonoid, down-regulates the alpha-tubulin, tubulin in microtubules, and histone H3 genes
α-tubulin↓,
ROS↑, CAPE also affects the apoptotic intrinsic pathway by increasing ROS production
Akt↓, CAPE induces apoptosis by decreasing the levels of proteins related to carcinogenesis, including Akt, GSK3b, FOXO1, FOXO3a, NF-kB, Skp2 and cyclin D1
GSK‐3β↓,
FOXO3↓,
NF-kB↓,
cycD1↓,
MMP↓, It was found that chrysin caused a loss of mitochondria membrane potential (MMP) while increasing the production of reactive oxygen species (ROS), cytoplasmic Ca2+ levels, and lipid peroxidation
ROS↑,
i-Ca+2↑,
lipid-P↑,
ER Stress↑, Chrysin also induced endoplasmic reticulum (ER) stress by activating unfolded protein response proteins (UPR) such as PRKR-like ER kinase (PERK), eukaryotic translation initiation factor 2α (eIF2α), and 78 kDa glucose-regulated protein (GRP78)
UPR↑,
PERK↑,
eIF2α↑,
GRP78/BiP↑,
BAX↑, CAPE activated Bax protein
PUMA↑, CAPE also significantly increased PUMA expression
ROS↑, Northeast China causes cell apoptosis in human gastric cancer cells with increased production of reactive oxygen species (ROS) and reduced mitochondrial membrane potential.
MMP↓,
Cyt‑c↑, release of cytochrome C from mitochondria to the cytoplasm is observed, as well as the activation of cleaved caspases (8, 9, and 3) and PARP
cl‑Casp8↑,
cl‑Casp8↑,
cl‑Casp3↑,
cl‑PARP↑,
eff↑, administration of Iranian propolis extract in combination with 5-fluorouracil (5-FU) significantly reduced the number of azaxymethane-induced aberrant crypt foci compared to 5-FU or propolis alone.
eff↑, Propolis may also have a positive effect on the efficacy of photodynamic therapy (PDT). enhances the intracellular accumulation of protoporphyrin IX (PpIX) in human epidermoid carcinoma cells
RadioS↑, breast cancer patients undergoing radiotherapy and supplemented with propolis had a statistically significant longer median disease-free survival time than the control group
ChemoSen↑, confirmed that propolis mouthwash is effective and safe in the treatment of chemo- or radiotherapy-induced oral mucositis in cancer patients.
eff↑, Quercetin, ferulic acid, and CAPE may also influence the MDR of cancer cells by inhibiting P-gp expression

1661- PBG,    Propolis: a natural compound with potential as an adjuvant in cancer therapy - a review of signaling pathways
- Review, Var, NA
JNK↓, downregulating pathways involving Jun-N terminal kinase, ERK1/2, Akt and NF-ƘB
ERK↓,
Akt↓,
NF-kB↓,
FAK↓, inhibiting Wtn2 and FAK, and MAPK and PI3K/AKT signaling pathways
MAPK↓,
PI3K↓,
Akt↓,
P21↑, propolis-induced up-regulation of p21 and p27
p27↑,
TRAIL↑, effects of propolis are mediated through upregulation of TRAIL, Bax, p53, and downregulation of the ERK1/2 signaling
BAX↑,
P53↑,
ERK↓,
ChemoSen↑, effective adjuvant therapy aimed at reducing related side effects associated with chemotherapy and radiotherapy
RadioS↑,
Glycolysis↓, Chinese poplar propolis decreased aerobic glycolysis by reducing the levels of crucial enzymes such as phosphofructokinase (PFK), hexokinase 2 (HK2), pyruvate kinase M2 (PKM2), and lactate dehydrogenase A (LDHA)
HK2↓,
PKM2↓,
LDHA↓,
PFK↓,

1660- PBG,    Emerging Adjuvant Therapy for Cancer: Propolis and its Constituents
- Review, Var, NA
MMPs↓, inhibition of matrix metalloproteinases, anti-angiogenesis
angioG↓,
TumMeta↓, prevention of metastasis, cell-cycle arrest
TumCCA↑,
Apoptosis↑,
ChemoSideEff↓, moderation of the chemotherapy-induced deleterious side effects
eff∅, components conferring antitumor potentials have been identified as caffeic acid phenethyl ester, chrysin, artepillin C, nemorosone, galangin, cardanol, etc
HDAC↓, Taiwanese green propolis extract was used to develop an anticancer agent NBM-HD-3, a histone deacetylase inhibitor (HDACis).
PTEN↑, found to increase phosphatase and tensin homolog (PTEN) and protein kinase B (Akt) protein levelssignificantly, while decreasing phospho-PTEN and phospho-Akt levels markedly
p‑PTEN↓,
p‑Akt↓,
Casp3↑, Propolis induced apoptosis and caspase 3 cleavage, increased phosphorylation of extracellular signal regulated kinase 1/2 (ERK1/2), protein kinase B/Akt1 and focal adhesion kinase (FAK).
p‑ERK↑,
p‑FAK↑,
Dose?, When administered orally for 20 weeks at a dose of 100-300 mg/kg, the protective role against the lingual carcinogenesis was observed
Akt↓, treatment reduced the protein abundance of Akt, Akt1, Akt2, Akt3, phospho-Akt Ser473, phospho-Akt Thr 308, GSK3β, FOXO1, FOXO3a, phospho-FOXO1
GSK‐3β↓,
FOXO3↓,
eff↑, Co-treatment with CAPE and 5-fluorouracil exhibited additive anti-proliferation of TW2.6 cells.
IL2↑, Propolis administration stimulated IL-2 and IL-10 production
IL10↑,
NF-kB↓, reduces the expression of growth and transcription factors, including NF-κB.
VEGF↓, CAPE dose-dependently suppresses vascular endothelial growth factor (VEGF) formation by MDA-231 cells,
mtDam↑, Brazilian red propolis significantly reduced the cancer cell viability through the induction of mitochondrial dysfunction, caspase-3 activity and DNA fragmentation.
ER Stress↑, the action was believed to be due to endoplasmic reticulum stress-related signalling induction of CCAAT/enhancer-binding protein homologous protein (CHOP)
AST↓, Rats,(250 mg/kg) thrice a week for 3 weeks
ALAT↓, Rats,(250 mg/kg) thrice a week for 3 weeks
ALP↓, Rats,(250 mg/kg) thrice a week for 3 weeks
COX2↓, Rats,(250 mg/kg) thrice a week for 3 weeks, Expression of COX-2 and NF-kB p65 was significantly lowered
eff↑, co-treatment of cancer cells with 100 ng/mL TRAIL and 50 μg/mL propolis extract increased the percentage of apoptotic cells to about 66% and caused a significant disruption of membrane potential in LNCaP cells (
Bax:Bcl2↑, decreased Bcl-2/Bax ratio

1682- PBG,    Honey, Propolis, and Royal Jelly: A Comprehensive Review of Their Biological Actions and Health Benefits
- Review, Var, NA
i-LDH↓, cytotoxic activities of Tualang honey in human breast cancer cells were demonstrated by elevated secretion of lactate dehydrogenase (LDH)
Akt↓, figure 2
MAPK↓, figure 2
NF-kB↓, figure 2
IL1β↓, figure 2
IL6↓, figure 2
TNF-α↓, figure 2
iNOS↓, figure 2
COX2↓, figure 2
ROS↓, figure 2
Bcl-2↓, figure 2
PARP↓, figure 2
P53↑, figure 2
BAX↑, figure 2
Casp3↑, figure 2
TumCCA↑, Several components of honey such as chrysin, quercetin, and kaempferol have been shown to arrest cell cycle at various phases such as G0/G1, G1, and G2/M
Cyt‑c↑, hese stimuli cause several proteins located within the intermembrane space (IMS) of the mitochondria, such as cytochrome c, to be released
MMP↓, Honey induces MOMP in cancer cell lines by decreasing the mitochondrial membrane potential
eff↑, amplifying the apoptotic effect of tamoxifen by intensified depolarization of the mitochondrial membrane.

1678- PBG,  5-FU,  sericin,    In vitro and in vivo anti-colorectal cancer effect of the newly synthesized sericin/propolis/fluorouracil nanoplatform through modulation of PI3K/AKT/mTOR pathway
- in-vitro, CRC, Caco-2 - in-vivo, NA, NA
PI3K↓, mechanism of action of the prepared nanoformula revealed that it acts through the inhibition of the PI3K/AKT/mTOR signaling pathway and consequently inhibiting cancerous cells proliferation.
Akt↓,
mTOR↓,
TumCP↓,
Bcl-2↓, downregulated BCL2 (B-cell lymphoma 2) and activated BAX, Caspase 9 and Caspase 3 expression
BAX↑,
Casp3↑,
Casp9↑,
ROS↓, prepared nanoformula decreased the ROS (Reactive Oxygen Species) production in vivo owing to PI3K/AKT/mTOR pathway inhibition and FOXO-1 (Forkhead Box O1) activation
FOXO1↑,
*toxicity∅, LD50 of the prepared nanoformula reached 1 mg/Kg upon oral administration.
eff↑, It is well known that propolis and sericin inhibit PI3K/AKT and ERK pathway

3257- PBG,    The Potential Use of Propolis as a Primary or an Adjunctive Therapy in Respiratory Tract-Related Diseases and Disorders: A Systematic Scoping Review
- Review, Var, NA
CDK4↓, CAPE also induces G1 phase cell arrest by lowering the expression of CDK4, CDK6, Rb, and p-Rb. M
CDK6↓,
pRB↓,
ROS↓, Artepillin C, a bioactive component of Brazilian green propolis, reduces oxidative damage markers, namely 4-HNE-modified proteins, 8-OHdG, malonaldehyde, and thiobarbituric acid reactive substances in lung tissues with pulmonary adenocarcinoma
TumCCA↑, Propolin, a novel component of prenylflavanones in Taiwanese propolis, was demonstrated to have anti-cancer properties. Propolin H induces cell arrest at G1 phase and upregulates the expression of p21
P21↑,
PI3K↓, Propolin C also inhibits PI3K/Akt and ERK-mediated epithelial-to-mesenchymal transition by upregulating E-cadherin (epithelial cell marker) and downregulating vimentin
Akt↓,
EMT↓,
E-cadherin↑,
Vim↓,
*COX2↓, bioactive compounds such as CAPE, galangin significantly reduce the activity of lung cyclooxygenase (COX) and myeloperoxidase (MPO), and malonaldehyde (MDA), TNF-α, and IL-6 levels, while increasing the activity of catalase (CAT) and SOD
*MPO↓,
*MDA↓,
*TNF-α↓,
*IL6↓,
*Catalase↑,
*SOD↑,
*AST↓, Chrysin also reduces the expression of oxidative and inflammatory markers such as aspartate transaminase (AST), alanine aminotransferase (ALT), IL-1β, IL-10, TNF-α, and MDA levels and increases the antioxidant parameters such as SOD, CAT, and GPx
*ALAT↓,
*IL1β↓,
*IL10↓,
*GPx↓,
*TLR4↓, propolis also inhibits the expression of Toll-like receptor 4 (TLR4), macrophage infiltration, MPO activity, and apoptosis of lung tissues in septic animals
*Sepsis↓,
*IFN-γ↑, CAPE also significantly increases IFN-γ
*GSH↑, propolis significantly increased the level of GSH and the histological appearances of propolis-treated bleomycin-induced pulmonary fibrosis rats.
*NRF2↑, CAPE significantly increases the expression of nuclear factor erythroid 2-related factor 2 (Nrf-2)
*α-SMA↓, propolis significantly inhibits the expression of α- SMA, collagen fibers, and TGF-1β.
*TGF-β↓,
*IL5↓, Propolis also inhibits the expression of inflammatory cytokines and chemokines such as TNF-α, IL-5, IL-6, IL-8, IL-10, NF-kB, IFN-γ, PGF2a, and PGE2.
*IL6↓,
*IL8↓,
*PGE2↓,
*NF-kB↓,
*MMP9↓, downregulating the expression of TGF-1β, ICAM-1, α-SMA, MMP-9, IgE, and IgG1.

2995- PL,    Piperlongumine overcomes osimertinib resistance via governing ubiquitination-modulated Sp1 turnover
- in-vitro, Lung, H1975 - in-vitro, Lung, PC9 - in-vivo, NA, NA
Sp1/3/4↓, piperlongumine could enhance the interaction between E3 ligase RNF4 and Sp1, inhibit the phosphorylation of Sp1 at Thr739, facilitate the ubiquitination and degradation of Sp1, lead to c-Met destabilization, and trigger intrinsic apoptosis in resista
cMET↓,
Apoptosis↑,
Cyt‑c↑, piperlongumine promoted the release of cytochrome c from the mitochondria to the cytoplasm while facilitating the translocation of Bcl-2-associated X protein (Bax) to the mitochondria
p‑ERK↓, dose-dependent decrease in the protein levels of c-Met, phosphorylated ERK1/2 (p-ERK1/2), and p-Akt
p‑Akt↓,
TumCG↓, These data suggest that piperlongumine exhibits good tolerability and effectively inhibits tumor growth of osimertinib-resistant cells in vivo.

2970- PL,    Piperlongumine induces apoptosis and autophagy in leukemic cells through targeting the PI3K/Akt/mTOR and p38 signaling pathways
- in-vitro, AML, NA
AntiAg↑, antiplatelet aggregation
TumCG↓, cell growth of leukemic cells was completely inhibited following treatment with piperlongumine, and marked apoptosis was also induced
Apoptosis↑,
PI3K↓, Phosphoinositide 3-kinase (PI3K)/Akt/mTOR signaling was suppressed by treatment with piperlongumine, while p38 signaling and caspase-3 activity were induced by treatment with piperlongumine.
Akt↓,
mTOR↓,
p38↑,
Casp3↑,

2948- PL,    The promising potential of piperlongumine as an emerging therapeutics for cancer
- Review, Var, NA
tumCV↓, inhibit different hallmarks of cancer such as cell survival, proliferation, invasion, angiogenesis, epithelial-mesenchymal-transition, metastases,
TumCP↓,
TumCI↓,
angioG↓,
EMT↓,
TumMeta↓,
*hepatoP↑, A study demonstrated the hepatoprotective effects of P. longum via decreasing the rate of lipid peroxidation and increasing glutathione (GSH) levels
*lipid-P↓,
*GSH↑,
cardioP↑, cardioprotective effect
CycB↓, downregulated the mRNA expression of the cell cycle regulatory genes such as cyclin B1, cyclin D1, cyclin-dependent kinases (CDK)-1, CDK4, CDK6, and proliferating cell nuclear antigen (PCNA)
cycD1↓,
CDK2↓,
CDK1↓,
CDK4↓,
CDK6↓,
PCNA↓,
Akt↓, suppression of the Akt/mTOR pathway by PL was also associated with the partial inhibition of glycolysis
mTOR↓,
Glycolysis↓,
NF-kB↓, Suppression of the NF-κB signaling pathway and its related genes by PL was reported in different cancers
IKKα↓, inactivation of the inhibitor of NF-κB kinase subunit beta (IKKβ)
JAK1↓, PL efficiently inhibited cell proliferation, invasion, and migration by blocking the JAK1,2/STAT3 signaling pathway
JAK2↓,
STAT3↓,
ERK↓, PL also negatively regulates ERK1/2 signaling pathways, thereby suppressing the level of c-Fos in CRC cells
cFos↓,
Slug↓, PL was found to downregulate slug and upregulate E-cadherin and inhibited epithelial-mesenchymal transition (EMT) in breast cancer cells
E-cadherin↑,
TOP2↓, ↓topoisomerase II, ↑p53, ↑p21, ↓Bcl-2, ↑Bax, ↑Cyt C, ↑caspase-3, ↑caspase-7, ↑caspase-8
P53↑,
P21↑,
Bcl-2↓,
BAX↑,
Casp3↑,
Casp7↑,
Casp8↑,
p‑HER2/EBBR2↓, ↓p-HER1, ↓p-HER2, ↓p-HER3
HO-1↑, ↑Apoptosis, ↑HO-1, ↑Nrf2
NRF2↑,
BIM↑, ↑BIM, ↑cleaved caspase-9 and caspase-3, ↓p-FOXO3A, ↓p-Akt
p‑FOXO3↓,
NA↓,
Sp1/3/4↓, ↑apoptosis, ↑ROS, ↓Sp1, ↓Sp3, ↓Sp4, ↓cMyc, ↓EGFR, ↓survivin, ↓cMET
cMyc↓,
EGFR↓,
survivin↓,
cMET↓,
NQO1↑, G2/M phase arrest, ↑apoptosis, ↑ROS, ↓p-Akt, ↑Bad, ↓Bcl-2, ↑NQO1, ↑HO-1, ↑SOD2, ↑p21, ↑p-ERK, ↑p-JNK,
SOD2↑,
TrxR↓, G2/M cell cycle arrest, ↑apoptosis, ↑ROS, ↓GSH, ↓TrxR
MDM2↓, ↑ROS, ↓MDM-2, ↓cyclin B1, ↓Cdc2, G2/M phase arrest, ↑p-eIF2α, ↑ATF4, KATO III ↑CHOP, ↑apoptosis
p‑eIF2α↑,
ATF4↑,
CHOP↑,
MDA↑, ↑ROS, ↓TrxR1, ↑cleaved caspase-3, ↑CHOP, ↑MDA
Ki-67↓, ↓Ki-67, ↓MMP-9, ↓Twist,
MMP9↓,
Twist↓,
SOX2↓, ↓SOX2, ↓NANOG, ↓Oct-4, ↑E-cadherin, ↑CK18, ↓N-cadherin, ↓vimentin, ↓snail, ↓slug
Nanog↓,
OCT4↓,
N-cadherin↓,
Vim↓,
Snail↓,
TumW↓, ↓Tumor weight, ↓tumor growth
TumCG↓,
HK2↓, ↓HK2
RB1↓, ↓Rb
IL6↓, ↓IL-6, ↓IL-8,
IL8↓,
SOD1↑, ↑SOD1
RadioS↑, ombination with PL, very low intensity of radiation is found to be effective in cancer cells
ChemoSen↑, PL as a chemosensitizer which sensitized the cancer cells towards the commercially available chemotherapeutics
toxicity↓, PL does not have any adverse effect on the normal functioning of the liver and kidney.
Sp1/3/4↓, In vitro SKBR3 ↓Sp1, ↓Sp3, ↓Sp4
GSH↓, In vitro MCF-7 ↓CDK1, G2/M phase arrest ↓CDK4, ↓CDK6, ↓PCNA, ↓p-CDK1, ↑cyclin B1, ↑ROS, ↓GSH, ↓p-IκBα,
SOD↑, In vitro PANC-1, MIA PaCa-2 ↑ROS, ↑SOD1, ↑GSTP1, ↑HO-1

2946- PL,    Piperlongumine, a potent anticancer phytotherapeutic: Perspectives on contemporary status and future possibilities as an anticancer agent
- Review, Var, NA
ROS↑, piperlongumine inhibits cancer growth by resulting in the accumulation of intracellular reactive oxygen species, decreasing glutathione and chromosomal damage, or modulating key regulatory proteins, including PI3K, AKT, mTOR, NF-kβ, STATs, and cycD
GSH↓, reduced glutathione (GSH) levels in mouse colon cancer cells
DNAdam↑,
ChemoSen↑, combined treatment with piperlongumine potentiates the anticancer activity of conventional chemotherapeutics and overcomes resistance to chemo- and radio- therapy
RadioS↑, piperlongumine treatment enhances ROS production via decreasing GSH levels and causing thioredoxin reductase inhibition
BioEnh↑, Moreover, the bioavailability is significantly improved after oral administration of piperlongumine
selectivity↑, It shows selectivity toward human cancer cells over normal cells and has minimal side effects
BioAv↓, ts low aqueous solubility affects its anti-cancer activity by limiting its bioavailability during oral administration
eff↑, encapsulation of piperlongumine in another biocompatible natural polymer, chitosan, has been found to result in pH-dependent piperlongumine release and to enhance cytotoxicity via efficient intracellular ROS accumulation against human gastric carcin
p‑Akt↓, Fig 2
mTOR↓,
GSK‐3β↓,
β-catenin/ZEB1↓,
HK2↓, iperlongumine treatment decreases cell proliferation, single-cell colony-formation ability, and HK2-mediated glycolysis in NSCLC cells via inhibiting the interaction between HK2 and voltage-dependent anion channel 1 (VDAC1)
Glycolysis↓,
Cyt‑c↑,
Casp9↑,
Casp3↑,
Casp7↑,
cl‑PARP↑,
TrxR↓, piperlongumine (4 or 12 mg/kg/day for 15 days) administration significantly inhibits increase in tumor weight and volume with less TrxR1 activity in SGC-7901 cell
ER Stress↑,
ATF4↝,
CHOP↑, activating the downstream ER-MAPK-C/EBP homologous protein (CHOP) signaling pathway
Prx4↑, piperlongumine kills high-grade glioma cells via oxidative inactivation of PRDX4 mediated ROS induction, thereby inducing intracellular ER stress
NF-kB↓, piperlongumine treatment (2.5–5 mg/ kg body weight) decreases the growth of lung tumors via inhibition of NF-κB
cycD1↓, decreases expression of cyclin D1, cyclin- dependent kinase (CDK)-4, CDK-6, p- retinoblastoma (p-Rb)
CDK4↓,
CDK6↓,
p‑RB1↓,
RAS↓, piperlongumine downregulates the expression of Ras protein
cMyc↓, inhibiting the activity of other related proteins, such as Akt/NF-κB, c-Myc, and cyclin D1 in DMH + DSS induced colon tumor cells
TumCCA↑, by arresting colon tumor cells in the G2/M phase of the cell cycle
selectivity↑, hows more selective cytotoxicity against human breast cancer MCF-7 cells than human breast epithelial MCF-10A cells
STAT3↓, thus inducing inhibition of the STAT3 signaling pathway in multiple myeloma cells
NRF2↑, Nrf2) activation has been found to mediate the upregulation of heme oxygenase-1 (HO-1) in piperlongumine treated MCF-7 and MCF-10A cells
HO-1↑,
PTEN↑, stimulates ROS accumulation; p53, p27, and PTEN overexpression
P-gp↓, P-gp, MDR1, MRP1, survivin, p-Akt, NF-κB, and Twist downregulation;
MDR1↓,
MRP1↓,
survivin↓,
Twist↓,
AP-1↓, iperlongumine significantly suppresses the expression of transcription factors, such as AP-1, MYC, NF-κB, SP1, STAT1, STAT3, STAT6, and YY1.
Sp1/3/4↓,
STAT1↓,
STAT6↓,
SOX4↑, increased expression of p21, SOX4, and XBP in B-ALL cells
XBP-1↑,
P21↑,
eff↑, combined use of piperlongumine with cisplatin enhances the sensitivity toward cisplatin by inhibiting Akt phosphorylation
Inflam↓, inflammation (COX-2, IL6); invasion and metastasis, such as ICAM-1, MMP-9, CXCR-4, VEGF;
COX2↓,
IL6↓,
MMP9↓,
TumMeta↓,
TumCI↓,
ICAM-1↓,
CXCR4↓,
VEGF↓,
angioG↓,
Half-Life↝, The analysis of the plasma of piperlongumine treated mice (50 mg/kg) after intraperitoneal administration, 1511.9 ng/ml, 418.2 ng/ml, and 41.9 ng/ml concentrations ofplasma piperlongumine were found at 30 minutes, 3 hours, and 24 hours, respecti
BioAv↑, Moreover, the bioavailability is significantly improved after oral administration of piperlongumine

2944- PL,    Piperlongumine, a Potent Anticancer Phytotherapeutic, Induces Cell Cycle Arrest and Apoptosis In Vitro and In Vivo through the ROS/Akt Pathway in Human Thyroid Cancer Cells
- in-vitro, Thyroid, IHH4 - in-vitro, Thyroid, 8505C - in-vivo, NA, NA
ROS↑, it is selectively toxic to cancer cells by generating reactive oxygen species (ROS)
selectivity↑,
tumCV↓, Cell viability, colony formation, cell cycle, apoptosis, and cellular ROS induction.
TumCCA↑,
Apoptosis↑,
ERK↑, activation of Erk and the suppression of the Akt/mTOR pathways through ROS induction were seen in cells treated with PL
Akt↓,
mTOR↓,
neuroP↑, neuroprotective, and anticancer properties
Bcl-2↓, induces the downregulation of Bcl2 expression and the activation of caspase-3, poly (ADP-ribose) polymerase (PARP), and JNK
Casp3↑,
PARP↑,
JNK↑,
*toxicity↓, several whole-animal models, and it is highly safe when used in vivo
eff↓, Pre-treatment with N-acetylcysteine (NAC; a selective ROS scavenger) significantly reduced PL-mediated ROS activation
TumW↓, tumor weight in the PL (10 mg/kg) treatment group significantly decreased when compared with that in the control group

1938- PL,    Piperlongumine regulates epigenetic modulation and alleviates psoriasis-like skin inflammation via inhibition of hyperproliferation and inflammation
- Study, PSA, NA - in-vivo, NA, NA
ROS↑, In this study, we demonstrated that piperlongumine (PPL) treatment effectively abrogated the hyperproliferation and differentiation of keratinocytes by inducing ROS-mediated late apoptosis with loss of mitochondrial membrane potential.
Apoptosis↑,
MMP↓,
TumCCA↑, the arrest of cell cycle was found at Sub-G1 phase as a result of DNA fragmentation.
DNAdam↑,
STAT3↓, inhibition of STAT3 and Akt signaling was observed
Akt↓,
PCNA↓, decrease in proliferative markers such as PCNA, ki67, and Cyclin D1 along with anti-apoptotic Bcl-2 protein expression
Ki-67↓,
cycD1↓,
Bcl-2↓,
K17↓, Keratin 17 is a critical regulator of keratinocyte differentiation, and it was found to be downregulated with PPL significantly
HDAC↓, PPL epigenetically inhibited histone-modifying enzymes, which include histone deacetylases (HDACs) of class I (HDAC1–4) and class II (HDAC6)
ROS↑, PPL at 5 and 10 µM concentration increased the reactive oxygen species (ROS) levels and a marked increase in oxidative stress were observed when combined with H2O2
*IL1β↓, Topical IMQ prominently induced the levels of pro-inflammatory cytokines, including IL-1β, IL-6, TNF-α, IL-17, IL-22, and transforming growth factor (TGF)-β, while PPL significantly suppressed these levels
*IL6↓,
*TNF-α↓,
*IL17↓,
*IL22↓,

1946- PL,  PI,    Piperlonguminine and Piperine Analogues as TrxR Inhibitors that Promote ROS and Autophagy and Regulate p38 and Akt/mTOR Signaling
- in-vitro, Liver, NA
eff↑, Among these, compound 9m exerted the most potent antiproliferative activity against drug-resistant Bel-7402/5-FU human liver cancer 5-FU resistant cells (IC50 = 0.8 μM), which was approximately 10-fold lower than piperlongumine (IC50 = 8.4 μM).
toxicity↓, Further, 9m showed considerably lower cytotoxicity against LO2 human normal liver epithelial cells compared to Bel-7402/5-FU.
TrxR↓, Mechanistically, compound 9m inhibited thioredoxin reductase (TrxR) activity, increased ROS levels, reduced mitochondrial transmembrane potential (MTP
ROS↑,
MMP↓,
p38↑, Finally, 9m activated significantly the p38 signaling pathways and suppressed the Akt/mTOR signaling pathways.
Akt↓,
mTOR↓,

1952- PL,  5-FU,    Piperlongumine induces ROS accumulation to reverse resistance of 5-FU in human colorectal cancer via targeting TrxR
- in-vivo, CRC, HCT8
ROS↑, PL acted as a ROS inducer via binding and inhibiting TrxR (IC50 around 10.17 μM).
TrxR↓,
eff↑, enhanced the therapeutic effects of 5-FU through the dephosphorylation of Akt in BALB/c athymic nude mice bearing HCT-8/5-FU tumor xenografts.
p‑Akt↓, promoting inhibition of Akt phosphorylation,

2651- Plum,    Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical Evidence
- Review, Var, NA
ROS↑, Various studies have shown that plumbagin is a potent inducer of ROS
TrxR↓, The mechanism underlying ROS induction by plumbagin has predominantly been attributed to inhibition of the antioxidant enzymes TrxR
GSR↓, and glutathione reductase
ER Stress↓, mediates its anticancer effect by inducing ER stress-mediated apoptosis
TumCCA↑, S/G2 and G2/M cell cycle arrest
MMP↓, and mitochondrial membrane depolarization in an ROS-dependent manner
NF-kB↓, plumbagin was found to inhibit the NF-κB [57], PI3K/AKT/mTOR [58] and MKP1/2 [59] pathways in non-small cell lung cancer, bladder cancer, and lymphoma,
PI3K↓,
Akt↓,
mTOR↓,
MKP1↓,
MKP2↓,
ChemoSen↑, improve the efficacy of existing chemotherapeutic strategies

1237- PS,    Pterostilbene induces cell apoptosis and inhibits lipogenesis in SKOV3 ovarian cancer cells by activation of AMPK-induced inhibition of Akt/mTOR signaling cascade
- in-vitro, Ovarian, SKOV3
TumCMig↓,
TumCI↓,
MDA↑,
ROS↑,
BAX↑,
Casp3↑,
Bcl-2↓,
SREBP1↓,
FASN↓,
AMPK↓,
p‑AMPK↑,
p‑P53↑,
p‑TSC2↑,
p‑Akt↓,
p‑mTOR↓,
p‑S6K↓, p-S6K1
p‑4E-BP1↓,

80- QC,    Quercetin reverses EGF-induced epithelial to mesenchymal transition and invasiveness in prostate cancer (PC-3) cell line via EGFR/PI3K/Akt pathway
- in-vitro, Pca, PC3
Vim↓,
ERK↓,
Snail↓,
Slug↓,
Twist↓,
EGFR↓,
p‑Akt↓,
EGFR↓,
N-cadherin↓,

81- QC,  EGCG,    Enhanced inhibition of prostate cancer xenograft tumor growth by combining quercetin and green tea
- in-vivo, Pca, NA
COMT↓,
MRP1↓,
Ki-67↓,
Bax:Bcl2↑,
AR↓,
Akt↓,
p‑ERK↓, ERK1/2
COMT↓,
eff↑, Enhanced inhibition of prostate cancer xenograft tumor growth by combining quercetin and green tea

54- QC,    Quercetin‑3‑methyl ether suppresses human breast cancer stem cell formation by inhibiting the Notch1 and PI3K/Akt signaling pathways
- in-vitro, BC, MCF-7
EMT↓,
E-cadherin↑,
Vim↓,
MMP2↓,
NOTCH1↓,
PI3K/Akt↓,
PI3k/Akt/mTOR↓,
p‑Akt↓,
EZH2↓, Querectin-3-methyl ether downregulates Notch1, PI3K-AKT and EZH2 signals in breast cancer cells

61- QC,    Midkine downregulation increases the efficacy of quercetin on prostate cancer stem cell survival and migration through PI3K/AKT and MAPK/ERK pathway
- in-vitro, Pca, PC3 - in-vitro, Pca, LNCaP - in-vitro, Pca, ARPE-19
p‑PI3K↓, combined therapy inhibited the phosphorylation of PI3K, AKT and ERK1/2, and reduced the protein expression of p38, ABCG2 and NF-κB.
p‑Akt↓,
p‑ERK↓,
NF-kB↓,
p38↓,
ABCG2↓,

63- QC,    Quercetin facilitates cell death and chemosensitivity through RAGE/PI3K/AKT/mTOR axis in human pancreatic cancer cells
- in-vitro, Pca, NA
RAGE↓, Silencing RAGE expression by suppressing the PI3K/AKT/mTOR axis
PI3K↓,
mTOR↓,
Akt↓,
Apoptosis↑,
TumAuto↑,

39- QC,    A Comprehensive Analysis and Anti-Cancer Activities of Quercetin in ROS-Mediated Cancer and Cancer Stem Cells
- Analysis, NA, NA
ROS↑, production of ROS in both cancer, and cancer stem cells,
GSH↓, By directly reducing the intracellular pool of glutathione (GSH), QC can influence ROS metabolism
IL6↓, QC is its ability to inhibit inflammatory mediators including IFN-γ, IL-6, COX-2, IL-8, iNOS, TNF-α, and many other cancer inflammatory mechanisms
COX2↓,
IL8↓,
iNOS↓,
TNF-α↓,
MAPK↑, quercetin-3-methyl ether stopped the growth of cancer in the esophagus by blocking the Akt/mTOR/P70S6k and MAPK pathways, which are important for the growth of cancer
ERK↑,
SOD↑,
ATP↓,
Casp↑,
PI3K/Akt↓,
mTOR↓,
NOTCH1↓,
Bcl-2↓,
BAX↑,
IFN-γ↓,
TumCP↓, QC directly involves inducing apoptosis and/or the cell cycle arrest process, and also inhibits the propagation of rapidly proliferating cells
TumCCA↑,
Akt↓, quercetin-3-methyl ether stopped the growth of cancer in the esophagus by blocking the Akt/mTOR/P70S6k and MAPK pathways, which are important for the growth of cancer
P70S6K↓,
*Keap1↓,
*GPx↑, inhibiting its negative regulator, Keap1, resulting in Nrf-2 nuclear translocation [86]. This results in the production and activation of enzymes namely GPX, CAT, heme oxygenase 1 (HO-1), peroxiredoxin (PRX)
*Catalase↑,
*HO-1↑,
*NRF2↑,
NRF2↑, The effect of QC on nuclear translocation of Nrf-2 in a time-dependent manner, and increased expression level in HepG2, MgM (malignant mesothelioma) MSTO-211H, and H2452 cells at mRNA and protein quantity has been reported recently
eff↑, quercetin coupled with gold nanoparticles promoted apoptosis by inhibiting the EGFR/P13K/Akt-mediated pathway
HIF-1↓, Quercetin has been shown to suppress the Akt-mTOR pathway and hypoxia-induced factor 1 signaling pathway in gastric cancer cells, resulting in preventative autophagy

98- QC,    Quercetin postconditioning attenuates myocardial ischemia/reperfusion injury in rats through the PI3K/Akt pathway
- in-vivo, Stroke, NA
*Bcl-2↑,
*BAX↓,
*Bax:Bcl2↓, Que postconditioning significantly decreased Bax expression and increased Bcl-2 expression
*cardioP↑, cardioprotection by activating the PI3K/Akt signaling pathway and modulating the expression of Bcl-2 and Bax proteins.
*Akt↑,
*PI3K↑,
*LDH↓, Que postconditioning reduced the levels of CK (1642.9±194.3 vs 2679.5±194.3 U/L, P<0.05) and LDH (1273.6±176.5 vs 2618±197.7 U/L, P<0.05) compared to the I/R group

86- QC,    Quercetin regulates insulin like growth factor signaling and induces intrinsic and extrinsic pathway mediated apoptosis in androgen independent prostate cancer cells (PC-3)
- in-vitro, Pca, PC3
BAD↑,
IGFBP3↑,
Cyt‑c↑, Quercetin significantly increases the proapoptotic mRNA levels of Bad, IGFBP-3 and protein levels of Bad, cytochrome C, cleaved caspase-9, caspase-10, cleaved PARP and caspase-3 activity in PC-3 cells
cl‑Casp9↑, cleaved
Casp10↑,
cl‑PARP↑, cleaved
Casp3↑,
IGF-1R↓,
PI3K↓,
p‑Akt↓,
cycD1↓, protein
IGF-1↓, mRNA levels of IGF-1,IGR-2, IGF-1R
IGF-2↓,
IGF-1R↓,

92- QC,    Quercetin Inhibits Angiogenesis Mediated Human Prostate Tumor Growth by Targeting VEGFR- 2 Regulated AKT/mTOR/P70S6K Signaling Pathways
- vitro+vivo, Pca, HUVECs - vitro+vivo, Pca, PC3
VEGF↓, VEGF-R2
HemoG↓,
Akt↓, AKT/mTOR/P70S6K↓
mTOR↓,
P70S6K↓,

95- QC,    Quercetin, a natural dietary flavonoid, acts as a chemopreventive agent
- in-vitro, Pca, PC3
p‑ERK↓, ERK1/2
p‑STAT3↓, pSTAT3
p‑Akt↓,
N-cadherin↓,
Vim↓,
cycD1↓,
Snail↓,
Slug↓,
Twist↓, mRNA
PCNA↓,

916- QC,    Quercetin and cancer: new insights into its therapeutic effects on ovarian cancer cells
- Review, Ovarian, NA
COX2↓,
CRP↓,
ER Stress↑, Quercetin can result in stimulate the ER stress pathway that lead to the cause of cell death and apoptosis
Apoptosis↑,
GRP78/BiP↑,
CHOP↑,
p‑STAT3↓, quercetin suppresses STAT3 and PI3K/AKT/mTOR pathways
PI3K↓,
Akt↓,
mTOR↓,
cMyc↓, leading to downregulate the prosurvival cellular proteins expression, including cMyc, cyclin D1, and c-FLIP
cycD1↓,
cFLIP↓,
IL6↓, decreased the IL-6 and IL-10 release
IL10↓,

923- QC,    Quercetin as an innovative therapeutic tool for cancer chemoprevention: Molecular mechanisms and implications in human health
- Review, Var, NA
ROS↑, decided by the availability of intracellular reduced glutathione (GSH),
GSH↓, extended exposure with high concentration of quercetin causes a substantial decline in GSH levels
Ca+2↝,
MMP↓,
Casp3↑, activation of caspase-3, -8, and -9
Casp8↑,
Casp9↑,
other↓, when p53 is inhibited, cancer cells become vulnerable to quercetin-induced apoptosis
*ROS↓, Quercetin (QC), a plant-derived bioflavonoid, is known for its ROS scavenging properties and was recently discovered to have various antitumor properties in a variety of solid tumors.
*NRF2↑, Moreover, the therapeutic efficacy of QC has also been defined in rat models through the activation of Nrf-2/HO-1 against high glucose-induced damage
HO-1↑,
TumCCA↑, QC increases cell cycle arrest via regulating p21WAF1, cyclin B, and p27KIP1
Inflam↓, QC-mediated anti-inflammatory and anti-apoptotic properties play a key role in cancer prevention by modulating the TLR-2 (toll-like receptor-2) and JAK-2/STAT-3 pathways and significantly inhibit STAT-3 tyrosine phosphorylation within inflammatory ce
STAT3↓,
DR5↑, several studies showed that QC upregulated the death receptor (DR)
P450↓, it hinders the activity of cytochrome P450 (CYP) enzymes in hepatocytes
MMPs↓, QC has also been shown to suppress metastatic protein expression such as MMPs (matrix metalloproteases)
IFN-γ↓, QC is its ability to inhibit inflammatory mediators including IFN-γ, IL-6, COX-2, IL-8, iNOS, TNF-α,
IL6↓,
COX2↓,
IL8↓,
iNOS↓,
TNF-α↓,
cl‑PARP↑, Induced caspase-8, caspase-9, and caspase-3 activation, PARP cleavage, mitochondrial membrane depolarization,
Apoptosis↑, increased apoptosis and p53 expression
P53↑,
Sp1/3/4↓, HT-29 colon cancer cells: decreased the expression of Sp1, Sp3, Sp4 mrna, and survivin,
survivin↓,
TRAILR↑, H460 Increased the expression of TRAILR, caspase-10, DFF45, TNFR 1, FAS, and decreased the expression of NF-κb, ikkα
Casp10↑,
DFF45↑,
TNFR 1↑,
Fas↑,
NF-kB↓,
IKKα↓,
cycD1↓, SKOV3 Reduction in cyclin D1 level
Bcl-2↓, MCF-7, HCC1937, SK-Br3, 4T1, MDA-MB-231 Decreased Bcl-2 expression, increasedBax expression, inhibition of PI3K-Akt pathway
BAX↑,
PI3K↓,
Akt↓,
E-cadherin↓, MDA-MB-231 Induced the expression of E-cadherin and downregulated vimentin levels, modulation of β-catenin target genes such as cyclin D1 and c-Myc
Vim↓,
β-catenin/ZEB1↓,
cMyc↓,
EMT↓, MCF-7 Suppressed the epithelial–mesenchymal transition process, upregulated E-cadherin expression, downregulated vimentin and MMP-2 expression, decreased Notch1 expression
MMP2↓,
NOTCH1↓,
MMP7↓, PANC-1, PATU-8988 Decreased the secretion of MMP and MMP7, blocked the STAT3 signaling pathway
angioG↓, PC-3, HUVECs Reduced angiogenesis, increased TSP-1 protein and mrna expression
TSP-1↑,
CSCs↓, PC-3 and LNCaP cells Activated capase-3/7 and inhibit the expression of Bcl-2, surviving and XIAP in CSCs.
XIAP↓,
Snail↓, inhibiting the expression of vimentin, slug, snail and nuclear β-catenin, and the activity of LEF-1/TCF responsive reporter
Slug↓,
LEF1↓,
P-gp↓, MCF-7 and MCF-7/dox cell lines Downregulation of P-gp expression
EGFR↓, MCF-7 and MDA-MB-231 cells Suppressed EGFR signaling and inhibited PI3K/Akt/mTOR/GSK-3β
GSK‐3β↓,
mTOR↓,
RAGE↓, IA Paca-2, BxPC3, AsPC-1, HPAC and PANC1 Silencing RAGE expression
HSP27↓, Breast cancer In vivo NOD/SCID mice Inhibited the overexpression of Hsp27
VEGF↓, QC significantly reversed an elevation in profibrotic markers (VEGF, IL-6, TGF, COL-1, and COL-3)
TGF-β↓,
COL1↓,
COL3A1↓,

2342- QC,    Quercetin Inhibits the Proliferation of Glycolysis-Addicted HCC Cells by Reducing Hexokinase 2 and Akt-mTOR Pathway
- in-vitro, HCC, Bel-7402 - in-vitro, HCC, SMMC-7721 cell - in-vivo, NA, NA
TumCP↓, In the present study, we reported that QUE inhibited the proliferation of HCC cells that relied on aerobic glycolysis.
HK2↓, QUE could decrease the protein levels of HK2 and suppress the AKT/mTOR pathway in HCC cells
Akt↓,
mTOR↓,
GlucoseCon↓, glucose uptake and lactate production of SMMC-7721 and Bel-7402 decreased in a dose-dependent manner after QUE treatment
lactateProd↓,
Glycolysis↓, QUE can inhibit the glycolysis of cancer cells, thereby inhibiting the progression of multiple cancers

2341- QC,    Quercetin suppresses the mobility of breast cancer by suppressing glycolysis through Akt-mTOR pathway mediated autophagy induction
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
MMP2↓, quercetin treatment down-regulated the expression of cell migration marker proteins, such as matrix metalloproteinase 2 (MMP-2), MMP-9 and vascular endothelial growth factor (VEGF).
MMP9↓, level of MMP-2, MMP-9 and VEGF was all strongly cut down by quercetin treatment compared with control group
VEGF↓,
Glycolysis↓, quercetin successfully blocked cell glycolysis by inhibiting the level of glucose uptake and the production of lactic acid
lactateProd↓,
PKM2↓, and also decreased the level of glycolysis-related proteins Pyruvate kinase M2 (PKM2), Glucose transporter1(GLUT1) and Lactate dehydrogenase A (LDHA).
GLUT1↓,
LDHA↓,
TumAuto↑, quercetin induced obvious autophagy via inactivating the Akt-mTOR pathway
Akt↓,
mTOR↓,
TumMeta↓, Quercetin suppressed the progression of breast cancer by inhibiting tumor metastasis and glycolysis in vivo
MMP3↓, quercetin effectively suppressed the invasion and migration ability of breast cancer cells through suppressing the expression of MMP-3, MMP-9 and VEGF,
eff↓, down-regulating the expression of PKM2, which regulated the final step of glycolysis, could effectively enhance the chemotherapeutic effect of THP
GlucoseCon↓, we found that quercetin effectively suppressed the level of glucose uptake and the production of lactic acid, and also down-regulated the expression of glycolysis-related proteins PKM2, LDHA and GLUT1,
lactateProd↓,
TumAuto↑, quercetin treatment induced obvious autophagy in MCF-7 and MDA-MB-231 cells via inactivating the Akt-mTOR pathway
LC3B-II↑, showing obvious conversion of LC3B-I to LC3B-II

3353- QC,    Quercetin triggers cell apoptosis-associated ROS-mediated cell death and induces S and G2/M-phase cell cycle arrest in KON oral cancer cells
- in-vitro, Oral, KON - in-vitro, Nor, MRC-5
tumCV↓, reduced the vitality of KON cells and had minimal effect on MRC cells.
selectivity↑, Owing to the appropriate dosages of quercetin needed to treat these diseases, normal cells do not exhibit any overtly harmful side effects.
TumCCA↑, quercetin increased the percentage of dead cells and cell cycle arrests in the S and G2/M phases.
TumCMig↓, quercetin inhibited KON cells’ capacity for migration and invasion in addition to their effects on cell stability and structure
TumCI↓,
Apoptosis↑, inducing apoptosis and preventing metastasis, quercetin was found to downregulate the expression of BCL-2/BCL-XL while increasing the expression of BAX.
TumMeta↓,
Bcl-2↓,
BAX↑,
TIMP1↑, TIMP-1 expression was upregulated while MMP-2 and MMP-9 were downregulated.
MMP2↓,
MMP9↓,
*Inflam↓, anti-inflammatory, anti-cancer, antibacterial, antifungal, anti-diabetic, antimalarial, neuroprotective, and cardioprotective properties.
*neuroP↑,
*cardioP↑,
p38↓, MCF-7 cells, quercetin successfully decreased the expression of phosphor p38MAPK, Twist, p21, and Cyclin D1
MAPK↓,
Twist↓,
P21↓,
cycD1↓,
Casp3↑, directly aided by the significant increase in caspase-3 and − 9 levels and activities
Casp9↑,
p‑Akt↓, High quercetin concentrations also caused an inhibition of Akt and ERK phosphorylation
p‑ERK↓,
CD44↓, reduced cell division and triggered apoptosis, albeit to a lesser degree in CD44+/CD24− cells.
CD24↓,
ChemoSen↑, combination of quercetin and doxorubicin caused G2/M arrest in T47D cells, and to a lesser amount in cancer stem cells (CSCs) that were isolate
MMP↓, (lower levels of ΔΨ m), which is followed by the release of Cyto C, AIF, and Endo G from mitochondria, which causes apoptosis and ultimately leads to cell death.
Cyt‑c↑,
AIF↑,
ROS↑, Compared to the control group, quercetin administration significantly raised ROS levels at 25, 50, 100, 200, and 400 µg/mL.
Ca+2↑, increased production of reactive oxygen species and Ca2+, decreased levels of mitochondrial membrane potential (ΔΨ m),
Hif1a↓, Quercetin treatment resulted in a considerable downregulation of HIF-1α, VEGF, MMP2, and MMP9 mRNA and protein expression levels in HOS cells.
VEGF↓,

3354- QC,    Quercetin: Its Main Pharmacological Activity and Potential Application in Clinical Medicine
- Review, Var, NA
*ROS↓, quercetin is the most effective free radical scavenger in the flavonoid family
*IronCh↓, Chelating metal ions: related studies have confirmed that quercetin can induce Cu2+ and Fe2+ to play an antioxidant role through catechol in its structure.
*lipid-P↓, quercetin could inhibit Fe2+-induced lipid peroxidation by binding Fe2+ a
*GSH↑, regulation of glutathione levels to enhance antioxidant capacity.
*NRF2↑, quercetin upregulates the expression of Nrf2 and nuclear transfer by activating the intracellular p38 MAPK pathway, increasing the level of intracellular GSH
TumCCA↑, human leukaemia U937 cells, quercetin induces cell cycle arrest at G2 (late DNA synthesis phase)
ER Stress↑, quercetin can induce ER stress and promote the release of p53, thereby inhibiting the activities of CDK2, cyclin A, and cyclin B, thereby causing MCF-7 breast cancer cells to stagnate in the S phase.
P53↑,
CDK2↓,
cycA1↓,
CycB↓,
cycE↓, downregulation of cyclins E and D, PNCA, and Cdk-2 protein expression and increased expressions of p21 and p27
cycD1↓,
PCNA↓,
P21↑,
p27↑,
PI3K↓, quercetin inhibited the PI3K/AKT/mTOR and STAT3 pathways in PEL, which downregulated the expression of survival cell proteins such as c-FLIP, cyclin D1, and cMyc.
Akt↓,
mTOR↓,
STAT3↓, in excess of 20 μM by inhibiting STAT3 signalling
cFLIP↓,
cMyc↓,
survivin↓, Lung cancer [27] ↓ Survivin ↑DR5
DR5↓,
*Inflam↓, Quercetin has been confirmed to be a long-acting anti-inflammatory substance in flavonoids
*IL6↓, inhibit IL-8 is stronger and can inhibit IL-6 and increase cytosolic calcium levels
*IL8↓,
COX2↓, inhibit the enzymes that produce inflammation (cyclooxygenase (COX) and lipoxygenase (LOX))
5LO↓,
*cardioP↑, The protective mechanism of quercetin on the cardiovascular system
*FASN↓, 25 μM, within 30 minutes could inhibit the synthesis of fatty acids.
*AntiAg↑, quercetin helps reduce lipid peroxidation, platelet aggregation, and capillary permeability
*MDA↓, quercetin can decrease the levels of malondialdehyde (MDA)

3341- QC,    Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application
- Review, Var, NA - Review, Stroke, NA
*antiOx↑, we highlight the recent advances in the antioxidant activities, chemical research, and medicinal application of quercetin.
*BioAv↑, Moreover, owing to its high solubility and bioavailability,
*GSH↑, Animal and cell studies found that quercetin induces GSH synthesis
*AChE↓, In this way, it has a stronger inhibitory effect against key enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), which are associated with oxidative properties
*BChE↓,
*H2O2↓, Quercetin has been shown to alleviate the decline of manganese-induced antioxidant enzyme activity, the increase of AChE activity, hydrogen peroxide generation, and lipid peroxidation levels in rats, thereby preventing manganese poisoning
*lipid-P↓,
*SOD↑, quercetin significantly enhanced the expression levels of endogenous antioxidant enzymes such as Cu/Zn SOD, Mn SOD, catalase (CAT), and GSH peroxidase in the hippocampal CA1 pyramidal neurons of animals suffering from ischemic injury.
*SOD2↑,
*Catalase↑,
*GPx↑,
*neuroP↑, Thus, quercetin may be a potential neuroprotective agent for transient ischemia
*HO-1↑, quercetin can promote fracture healing in smokers by removing free radicals and upregulating the expression of heme-oxygenase- (HO-) 1 and superoxide-dismutase- (SOD-) 1, which protects primary human osteoblasts exposed to cigarette smoke
*cardioP↑, Quercetin has also been shown to prevent heart damage by clearing oxygen-free radicals caused by lipopolysaccharide (LPS)-induced endotoxemia.
*MDA↓, quercetin treatment increased the levels of SOD and CAT and reduced the level of MDA after LPS induction, suggesting that quercetin enhanced the antioxidant defense system
*NF-kB↓, quercetin promotes disease recovery by downregulating the expression of NIK and NF-κB including IKK and RelB, and upregulating the expression of TRAF3.
*IKKα↓,
*ROS↓, quercetin controls the development of atherosclerosis induced by a high-fructose diet by inhibiting ROS and enhancing PI3K/AKT.
*PI3K↑,
*Akt↑,
*hepatoP↑, Quercetin exerts antioxidant and hepatoprotective effects against acute liver injury in mice induced by tertiary butyl hydrogen peroxide. T
P53↑, Quercetin prevents cancer development by upregulating p53, which is the most common inactivated tumor suppressor. It also increases the expression of BAX, a downstream target of p53 and a key pro-apoptotic gene in HepG2 cells
BAX↑,
IGF-1R↓, Studies have found that insulin-like growth factor receptor 1 (IGFIR), AKT, androgen receptor (AR), and cell proliferation and anti-apoptotic proteins are increased in cancer, but quercetin supplementation normalizes their expression
Akt↓,
AR↓,
TumCP↓,
GSH↑, Moreover, quercetin significantly increases antioxidant enzyme levels, including GSH, SOD, and CAT, and inhibits lipid peroxides, thereby preventing skin cancer induced by 7,12-dimethyl Benz
SOD↑,
Catalase↑,
lipid-P↓,
*TNF-α↓, Heart: increases TNF-α, and prevents Ca2+ overload-induced myocardial cell injury
*Ca+2↓,

3378- QC,    CK2 and PI3K are direct molecular targets of quercetin in chronic lymphocytic leukaemia
- in-vitro, AML, NA
CK2↓, We demonstrated that the activity of protein kinase CK2, which positively triggers PI3K/Akt pathway by inactivating PTEN phosphatase, is inhibited by quercetin
PI3K↓, The combined inhibition of CK2 and PI3K kinase activities by quercetin restored ABT-737 sensitivity and increased lethality in human leukemia cells.
TumCD↑,
Akt↓, Quercetin inhibits the PI3K-Akt-Mcl-1 pathway
Mcl-1↓,
PTEN↑, Inhibition of CK2 can rescue PTEN activity increasing apoptosis in CLL

3369- QC,    Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects
- Review, Pca, NA
FAK↓, Quercetin can inhibit HGF-induced melanoma cell migration by inhibiting the activation of c-Met and its downstream Gabl, FAK and PAK [84]
TumCCA↑, stimulation of cell cycle arrest at the G1 stage
p‑pRB↓, mediated through regulation of p21 CDK inhibitor and suppression of pRb phosphorylation resulting in E2F1 sequestering.
CDK2↑, low dose of quercetin has brought minor DNA injury and Chk2 induction
CycB↓, quercetin has a role in the reduction of cyclin B1 and CDK1 levels,
CDK1↓,
EMT↓, quercetin suppresses epithelial to mesenchymal transition (EMT) and cell proliferation through modulation of Sonic Hedgehog signaling pathway
PI3K↓, quercetin on other pathways such as PI3K, MAPK and WNT pathways have also been validated in cervical cancer
MAPK↓,
Wnt↓,
ROS↑, colorectal cancer, quercetin has been shown to suppress carcinogenesis through various mechanisms including affecting cell proliferation, production of reactive oxygen species and expression of miR-21
miR-21↑,
Akt↓, Figure 1 anti-cancer mechanisms
NF-kB↓,
FasL↑,
Bak↑,
BAX↑,
Bcl-2↓,
Casp3↓,
Casp9↑,
P53↑,
p38↑,
MAPK↑,
Cyt‑c↑,
PARP↓,
CHOP↑,
ROS↓,
LDH↑,
GRP78/BiP↑,
ERK↑,
MDA↓,
SOD↑,
GSH↑,
NRF2↑,
VEGF↓,
PDGF↓,
EGF↓,
FGF↓,
TNF-α↓,
TGF-β↓,
VEGFR2↓,
EGFR↓,
FGFR1↓,
mTOR↓,
cMyc↓,
MMPs↓,
LC3B-II↑,
Beclin-1↑,
IL1β↓,
CRP↓,
IL10↓,
COX2↓,
IL6↓,
TLR4↓,
Shh↓,
HER2/EBBR2↓,
NOTCH↓,
DR5↑, quercetin has enhanced DR5 expression in prostate cancer cells
HSP70/HSPA5↓, Quercetin has also suppressed the upsurge of hsp70 expression in prostate cancer cells following heat treatment and enhanced the quantity of subG1 cells
CSCs↓, Quercetin could also suppress cancer stem cell attributes and metastatic aptitude of isolated prostate cancer cells through modulating JNK signaling pathway
angioG↓, Quercetin inhibits angiogenesis-mediated of human prostate cancer cells through negatively modulating angiogenic factors (TGF-β, VEGF, PDGF, EGF, bFGF, Ang-1, Ang-2, MMP-2, and MMP-9)
MMP2↓,
MMP9↓,
IGFBP3↑, Quercetin via increasing the level of IGFBP-3 could induce apoptosis in PC-3 cells
uPA↓, Quercetin through decreasing uPA and uPAR expression and suppressing cell survival protein and Ras/Raf signaling molecules could decrease prostate cancer progression
uPAR↓,
RAS↓,
Raf↓,
TSP-1↑, Quercetin through TSP-1 enhancement could effectively inhibit angiogenesis

3368- QC,    The potential anti-cancer effects of quercetin on blood, prostate and lung cancers: An update
- Review, Var, NA
*Inflam↓, quercetin is known for its anti-inflammatory, antioxidant, and anticancer properties.
*antiOx↑,
*AntiCan↑,
Casp3↓, Quercetin increases apoptosis and autophagy in cancer by activating caspase-3, inhibiting the phosphorylation of Akt, mTOR, and ERK, lessening β-catenin, and stabilizing the stabilization of HIF-1α.
p‑Akt↓,
p‑mTOR↓,
p‑ERK↓,
β-catenin/ZEB1↓,
Hif1a↓,
AntiAg↓, Quercetin have revealed an anti-tumor effect by reducing development of blood vessels. I
VEGFR2↓, decrease tumor growth through targeting VEGFR-2-mediated angiogenesis pathway and suppressing the downstream regulatory component AKT in prostate and breast malignancies.
EMT↓, effects of quercetin on inhibition of EMT, angiogenesis, and invasiveness through the epidermal growth factor receptor (EGFR)/VEGFR-2-mediated pathway in breast cancer
EGFR↓,
MMP2↓, MMP2 and MMP9 are two remarkable compounds in metastatic breast cancer (28–30). quercetin on breast cancer cell lines (MDA-MB-231) and showed that after treatment with this flavonoid, the expression of these two proteinases decreased
MMP↓,
TumMeta↓, head and neck (HNSCC), the inhibitory effect of quercetin on the migration of tumor cells has been shown by regulating the expression of MMPs
MMPs↓,
Akt↓, quercetin by inhibiting the Akt activation pathway dependent on Snail, diminishing the expression of N-cadherin, vimentin, and ADAM9 and raising the expression of E-cadherin and proteins
Snail↓,
N-cadherin↓,
Vim↓,
E-cadherin↑,
STAT3↓, inhibiting STAT3 signaling
TGF-β↓, reducing the expression of TGF-β caused by vimentin and N-cadherin, Twist, Snail, and Slug and increasing the expression of E-cadherin in PC-3 cells.
ROS↓, quercetin exerted an anti-proliferative role on HCC cells by lessening intracellular ROS independently of p53 expression
P53↑, increasing the expression of p53 and BAX in hepatocellular carcinoma (HepG2) cell lines through the reduction of PKC, PI3K, and cyclooxygenase (COX-2)
BAX↑,
PKCδ↓,
PI3K↓,
COX2↓,
cFLIP↓, quercetin by inhibiting PI3K/AKT/mTOR and STAT3 pathways, decreasing the expression of cellular proteins such as c-FLIP, cyclin D1, and c-Myc, as well as reducing the production of IL-6 and IL-10 cytokines, leads to the death of PEL cells
cycD1↓,
cMyc↓,
IL6↓,
IL10↓,
Cyt‑c↑, In addition, quercetin induced c-cytochrome-dependent apoptosis and caspase-3 almost exclusively in the HSB2 cell line
TumCCA↑, Exposure of K562 cells to quercetin also significantly raised the cells in the G2/M phase, which reached a maximum peak in 24 hours
DNMTs↓, pathway through DNA demethylation activity, histone deacetylase (HDAC) repression, and H3ac and H4ac enrichment
HDAC↓,
ac‑H3↑,
ac‑H4↑,
Diablo↑, SMAC/DIABLO exhibited activation
Casp3↑, enhanced levels of activated caspase 3, cleaved caspase 9, and PARP1
Casp9↑,
PARP1↑,
eff↑, green tea and quercetin as monotherapy caused the reduction of levels of anti-apoptotic proteins, CDK6, CDK2, CYCLIN D/E/A, BCL-2, BCL-XL, and MCL-1 and an increase in expression of BAX.
PTEN↑, Quercetin upregulates the level of PTEN as a tumor suppressor, which inhibits AKT signaling
VEGF↓, Quercetin had anti-inflammatory and anti-angiogenesis effects, decreasing VGEF-A, NO, iNOS, and COX-2 levels
NO↓,
iNOS↓,
ChemoSen↑, quercetin and chemotherapy can potentiate their effect on the malignant cell
eff↑, combination with hyperthermia, Shen et al. Quercetin is a method used in cancer treatment by heating, and it was found to reduce Doxorubicin hydrochloride resistance in leukemia cell line K562
eff↑, treatment with ellagic acid, luteolin, and curcumin alone showed excellent anticancer effects.
eff↑, co-treatment with quercetin and curcumin led to a reduction of mitochondrial membrane integrity, promotion of cytochrome C release, and apoptosis induction in CML cells
uPA↓, A-549 cells were shown to have reduced mRNA expressions of urokinase plasminogen activator (uPA), Upar, protein expression of CXCR-4, CXCL-12, SDF-1 when quercetin was applied at 20 and 40 mM/ml by real-time PCR.
CXCR4↓,
CXCL12↓,
CLDN2↓, A-549 cells, indicated that quercetin could reduce mRNA and protein expression of Claudin-2 in A-549 cell lines without involving Akt and ERK1/2,
CDK6↓, CDK6, which supports the growth and viability of various cancer cells, was hampered by the dose-dependent manner of quercetin (IC50 dose of QR for A-549 cells is 52.35 ± 2.44 μM).
MMP9↓, quercetin up-regulated the rates of G1 phase cell cycle and cellular apoptotic in both examined cell lines compared with the control group, while it declined the expressions of the PI3K, AKT, MMP-2, and MMP-9 proteins
TSP-1↑, quercetin increased TSP-1 mRNA and protein expression to inhibit angiogenesis,
Ki-67↓, significant reductions in Ki67 and PCNA proliferation markers and cell survival markers in response to quercetin and/or resveratrol.
PCNA↓,
ROS↑, Also, quercetin effectively causes intracellular ROS production and ER stress
ER Stress↑,

3338- QC,    Quercetin: Its Antioxidant Mechanism, Antibacterial Properties and Potential Application in Prevention and Control of Toxipathy
- Review, Var, NA - Review, Stroke, NA
*antiOx↑, The antioxidant mechanism of quercetin in vivo is mainly reflected in its effects on glutathione (GSH), signal transduction pathways, reactive oxygen species (ROS), and enzyme activities.
*GSH↑,
*ROS↓,
*Dose↑, antioxidant properties of quercetin show a concentration dependence in the low dose range but too much of the antioxidant brings about the opposite result
*NADPH↓, quercetin counteracts atherosclerosis by reversing the increased expression of NADPH oxidase i
*AMP↓, decreases in activation of AMP-activated protein kinase, thereby inhibiting NF-κB signaling
*NF-kB↓,
*p38↑, quercetin improves the antioxidant capacity of cells by activating the intracellular p38 MAPK pathway, increasing intracellular GSH levels and providing a source of hydrogen donors in the scavenging of free radical reactions.
*MAPK↑,
*SOD↑, quercetin achieves protection against acute spinal cord injury by up-regulating the activity of SOD, down-regulating the level of malondialdehyde (MDA), and inhibiting the p38MAPK/iNOS signaling pathway
*MDA↓,
*iNOS↓,
*Catalase↑, quercetin reduces imiquimod (IMQ)-induced MDA levels in skin tissues and enhances catalase, SOD, and GSH activities, which together improve the antioxidant properties of the body
*PI3K↑, It also controls the development of atherosclerosis induced by high fructose diet by enhancing PI3K/AKT and inhibiting ROS
*Akt↑,
*lipid-P↓, Quercetin enhances antioxidant activity and inhibits lipid cultivation, and it is effective in the treatment of oxidative liver damag
*memory↑, reversed hypoxia-induced memory impairment
*radioP↑, Quercetin protects cells from radiation and genotoxicity-induced damage by increasing endogenous antioxidant and scavenging free radical levels
*neuroP↑, This suggests that quercetin may be a potential neuroprotective agent against ischemia, which protects CA1 vertebral neurons from I/R injury in the hippocampal region of animals
*MDA↓, quercetin significantly reduced MDA levels and increased SOD and catalase levels.

1490- RES,    Anticancer Potential of Resveratrol, β-Lapachone and Their Analogues
- Review, Var, NA
TumCCA↑, lapachone and its iodine derivatives induce cell cycle arrest in G2/M in human oral squamous cell carcinoma cells
ROS↑, The primary mechanism of action of β-lapachone and its derivatives is the formation of ROS [92] through its processing by NAD(P)H quinone oxidoreductase 1 (NQO1).
Ca+2↑, abnormal production of ROS leads to an increase in Ca++
MMP↓, depolarization of the mitochondrial membrane
ATP↓, decrease in ATP synthesis
TOP1?, β-lapachone inhibits the catalytic activity of topoisomerase I
P53↑, including upregulation of the p53 tumor suppressor protein
p53 Wildtype∅,
Akt↓, inactivation of the Akt/mTOR pathway was again attributed to β-lapachone, promoting the inhibition of EMT transition in NQO1-positive cells.
mTOR↓,
EMT↓,
*BioAv↓, β-lapachone is a promising anticancer drug, its low bioavailability represents a limitation for clinical use due to low solubility in water and gastrointestinal fluids

2334- RES,    Glut 1 in Cancer Cells and the Inhibitory Action of Resveratrol as A Potential Therapeutic Strategy
- Review, Var, NA
GLUT1↓, resveratrol and other natural products as GLUT1 inhibitors
GlucoseCon↓, Inhibition of Glucose Uptake by Resveratrol
lactateProd↓, RSV were able to inhibit glucose uptake, lactate production, Akt, and mTOR signaling
Akt↓,
mTOR↓,
Dose↝, results suggest that RSV can behave differently according to the dose used and the cell type and the metabolic state
SIRT6↑, RSV induces the expression of silent information regulator-6 (SIRT6) in hypopharyngeal carcinoma FaDu cell line
PKM2↓, observed that RSV down-regulate pyruvate kinase 2 (PKM2) expression by inhibiting mTOR signaling and suppressed cancer metabolism
HK2↓, RSV showed a decrease in mRNA and protein levels of GLUT1, HK2, PFK1, and PKM2 which finally caused inhibition of aerobic glycolysis in a study of VEGF-angiogenesis in human umbilical vein endothelial cells
PFK1↓,
ChemoSen↑, combinatorial strategies that could use GLUT1 inhibitors such as RSV with anticancer conventional drugs for therapy are promising

2687- RES,    Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs
- Review, NA, NA - Review, AD, NA
NF-kB↓, RES affects NF-kappaB activity and inhibits cytochrome P450 isoenzyme (CYP A1) drug metabolism and cyclooxygenase activity.
P450↓,
COX2↓,
Hif1a↓, RES may inhibit also the expression of hypoxia-inducible factor-1alpha (HIF-1alpha) and vascular endothelial growth factor (VEGF) and thus may have anti-cancer properties
VEGF↓,
*SIRT1↑, RES induces sirtuins, a class of proteins involved in regulation of gene expression. RES is also considered to be a SIRT1-activating compound (STACs).
SIRT1↓, In contrast, decreased levels of SIRT1 and SIRT2 were observed after treatment of BJ cells with concentrations of RES
SIRT2↓,
ChemoSen⇅, However, the effects of RES remain controversial as it has been reported to increase as well as decrease the effects of chemotherapy.
cardioP↑, RES has been shown to protect against doxorubicin-induced cardiotoxicity via restoration of SIRT1
*memory↑, RES has been shown to inhibit memory loss and mood dysfunction which can occur during aging.
*angioG↑, RES supplementation resulted in improved learning in the rats. This has been associated with increased angiogenesis and decreased astrocytic hypertrophy and decreased microglial activation in the hippocampus.
*neuroP↑, RES may have neuroprotective roles in AD and may improve memory function in dementia.
STAT3↓, RES was determined to inhibit STAT3, induce apoptosis, suppress the stemness gene signature and induced differentiation.
CSCs↓,
RadioS↑, synergistically increased radiosensitivity. RES treatment suppressed repair of radiation-induced DNA damage
Nestin↓, RES decreased NESTIN
Nanog↓, RES was determined to suppress the expression of NANOG
TP53↑, RES treatment activated TP53 and p21Cip1.
P21↑,
CXCR4↓, RES downregulated nuclear localization and activity of NF-kappa-B which resulted in decreased expression of MMP9 and C-X-C chemokine receptor type 4 (CXCR4), two proteins associated with metastasis.
*BioAv↓, The pharmacological properties of RES can be enhanced by nanoencapsulation. Normally the solubility and stability of RES is poor.
EMT↓, RES was determined to suppress many gene products associated with EMT such as decreased vimentin and SLUG expression but increased E-cadherin expression.
Vim↓,
Slug↓,
E-cadherin↑,
AMPK↑, RES can induce AMPK which results in inhibition of the drug transporter MDR1 in oxaliplatin-resistant (L-OHP) HCT116/L-OHP CRCs.
MDR1↓,
DNAdam↑, RES induced double strand DNA breaks by interfering with type II topoisomerase.
TOP2↓, The DNA damage was determined to be due to type II topoisomerase poisoning.
PTEN↑, RES was determined to upregulate phosphatase and tensin homolog (PTEN) expression and decrease the expression of activated Akt.
Akt↓,
Wnt↓, RES was shown to decrease WNT/beta-catenin pathway activity and the downstream targets c-Myc and MMP-7 in CRC cells.
β-catenin/ZEB1↓,
cMyc↓,
MMP7↓,
MALAT1↓, RES also decreased the expression of long non-coding metastasis associated lung adenocarcinoma transcript 1 (RNA-MALAT1) in the LoVo and HCT116 CRC cells.
TCF↓, Treatment of CRC cells with RES resulted in decreased expression of transcription factor 4 (TCF4), which is a critical effector molecule of the WNT/beta-catenin pathway.
ALDH↓, RES was determined to downregulate ALDH1 and CD44 in HNC-TICs in a dose-dependent fashion.
CD44↓,
Shh↓, RES has been determined to decrease IL-6-induced Sonic hedgehog homolog (SHH) signaling in AML.
IL6↓, RES has been shown to inhibit the secretion of IL-6 and VEGF from A549 lung cancer cells
VEGF↓,
eff↑, Combined RES and MET treatment resulted in a synergistic response in terms of decreased TP53, gammaH2AX and P-Chk2 expression. Thus, the combination of RES and MET might suppress some of the aging effects elicited by UVC-induced DNA damage
HK2↓, RES treatment resulted in a decrease in HK2 and increased mitochondrial-induced apoptosis.
ROS↑, RES was determined to shut off the metabolic shift and increase ROS levels and depolarized mitochondrial membranes.
MMP↓,

2471- RES,    Resveratrol Regulates Glucose and Lipid Metabolism in Diabetic Rats by Inhibition of PDK1/AKT Phosphorylation and HIF-1α Expression
- in-vivo, Diabetic, NA
*p‑PDK1↓, RSV treatment significantly downregulated the proteins expression of p-PDK1 and p-AKT (P < 0.01) and the levels of HIF-1α (P < 0.05) and GLUT1 (P < 0.01), while significantly upregulating the level of LDLR (P < 0.05).
*p‑Akt↓,
*Hif1a↓,
*GLUT1↓,

2443- RES,    Health Benefits and Molecular Mechanisms of Resveratrol: A Narrative Review
- Review, Var, NA
*antiOx↑, Resveratrol has shown strong antioxidant properties in many studies
*ROS↓,
*PTEN↑, resveratrol upregulated the phosphatase and tensin homolog (PTEN), which decreased Akt phosphorylation, leading to an upregulation of antioxidant enzyme mRNA levels such as catalase (CAT) and superoxide dismutase (SOD)
*Akt↓,
*Catalase↑,
*SOD↑,
*ERK↓, modulating antioxidant enzymes through downregulation of extracellular signal-regulated kinase (ERK)
*GSH↑, thus the levels of antioxidants like glutathione (GSH) increased, and free radicals were directly scavenged
*AMPK↑, resveratrol activated adenosine monophosphate (AMP)-activated protein kinase (AMPK) to maintain the structural stability of forkhead box O1 (FoxO1)
*FOXO1↝,
*RNS↓, Generally, resveratrol protects against oxidative stress mainly by (i) reducing ROS/reactive nitrogen species (RNS) generation; (ii) directly scavenging free radicals; (iii) improving endogenous antioxidant enzymes (e.g., SOD, CAT, and GSH);
*Catalase↑,
*cardioP↑, In summary, the cardiovascular protective effects of resveratrol mainly depend on the capabilities of reducing oxidative stress and alleviating inflammation through Nrf2 and/or SIRT1 activation, PI3K/eNOS upregulation, and NF-κB downregulation.
*PI3K↑,
*eNOS↑,
hepatoP↑, Resveratrol has shown its protective impacts on several liver diseases in some studies

2441- RES,    Anti-Cancer Properties of Resveratrol: A Focus on Its Impact on Mitochondrial Functions
- Review, Var, NA
*toxicity↓, Although resveratrol at high doses up to 5 g has been reported to be non-toxic [34], in some clinical trials, resveratrol at daily doses of 2.5–5 g induced mild-to-moderate gastrointestinal symptoms [
*BioAv↝, After an oral dose of 25 mg in healthy human subjects, the concentrations of native resveratrol (40 nM) and total resveratrol (about 2 µM) in plasma suggested significantly greater bioavailability of resveratrol metabolites than native resveratrol
*Dose↝, The total plasma concentration of resveratrol did not exceed 10 µM following high oral doses of 2–5 g
*hepatoP↑, hepatoprotective effects
*neuroP↑, neuroprotective properties
*AntiAg↑, Resveratrol possesses the ability to impede platelet aggregation
*COX2↓, suppresses promotion by inhibiting cyclooxygenase-2 activity
*antiOx↑, It is widely recognized that resveratrol has antioxidant properties at concentrations ranging from 5 to 10 μM.
*ROS↓, antioxidant properties at concentrations ranging from 5 to 10 μM.
*ROS↑, pro-oxidant properties when present in doses ranging from 10 to 40 μM
PI3K↓, It is known that resveratrol suppresses PI3-kinase, AKT, and NF-κB signaling pathways [75] and may affect tumor growth via other mechanisms as well
Akt↓,
NF-kB↓,
Wnt↓, esveratrol inhibited breast cancer stem-like cells in vitro and in vivo by suppressing Wnt/β-catenin signaling pathway
β-catenin/ZEB1↓,
NRF2↑, Resveratrol activated the Nrf2 signaling pathway, causing separation of the Nrf2–Keap1 complex [84], leading to enhanced transcription of antioxidant enzymes, such as glutathione peroxidase-2 [85] and heme-oxygenase (HO-1)
GPx↑,
HO-1↑,
BioEnh?, Resveratrol was demonstrated to have an impact on drug bioavailability,
PTEN↑, Resveratrol could suppress leukemia cell proliferation and induce apoptosis due to increased expression of PTEN
ChemoSen↑, Resveratrol enhances the sensitivity of cancer cells to chemotherapeutic agents through various mechanisms, such as promoting drug absorption by tumor cells
eff↑, it can also be used in nanomedicines in combination with various compounds or drugs, such as curcumin [101], quercetin [102], paclitaxel [103], docetaxel [104], 5-fluorouracil [105], and small interfering ribonucleic acids (siRNAs)
mt-ROS↑, enhancing the oxidative stress within the mitochondria of these cells, leading to cell damage and death.
Warburg↓, Resveratrol Counteracts Warburg Effect
Glycolysis↓, demonstrated in several studies that resveratrol inhibits glycolysis through the PI3K/Akt/mTOR signaling pathway in human cancer cells
GlucoseCon↓, resveratrol reduced glucose uptake by cancer cells due to targeting carrier Glut1
GLUT1↓,
lactateProd↓, therefore, less lactate was produced
HK2↓, Resveratrol (100 µM for 48–72 h) had a negative impact on hexokinase II (HK2)-mediated glycolysis
EGFR↓, activation of EGFR and downstream kinases Akt and ERK1/2 was observed to diminish upon exposure to resveratrol
cMyc↓, resveratrol suppressed the expression of leptin and c-Myc while increasing the level of vascular endothelial growth factor.
ROS↝, it acts as an antioxidant in regular conditions but as a strong pro-oxidant in cancer cells,
MMPs↓, Main targets of resveratrol in tumor cells. COX-2—cyclooxygenase-2, SIRT-1—sirtuin 1, MMPs—matrix metalloproteinases,
MMP7↓, Resveratrol was shown to exert an inhibitory effect on the expression of β-catenins and also target genes c-Myc, MMP-7, and survivin in multiple myeloma cells, thus reducing the proliferation, migration, and invasion of cancer cells
survivin↓,
TumCP↓,
TumCMig↓,
TumCI↓,

2440- RES,    Resveratrol inhibits Hexokinases II mediated glycolysis in non-small cell lung cancer via targeting Akt signaling pathway
- in-vitro, Lung, H460 - in-vivo, Lung, NA - in-vitro, Lung, H1650 - in-vitro, Lung, HCC827
AntiTum↑, profound anti-tumor effect on human non-small cell lung cancer (NSCLC) via regulation of glycolysis
Glycolysis↓,
HK2↓, Resveratrol impaired hexokinase II (HK2)-mediated glycolysis,
EGFR↓, Exposure to resveratrol decreased EGFR and downstream kinases Akt and ERK1/2 activation
Akt↓,
ERK↓,
GlucoseCon↓, figure 2
lactateProd↓, figure 2
TumCG↓, Resveratrol inhibits tumor growth and HK2 expression in a xenograft mouse model
Ki-67↓, Ki-67 and HK2 were significantly suppressed in the resveratrol treated group compared with the vehicle treated group

3066- RES,    Resveratrol triggers ER stress-mediated apoptosis by disrupting N-linked glycosylation of proteins in ovarian cancer cells
GSK‐3β↑, resveratrol suppressed the hexosamine biosynthetic pathway and interrupted protein glycosylation through GSK3β activation
Akt↓, Akt attenuation in response to resveratrol.
CHOP↑, Resveratrol-mediated disruption of protein glycosylation induced cellular apoptosis as indicated by the up-regulation of GADD153, followed by the activation of ER-stress sensors (PERK and ATF6α).
ER Stress↑,
PERK↑,
ATF6↑,
UPR↑, Disruption of protein glycosylation causes the accumulation of aberrant of proteins in the endoplasmic reticulum (ER) which in turn activates unfolded protein responses (UPR) in the ER, leading to severe stressful conditions
GlucoseCon↓, Previous studies have shown that resveratrol (RSV) impairs glucose consumption via Akt/GLUT1 axis in cancer [

3061- RES,    The Anticancer Effects of Resveratrol: Modulation of Transcription Factors
- Review, Var, NA
AhR↓, Several reports demonstrate the inhibitory effects of resveratrol on AhR-mediated activation of phase I enzymes.
NRF2↑, Bishayee et al. (18) demonstrated that attenuation of DENA (diethyl nitrosamine)-induced liver carcinogenesis by resveratrol was mediated by increased Nrf2 expression.
*NQO1↑, Induction of Nrf2 signaling by resveratrol resulted in increased expression of NQO1, heme-oxygenase 1 (HO-1), and glutamate cysteine ligase catalytic subunit in cigarette smoke extract-treated bronchial epithelial cells
*HO-1↑,
*GSH↑, observed restored glutathione levels in cigarette smoke extract-treated A549 lung alveolar epithelial cancer cells by resveratrol;
P53↑, we highlight reported resveratrol-induced, p53-mediated anticancer mechanisms.
Cyt‑c↑, release of mitochondria proteins (e.g. cytochrome c, Smac/DIABLO, etc.) to the cytosol, thus triggering suppression of inhibitors of apoptosis proteins (e.g. Bcl2, Bcl-XL, survivin, XIAP, etc.) and caspase activation in several cancers
Diablo↑,
Bcl-2↓,
Bcl-xL↓,
survivin↓,
XIAP↓,
FOXO↑, activation of FoxO transcription factors is implicated in the observed anticancer activities of resveratrol.
p‑PI3K↓, resveratrol's ability to inhibit the phosphorylation of PI3K/Akt (
p‑Akt↓,
BIM↑, Bim/TRAIL/DR4/DR5/p27KIP1 induction and cyclin D1 inhibition) of resveratrol on prostate cancer cells
DR4↑,
DR5↑,
p27↑,
cycD1↓,
SIRT1↑, resveratrol is considered a SIRT1 agonist
NF-kB↓, resveratrol not only curbs expression of NF-κB, but also impedes the phosphorylation of IκBα thereby keeping the constitutive NF-κB subunit in an inactive state, resulting in suppression of the inflammatory
ATF3↑, Furthermore, increased ATF3 expression by resveratrol facilitated induction of apoptosis

2981- RES,    Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways
- in-vitro, Colon, HT-29 - in-vitro, Colon, SW48
TumCCA↑, by arresting G0/G1-S phase cell cycle progression through p27 stimulation and cyclin D1 suppression.
p27↑,
cycD1↓,
TumCP↓, resveratrol suppressed IGF-1R protein levels and concurrently attenuated the downstream Akt/Wnt signaling pathways that play a critical role in cell proliferation.
IGF-1R↓,
Akt↓,
Wnt↓,
P53↑, Resveratrol treatment induced apoptosis by activating tumor suppressor p53 protein,
Apoptosis↑,
Sp1/3/4↓, Resveratrol also activated p53 protein and suppressed levels of sp1, a protein that transcriptionally activates IGF-1R
cl‑PARP↑, Resveratrol treatment elevated cleaved PARP, a hallmark of apoptosis
β-catenin/ZEB1↓, lower levels of nuclear β-catenin in resveratrol treated cells
MDM2↓, resveratrol activates p53 and suppresses MDM2 levels in colon cancer cells

3096- RES,    Identification of potential target genes of non-small cell lung cancer in response to resveratrol treatment by bioinformatics analysis
- in-vitro, Lung, A549 - in-vitro, Lung, H1299
TumCP↓, resveratrol might inhibit proliferation but induce apoptosis and autophagy via inhibiting Akt/mTOR pathway and activating p38-MAPK pathway in A549 and H1299 NSCLC cells [7]
Apoptosis↑,
Akt↓,
mTOR↓,
p38↑,
MAPK↑,
STAT3↓, inhibiting the messenger RNA (mRNA) and protein expression of signal transducer and activator of transcription 3 (STAT3) in A549 cells
ROS↑, by leading to mitochondrial dysfunction and increasing of reactive oxygen species (ROS)
SIRT1↑, suggested that resveratrol inhibited age-dependent spontaneous tumorigenesis by increasing the expression of SIRT1 and activating its downstream targets
SOX2↓, resveratrol treatment promoted EGFR and inhibited SOX2.

3095- RES,    Resveratrol suppresses migration, invasion and stemness of human breast cancer cells by interfering with tumor-stromal cross-talk
- in-vitro, BC, NA
TumCP↓, Resveratrol inhibited proliferation, migration and invasion of human breast cancer cells treated with CAF conditioned media.
TumCMig↓,
TumCI↓,
cycD1↓, Resveratrol suppressed the expression of cyclin D1, c-Myc, MMP-2, MMP-9 and Sox-2 in breast cancer cells stimulated with CAFs
cMyc↓,
MMP2↓,
MMP9↓,
SOX2↓,
Akt↓, Resveratrol inhibited activation of Akt and STAT3 induced in human breast cancer cells stimulated with CAF conditioned media.
STAT3↓,
α-SMA↓, resveratrol suppressed the proliferation of liver myofibroblasts through inhibition of α-smooth muscle actin (α-SMA)

3092- RES,    Resveratrol in breast cancer treatment: from cellular effects to molecular mechanisms of action
- Review, BC, MDA-MB-231 - Review, BC, MCF-7
TumCP↓, The anticancer mechanisms of RES in regard to breast cancer include the inhibition of cell proliferation, and reduction of cell viability, invasion, and metastasis.
tumCV↓,
TumCI↓,
TumMeta↓,
*antiOx↑, antioxidative, cardioprotective, estrogenic, antiestrogenic, anti-inflammatory, and antitumor properties it has been used against several diseases, including diabetes, neurodegenerative diseases, coronary diseases, pulmonary diseases, arthritis, and
*cardioP↑,
*Inflam↑,
*neuroP↑,
*Keap1↓, RES administration resulted in a downregulation of Keap1 expression, therefore, inducing Nrf2 signaling, and leading to a decrease in oxidative damage
*NRF2↑,
*ROS↓,
p62↓, decrease the severity of rheumatoid arthritis by inducing autophagy via p62 downregulation, decreasing the levels of interleukin-1β (IL-1β) and C-reactive protein as well as mitigating angiopoietin-1 and vascular endothelial growth factor (VEGF) path
IL1β↓,
CRP↓,
VEGF↓,
Bcl-2↓, RES downregulates the levels of Bcl-2, MMP-2, and MMP-9, and induces the phosphorylation of extracellular-signal-regulated kinase (ERK)/p-38 and FOXO4
MMP2↓,
MMP9↓,
FOXO4↓,
POLD1↓, The in vivo experiment involving a xenograft model confirmed the ability of RES to reduce tumor growth via POLD1 downregulation
CK2↓, RES reduces the expression of casein kinase 2 (CK2) and diminishes the viability of MCF-7 cells.
MMP↓, Furthermore, RES impairs mitochondrial membrane potential, enhances ROS generation, and induces apoptosis, impairing BC progression
ROS↑,
Apoptosis↑,
TumCCA↑, RES has the capability of triggering cell cycle arrest at S phase and reducing the number of 4T1 BC cells in G0/G1 phase
Beclin-1↓, RES administration promotes cytotoxicity of DOX against BC cells by downregulating Beclin-1 and subsequently inhibiting autophagy
Ki-67↓, Reducing the Ki-67
ATP↓, RES’s administration is responsible for decreasing ATP production and glucose metabolism in MCF-7 cells.
GlutMet↓,
PFK↓, RES decreased PFK activity, preventing glycolysis and glucose metabolism in BC cells and decreasing cellular growth rate
TGF-β↓, RES (12.5–100 µM) inhibited TGF-β signaling and reduced the expression levels of its downstream targets that include Smad2 and Smad3 and as a result impaired the progression of BC cells.
SMAD2↓,
SMAD3↓,
Vim?, a significant decrease in the levels of vimentin, Snail1 and Slug occurred, while E-cadherin levels increased to suppress EMT and metastasis of BC cells.
Snail↓,
Slug↓,
E-cadherin↑,
EMT↓,
Zeb1↓, a significant decrease in the levels of vimentin, Snail1 and Slug occurred, while E-cadherin levels increased to suppress EMT and metastasis of BC cells.
Fibronectin↓,
IGF-1↓, RES administration (10 and 20 µM) impaired the migration and invasion of BC cells via inhibiting PI3K/Akt and therefore decreasing IGF-1 expression and preventing the upregulation of MMP-2
PI3K↓,
Akt↓,
HO-1↑, The activation of heme oxygenase-1 (HO-1) signaling by RES reduced MMP-9 expression and prevented metastasis of BC cells
eff↑, RES-loaded gold nanoparticles were found to enhance RES’s ability to reduce MMP-9 expression as compared to RES alone
PD-1↓, RES inhibited PD-1 expression to promote CD8+ T cell activity and enhance Th1 immune responses.
CD8+↑,
Th1 response↑,
CSCs↓, RES has the ability to target CSCs in various tumors
RadioS↑, RES in reversing drug resistance and radio resistance.
SIRT1↑, RES administration (12.5–200 µmol/L) promotes sensitivity of BC cells to DOX by increasing Sirtuin 1 (SIRT1) expression
Hif1a↓, downregulating HIF-1α expression, an important factor in enhancing radiosensitivity
mTOR↓, mTOR suppression

3089- RES,    The Role of Resveratrol in Cancer Therapy
- Review, Var, NA
angioG↓, resveratrol plays a role in inhibiting the expression of MMP (mainly MMP-9) [174,175,176,177] and angiogenesis markers such as VEGF, EGFR or FGF-2
VEGF↓,
EGFR↓,
FGF↑,
TumCMig↓, Resveratrol reduced the phorbo-12-myristate 13-acetate (PMA)-induced migration and invasion ability of liver cancer HepG2 and Hep3B cells.
TumCI↓,
TIMP1↑, resveratrol up-regulated TIMP-1 protein expression and down-regulated MMP-9 activity, while the activities of MMP-2 and MMP-9 were decreased,
MMP2↓,
MMP9↓,
NF-kB↓, via down-regulating the expression of NF-κB,
Hif1a↓, It has been reported that resveratrol suppresses the expression of VEGF and HIF-1α in human ovarian cancer cells via abrogating the activation of the PI3K/Akt and MAPK signaling pathways
PI3K↓,
Akt↓,
MAPK↓,
EMT↓, Many studies have shown that resveratrol suppresses the development of tumor invasion and metastasis through inhibiting signaling pathways associated with EMT
AR↓, Resveratrol suppressed prostate cancer growth via down-regulating the androgen receptor (AR) expression in the TRAMP model of prostate cancer

3027- RosA,    Rosmarinic acid inhibits proliferation and invasion of hepatocellular carcinoma cells SMMC 7721 via PI3K/AKT/mTOR signal pathway
- in-vitro, HCC, SMMC-7721 cell
TumCP↓, RosA significantly inhibited the proliferation of SMMC-7721 cells and induced G1 arrest and apoptosis in a dose-dependent manner
TumCCA↑,
Apoptosis↑,
EMT↓, RosA might inhibit cell invasion by regulating epithelial-mesenchymal transition
TumCI↓,
PI3K↓, IGF-1 could reverse the inhibition of PI3K/AKT/mTOR signal pathway by RosA
Akt↓,
mTOR↓,
TumCMig↓, inhibition effect of migration and invasion by regulation MMPs, Vimentin and EMT.
MMPs↓,
Vim↓,

3016- RosA,    Rosmarinic Acid Inhibits Cell Growth and Migration in Head and Neck Squamous Cell Carcinoma Cell Lines by Attenuating Epidermal Growth Factor Receptor Signaling
- in-vitro, HNSCC, UM-SCC-6 - in-vitro, HNSCC, UM-SCC-10B
chemoP↓,
EGF↓, RA as an inhibitor of epidermal growth factor (EGF) st
tumCV↓, RA inhibited cell viability, migration and cellular production of ROS in HNSCC cell lines.
TumCMig↓,
ROS↓,
PI3K↓, down-regulation of the phosphatidylinositol 3-kinase Akt (PI3K/Akt) and mitogen-activated protein kinase ERK (MAPK/ERK) pathways.
Akt↓,
ERK↓,
antiOx↑, RA serves as a potent antioxidant in HNSCC
p‑EGFR↓, RA’s ability to attenuate EGFR phosphorylation

3010- RosA,    Exploring the mechanism of rosmarinic acid in the treatment of lung adenocarcinoma based on bioinformatics methods and experimental validation
- in-vitro, Lung, A549 - in-vivo, NA, NA
TumCG↓, RosA could inhibit the growth of transplanted tumors in nude mice bearing tumors of lung cancer cells, reduce the positive expression of Ki67 in lung tumor tissue, and hinder the proliferation of lung tumor cells.
Ki-67↓,
FABP4↑, Upregulated expression of PPARG and FABP4 by activating the PPAR signaling pathway increases the level of ROS in lung tumor tissues and promotes apoptosis of lung tumor cells.
PPARα↑,
ROS↑, RosA increases ROS levels in lung tumor tissues and induces apoptosis
Apoptosis↑,
MMP9↓, In addition, RosA can also reduce the expression of MMP-9 and IGFBP3, inhibit the migration and invasion of lung tumor tissue cells.
IGFBP3↓,
MMP2↓, In addition, RosA down-regulated the expression of MMP-9 and MMP2, regulated epithelial-mesenchymal transition to inhibit cell invasion, and slow down tumor development.
EMT↓,
TumCI↓,
PI3K↓, his study also confirmed that RosA down-regulated the expression of the PI3K/AKT/mTOR pathway-related proteins
Akt↓,
mTOR↓,
Gli1↓, Xiang Zhou et al. [28] reported that RosA inhibited the growth of PDAC tumors by inhibiting Gli1.
PPARγ↑, Upregulated expression of PPARG
Cyt‑c↑, figure 7

3002- RosA,    Anticancer Effects of Rosemary (Rosmarinus officinalis L.) Extract and Rosemary Extract Polyphenols
- Review, Var, NA
TumCG↓, SW480 colon cancer cells and found RE to significantly decrease cell growth at a concentration of 31.25 µg/mL (48 h),
TumCP↓, Cell proliferation was dramatically decreased and cell cycle arrest was induced in HT-29 and SW480 c
TumCCA↑,
ChemoSen↑, RE enhanced the inhibitory effects of the chemotherapeutic drug 5-fluorouracil (5-FU) on proliferation and sensitized 5-FU resistant cells
NRF2↑, HCT116 ↑ Nrf2, ↑ PERK, ↑ sestrin-2, ↑ HO-1, ↑ cleaved-casp 3
PERK↑,
SESN2↑,
HO-1↑,
cl‑Casp3↑,
ROS↑, HT-29 ↑ ROS accumulation, ↑ UPR, ↑ ER-stress
UPR↑,
ER Stress↑,
CHOP↑, HT-29: ↑ ROS levels, ↑ HO-1 and CHOP
HER2/EBBR2↓, SK-BR-3: ↑ FOS levels, ↑ PARP cleavage, ↓ HER2, ↓ ERBB2, ↓ ERα receptor.
ER-α36↓,
PSA↓, LNCaP : ↑ CHOP, ↓ PSA production, ↑ Bax, ↑ cleaved-casp 3, ↓ androgen receptor expression
BAX↑,
AR↓,
P-gp↓, A2780: ↓ P-glyco protein, ↑ cytochrome c gene, ↑ hsp70 gene
Cyt‑c↑,
HSP70/HSPA5↑,
eff↑, This study noted that the rosemary essential oil was more potent than its individual components (α-pinene, β-pinene, 1,8-cineole) when tested alone at the same concentrations.
p‑Akt↓, A549: ↓ p-Akt, ↓ p-mTOR, ↓ p-P70S6K, ↑ PARP cleavage
p‑mTOR↓,
p‑P70S6K↓,
cl‑PARP↑,
eff↑, RE containing 10 µM equivalent of CA, or 10 µM CA alone (96 h) potentiated the ability of vitamin D derivatives to inhibit cell viability and proliferation, induce apoptosis and cell cycle arrest and increase differentiation of WEHI-3BD murine leukem

3003- RosA,    Comprehensive Insights into Biological Roles of Rosmarinic Acid: Implications in Diabetes, Cancer and Neurodegenerative Diseases
- Review, Var, NA - Review, AD, NA - Review, Park, NA
*Inflam↓, anti-inflammatory and antioxidant properties and its roles in various life-threatening conditions, such as cancer, neurodegeneration, diabetes,
*antiOx↑,
*neuroP↑,
*IL6↓, diabetic rat model treated with RA, there is an anti-inflammatory activity reported. This activity is achieved through the inhibition of the expression of various proinflammatory factors, including in IL-6, (IL-1β), tumour
*IL1β↓,
*NF-kB↓, inhibiting NF-κB activity and reducing the production of prostaglandin E2 (PGE2), nitric oxide (NO), and cyclooxygenase-2 (COX-2) in RAW 264.7 cells.
*PGE2↓,
*COX2↓,
*MMP↑, RA inhibits cytotoxicity in tumour patients by maintaining the mitochondrial membrane potential
*memory↑, amyloid β(25–35)-induced AD in rats was treated with RA, which mitigated the impairment of learning and memory disturbance by reducing oxidative stress
*ROS↓,
*Aβ↓, daily consumption of RA diminished the effect of neurotoxicity of Aβ25–35 in mice
*HMGB1↓, SH-SY5Y in vitro and ischaemic diabetic stroke in vivo, and the studies revealed that a 50 mg/kg dose of RA decreased HMGB1 expression
TumCG↓, Rosemary and its extracts have been shown to exhibit potential in inhibiting the growth of cancer cells and the development of tumours in various cancer types, including colon, breast, liver, and stomach cancer
MARK4↓, Another study reported the inhibition of Microtubule affinity regulating kinase 4 (MARK4) by RA
Zeb1↓, Fig 4 BC:
MDM2↓,
BNIP3↑,
ASC↑, Skin Cancer
NLRP3↓,
PI3K↓,
Akt↓,
Casp1↓,
E-cadherin↑, Colon Cancer
STAT3↓,
TLR4↓,
MMP↓,
ICAM-1↓,
AMPK↓,
IL6↑, PC and GC
MMP2↓,
Warburg↓,
Bcl-xL↓, CRC: Apoptosis induction caspases ↑, Bcl-XL ↓, BCL-2 ↓, Induces cell cycle arrest, Inhibition of EMT and invasion, Reduced metastasis
Bcl-2↓,
TumCCA↑,
EMT↓,
TumMeta↓,
mTOR↓, Inhibits mTOR/S6K1 pathway to induce apoptosis in cervical cancer
HSP27↓, Glioma ↓ expression of HSP27 ↑ caspase-3
Casp3↑,
GlucoseCon↓, GC: Inhibited the signs of the Warburg effect, such as high glucose consumption/anaerobic glycolysis, lactate production/cell acidosis, by inhibiting the IL-6/STAT3 pathway
lactateProd↓,
VEGF↓, ↓ angiogenic factors (VEGF) and phosphorylation of p65
p‑p65↓,
GIT1↓, PC: Increased degradation of Gli1
Foxm1↓, inhibiting FOXM1
cycD1↓, RA treatment in CRC cells inhibited proliferation-induced cell cycle arrest of the G0/G1 phase by reducing the cyclin D1 and CDK4 levels,
CDK4↓,
MMP9↓, CRC cells, and it led to a decrease in the expressions of matrix metalloproteinase (MMP)-2 and MMP-9.
HDAC2↓, PCa cells through the inhibition of HDAC2

3006- RosA,    Rosmarinic acid attenuates glioblastoma cells and spheroids’ growth and EMT/stem-like state by PTEN/PI3K/AKT downregulation and ERK-induced apoptosis
- in-vitro, GBM, U87MG - in-vitro, GBM, LN229
TumCG↓, Rosmarinic acid (RA) reduced the glioma growth and motility in 2D- and 3D-cultures
EMT↓, RA suppressed epithelial-mesenchymal transition and stem-cell property in spheroids.
SIRT1↓, RA downregulated SIRT1/FOXO1/NF-κB axis independently of p53 or PTEN function.
FOXO1↓,
NF-kB↓,
angioG↓, RA dose-dependently reduced angiogenesis and intracellular ROS levels, suppressed glioma growth,
ROS↓,
PTEN↓, RA also inhibited the PTEN/PI3K/AKT pathway in U-87MG cells.
PI3K↓,
Akt↓,
*Inflam↓, anti-inflammatory, antimicrobial, cardioprotective, hepatoprotective, neuroprotective, antidiabetic, and especially anticancer effects (
*cardioP↑,
*hepatoP↑,
*neuroP↑,
Warburg↓, suppresses Warburg effect

1745- RosA,    Rosmarinic acid and its derivatives: Current insights on anticancer potential and other biomedical applications
- Review, Var, NA - Review, AD, NA
ChemoSideEff↓, updated review is to highlight the chemopreventive and chemotherapeutic effects of RA and its derivatives
ChemoSen↑,
antiOx↑, RA also showed antioxidant effects and suppressed the activity and expression of matrix metalloproteinase (MMP)− 2,9
MMP2↓,
MMP9↓,
p‑AMPK↑, show that RA prevents metastasis through AMPK phosphorylation and suppresses CRC cell growth
DNMTs↓, RA allegedly suppressed DNA methyltransferase activity in the human breast cancer MCF7 cell line
tumCV↓, A549 lung cancer cells were 50% suppressed by RA, which also prevented COX-2 activity in these cells.
COX2↓,
E-cadherin↑, upregulating E-cadherin expression while downregulating Vimentin and N-cadherin expression, indicating that RA could inhibit hepatocellular carcinoma cells' ability to invade by MMPs and EMT
Vim↓,
N-cadherin↓,
EMT↓,
Casp3↑, The activation of caspase-3 and caspase-9 by RA also prevented the migration and invasion of liver cancer cells
Casp9↓,
ROS↓, In addition to reducing ROS, RA also enhanced GSH synthesis, lowered the expression of MMP-2 and MMP-9
GSH↑,
ERK↓, By inhibiting ERK and Akt activation, RA may stop the progression of colon cancer
Akt↓,
ROS↓, In U937 cells, it has been demonstrated that treatment with RA in concentrations 60 µM suppresses ROS and NF-kB by blocking IκB-α from being phosphorylated and degraded and the nuclear translocation of p50 and p65
NF-kB↓,
p‑IκB↓,
p50↓,
p65↓,
neuroP↑, RA can prevent the pathophysiology of Alzheimer's disease by reducing Aβ aggregation
Dose↝, 60 µM suppresses ROS and NF-kB by blocking IκB-α from being phosphorylated and degraded and the nuclear translocation of p50 and p65

1209- SANG,    Sanguinarine is a novel VEGF inhibitor involved in the suppression of angiogenesis and cell migration
- in-vitro, Lung, A549
VEGF↓,
TumCMig↓,
Akt↓,
p38↓,

1134- SANG,    Sanguinarine inhibits epithelial–mesenchymal transition via targeting HIF-1α/TGF-β feed-forward loop in hepatocellular carcinoma
- in-vitro, HCC, HepG2 - in-vitro, HCC, Hep3B - in-vitro, HCC, HUH7
Hif1a↓,
EMT↓,
Snail↓,
PI3K↓,
Akt↓,
SMAD2↓,
SMAD3↓,

1090- SANG,    Sanguinarine inhibits invasiveness and the MMP-9 and COX-2 expression in TPA-induced breast cancer cells by inducing HO-1 expression.
- in-vitro, BC, MCF-7
MMP9↓,
COX2↓,
PGE2↓,
NF-kB↓,
AP-1↓,
p‑Akt↓,
p‑ERK↓,
HO-1↑, HO-1 plays a pivotal role in the anti-invasive response of sanguinarine

1017- Sel,    Selenite induces apoptosis in colorectal cancer cells via AKT-mediated inhibition of β-catenin survival axis
- vitro+vivo, CRC, NA
Akt↓, selenite exerted a remarkable inhibitory effect on activation of AKT
β-catenin/ZEB1↓,
cycD1↓,
survivin↓,
Apoptosis↑,
ROS↑, reactive oxygen species (ROS) was a crucial upstream signal for selenite-triggered inhibition of AKT/β-catenin

1135- Selenate,    Selenate induces epithelial-mesenchymal transition in a colorectal carcinoma cell line by AKT activation
- in-vitro, CRC, DLD1
EMT↑, deleterious effects of EMT induction should be taken into careful consideration
Akt↑,
Twist↑, increased expression of the EMT-inducing transcription factor TWIST1
Vim↑,
E-cadherin↓,

963- SFN,    Sulforaphane inhibits hypoxia-induced HIF-1α and VEGF expression and migration of human colon cancer cells
- in-vitro, CRC, HCT116 - in-vitro, GC, AGS
Hif1a↓,
VEGF↓,
angioG↓,
Akt∅, AKT and ERK signaling pathway is not involved in downregulation of HIF-1α protein by sulforaphane under hypoxic conditions
ERK∅,

3195- SFN,    AKT1/HK2 Axis-mediated Glucose Metabolism: A Novel Therapeutic Target of Sulforaphane in Bladder Cancer
- in-vitro, Bladder, UMUC3
ATP↓, SFN strongly downregulates ATP production by inhibiting glycolysis and mitochondrial oxidative phosphorylation (OXPHOS).
Glycolysis↓,
OXPHOS↓,
HK2↓, SFN weaken the glycolytic flux by suppressing multiple metabolic enzymes, including hexokinase 2 (HK2) and pyruvate dehydrogenase (PDH).
PDH↓,
AKT1↓, SFN decreases the level of AKT1 and p-AKT ser473 , especially in low-invasive UMUC3 cells.
p‑Akt↓,

2445- SFN,    Sulforaphane-Induced Cell Cycle Arrest and Senescence are accompanied by DNA Hypomethylation and Changes in microRNA Profile in Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, BC, SkBr3
TumCCA↑, SFN (5-10 µM) promoted cell cycle arrest, elevation in the levels of p21 and p27 and cellular senescence
P21↑,
p27↑,
NO↑, effects were accompanied by nitro-oxidative stress, genotoxicity and diminished AKT signaling
Akt↓,
ATP↓, decreased pools of ATP and AMPK activation, and autophagy induction
AMPK↑,
TumAuto↑,
DNMT1↓, decreased levels of DNA methyltransferases (DNMT1, DNMT3B)
HK2↓, A decrease in HK2 levels was observed in SFN-treated MDA-MB-231 cells
PKM2↓, and a decrease in PKM2 levels was noticed in SFN-treated MDA-MB-231 and SK-BR-3 cells
HDAC3↓, . In contrast, HDAC3 , HDAC4 , HDAC6 , HDAC7 , HDAC8 ), HDAC9 and HDAC10 (histone deacetylase 10) mRNA levels were decreased in SFN-treated MDA-MB-231 cells
HDAC4↓,
HDAC8↓,

1726- SFN,    Sulforaphane: A Broccoli Bioactive Phytocompound with Cancer Preventive Potential
- Review, Var, NA
Dose↝, Most clinical trials utilize doses of GFN ranging from 25 to 800 μmol , translating to about 65–2105 g raw broccoli or 3/4 to 23 cups of raw broccoli.
eff↝, SFN-rich powders have been made by drying out broccoli sprout
IL1β↓,
IL6↓,
IL12↓,
TNF-α↓,
COX2↓,
CXCR4↓,
MPO↓,
HSP70/HSPA5↓,
HSP90↓,
VCAM-1↓,
IKKα↓,
NF-kB↓,
HO-1↑,
Casp3↑,
Casp7↑,
Casp8↑,
Casp9↑,
cl‑PARP↑,
Cyt‑c↑,
Diablo↑,
CHOP↑,
survivin↓,
XIAP↓,
p38↑,
Fas↑,
PUMA↑,
VEGF↓,
Hif1a↓,
Twist↓,
Zeb1↓,
Vim↓,
MMP2↓,
MMP9↓,
E-cadherin↑,
N-cadherin↓,
Snail↓,
CD44↓,
cycD1↓,
cycA1↓,
CycB↓,
cycE↓,
CDK4↓,
CDK6↓,
p50↓,
P53↑,
P21↑,
GSH↑,
SOD↑,
GSTs↑,
mTOR↓,
Akt↓,
PI3K↓,
β-catenin/ZEB1↓,
IGF-1↓,
cMyc↓,

1458- SFN,    Sulforaphane Impact on Reactive Oxygen Species (ROS) in Bladder Carcinoma
- Review, Bladder, NA
HDAC↓, SFN’s role as a natural HDAC-inhibitor is highly relevant
eff↓, SFN exerts stronger anti-proliferative effects on bladder cancer cell lines under hypoxia, compared to normoxic conditions
TumW↓, mice, SFN (52 mg/kg body weight) for 2 weeks reduced tumor weight by 42%
TumW↓, In another study a 63% inhibition was noted when tumor bearing mice were treated with SFN (12 mg/kg body weight) for 5 weeks
angioG↓,
*toxicity↓, In both investigations, the administration of SFN did not evoke apparent toxicity
GutMicro↝, SFN may protect against chemical-induced bladder cancer by normalizing the composition of gut microbiota and repairing pathophysiological destruction of the gut barrier,
AntiCan↑, A prospective study involving nearly 50,000 men indicated that high cruciferous vegetable consumption may reduce bladder cancer risk
ROS↑, Evidence shows that SFN upregulates the ROS level in T24 bladder cancer cells to induce apoptosis
MMP↓,
Cyt‑c↑,
Bax:Bcl2↑,
Casp3↑,
Casp9↑,
Casp8∅,
cl‑PARP↑,
TRAIL↑, ROS generation promotes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) sensitivity
DR5↑,
eff↓, Blockade of ROS generation inhibited apoptotic activity and prevented Nrf2 activation in cells treated with SFN, pointing to a direct effect of ROS on apoptosis
NRF2↑, SFN potently inhibits carcinogenesis via activation of the Nrf2 pathway
ER Stress↑, endoplasmic reticulum stress evoked by SFN
COX2↓, downregulates COX-2 in T24 cells
EGFR↓, downregulation of both the epidermal growth factor receptor (EGFR) and the human epidermal growth factor receptor 2 (HER2/neu
HER2/EBBR2↓,
ChemoSen↑, gemcitabine/cisplatin and SFN triggered pathway alterations in bladder cancer may open new therapeutic strategies, including a combined treatment regimen to cause additive effects.
NF-kB↓,
TumCCA?, cell cycle at the G2/M phase
p‑Akt↓,
p‑mTOR↓,
p70S6↓,
p19↑, p19 and p21, are elevated under SFN
P21↑,
CD44↓, CD44s expression correlates with induced intracellular levels of ROS in bladder cancer cells variants v3–v7 on bladder cancer cells following SFN exposure

1459- SFN,  Aur,    Auranofin Enhances Sulforaphane-Mediated Apoptosis in Hepatocellular Carcinoma Hep3B Cells through Inactivation of the PI3K/Akt Signaling Pathway
- in-vitro, Liver, Hep3B - in-vitro, Liver, HepG2
eff↑, sulforaphane significantly enhanced auranofin-induced apoptosis by inhibiting TrxR activity and cell proliferation compared to either single treatment
TumCCA↑, Sub-G1 cells
Apoptosis↑,
MMP↓,
BAX↑,
cl‑PARP↑,
Casp3↑,
Casp8↑,
Casp9↑,
ROS↑, combined treatment induced excessive generation of reactive oxygen species (ROS)
eff↓, treatment with N-acetyl-L-cysteine, a ROS scavenger, reduced combined treatment-induced ROS production and apoptosis.
PI3K↓,
Akt↓,
TrxR↓, treatment with either sulforaphane or auranofin alone at low concentrations weakly inhibit TrxR activity Combined treatment significantly reduced TrxR activity and cell viability
BAX↑,
Bcl-2∅,

1466- SFN,    Sulforaphane inhibits thyroid cancer cell growth and invasiveness through the reactive oxygen species-dependent pathway
- vitro+vivo, Thyroid, FTC-133
TumCP↓,
TumCCA↑, G2/M phase
Apoptosis↑,
TumCMig↓,
TumCI↓,
EMT↓,
Slug↓,
Twist↓,
MMP2↓,
MMP9↓,
TumCG↓,
p‑Akt↓,
P21↑,
ERK↑,
p38↑,
ROS↑, ROS was significantly induced in both FTC133 and K1 cells when cells were treated with 40 μM SFN for 4 h Several previous studies have shown that SFN induces ROS
*toxicity∅, we did not find significant effect of SFN on body weight and liver function of mice.
MMP↓,
eff↓, Like NAC, ASC treatment significantly attenuated anti-proliferative effect of SFN in these two cell lines

1469- SFN,    Sulforaphane enhances the therapeutic potential of TRAIL in prostate cancer orthotopic model through regulation of apoptosis, metastasis, and angiogenesis
- in-vitro, Pca, PC3 - in-vitro, Pca, LNCaP - in-vivo, Pca, NA
eff↑, Sulforaphane enhanced the therapeutic potential of TRAIL in PC-3 cells and sensitized TRAIL-resistant LNCaP cells.
ROS↑,
MMP↓,
Casp3↑,
Casp9↑,
DR4↑,
DR5↑,
BAX↑,
Bak↑,
BIM↑,
NOXA↑,
Bcl-2↓,
Bcl-xL↓,
Mcl-1↓,
eff↓, quenching of ROS generation with antioxidant N-acetyl-L-cysteine conferred significant protection against sulforaphane-induced ROS generation, mitochondrial membrane potential disruption, caspase-3 activation, and apoptosis.
TumCG↓,
TumCP↓,
eff↑, enhanced the antitumor activity of TRAIL.
NF-kB↓,
PI3K↓,
Akt↓,
MEK↓,
ERK↓,
angioG↓, combination of sulforaphane and TRAIL was more effective in inhibiting markers of angiogenesis and metastasis and activating FOXO3a transcription factor than single agent alone.
FOXO3↑,

1475- SFN,  Form,    Combination of Formononetin and Sulforaphane Natural Drug Repress the Proliferation of Cervical Cancer Cells via Impeding PI3K/AKT/mTOR Pathway
- in-vitro, Cerv, HeLa
TumCP↓,
PI3K↓,
Akt↓,
mTOR↓,
eff↑, cytotoxicity of FN and SFN was determined to be around 23.7 µM and 26.92 µM, respectively. Combining FN and SFN causes considerable cytotoxicity in HeLa cells, with an IC50 of 21.6 µM
ROS↑, considerable ROS generation

1513- SFN,  acetaz,    Next-generation multimodality of nutrigenomic cancer therapy: sulforaphane in combination with acetazolamide actively target bronchial carcinoid cancer in disabling the PI3K/Akt/mTOR survival pathway and inducing apoptosis
- in-vitro, BrCC, H720 - in-vivo, BrCC, NA - in-vitro, BrCC, H727
eff↑, Combining AZ+SFN reduced tumor cell survival compared to each agent alone, both in vitro and in vivo xenograft tissues.
tumCV↓,
Apoptosis↑,
P21↑,
PI3K↓,
Akt↓,
mTOR↓,
5HT↓, significantly reducing 5-HT secretion in carcinoid syndrome.
NRF2↑, AZ and SFN increased the expression of Nrf2 by 61% and 104%, respectively. Combination treatment further increased expression by 127%

978- SIL,    A comprehensive evaluation of the therapeutic potential of silibinin: a ray of hope in cancer treatment
- Review, NA, NA
PI3K↓,
Akt↓,
NF-kB↓,
Wnt/(β-catenin)↓,
MAPK↓,
TumCP↓,
TumCCA↑, G0/G1 cell cycle arrest
Apoptosis↑, In T24 and UM-UC-3 human bladder cancer cells, silibinin treatment at a concentration of 10 μM significantly inhibited proliferation, migration, invasion, and induced apoptosis.
p‑EGFR↓,
JAK2↓,
STAT5↓,
cycD1↓,
hTERT↓,
AP-1↓,
MMP9↓,
miR-21↓,
miR-155↓,
Casp9↑,
BID↑,
ERK↓, ERK1/2
Akt2↓,
DNMT1↓,
P53↑,
survivin↓,
Casp3↑,
ROS↑, cytotoxicity of silibinin in Hep-2 cells was associated with the accumulation of intracellular reactive oxygen species (ROS), which could be mitigated by the ROS scavenger NAC.

3288- SIL,    Silymarin in cancer therapy: Mechanisms of action, protective roles in chemotherapy-induced toxicity, and nanoformulations
- Review, Var, NA
Inflam↓, Silymarin, a milk thistle extract, has anti-inflammatory, immunomodulatory, anti-lipid peroxidative, anti-fibrotic, anti-oxidative, and anti-proliferative properties.
lipid-P↓,
TumMeta↓, Silymarin exhibits not only anti-cancer functions through modulating various hallmarks of cancer, including cell cycle, metastasis, angiogenesis, apoptosis, and autophagy, by targeting a plethora of molecules
angioG↓,
chemoP↑, but also plays protective roles against chemotherapy-induced toxicity, such as nephrotoxicity,
EMT↓, Figure 2, Metastasis
HDAC↓,
HATs↑,
MMPs↓,
uPA↓,
PI3K↓,
Akt↓,
VEGF↓, Angiogenesis
CD31↓,
Hif1a↓,
VEGFR2↓,
Raf↓,
MEK↓,
ERK↓,
BIM↓, apoptosis
BAX↑,
Bcl-2↓,
Bcl-xL↓,
Casp↑,
MAPK↓,
P53↑,
LC3II↑, Autophagy
mTOR↓,
YAP/TEAD↓,
*BioAv↓, Additionally, the oral bioavailability of silymarin in rats is only 0.73 %
MMP↓, silymarin treatment reduced mitochondrial transmembrane potential, leading to an increase in cytosolic cytochrome c (Cyt c), downregulating proliferation-associated proteins (PCNA, c-Myc, cyclin D1, and β-catenin)
Cyt‑c↑,
PCNA↓,
cMyc↓,
cycD1↓,
β-catenin/ZEB1↓,
survivin↓, and anti-apoptotic proteins (survivin and Bcl-2), and upregulating pro-apoptotic proteins (caspase-3, Bax, APAF-1, and p53)
APAF1↑,
Casp3↑,
MDSCs↓, ↓MDSCs, ↓IL-10, ↑IL-2 and IFN-γ
IL10↓,
IL2↑,
IFN-γ↑,
hepatoP↑, Moreover, in a randomized clinical trial, silymarin attenuated hepatoxicity in non-metastatic breast cancer patients undergoing a doxorubicin/cyclophosphamide-paclitaxel regimen
cardioP↑, For example, Rašković et al. studied the hepatoprotective and cardioprotective effects of silymarin (60 mg/kg orally) in rats following DOX
GSH↑, silymarin could protect the kidney and heart from ADR toxicity by protecting against glutathione (GSH) depletion and inhibiting lipid peroxidation
neuroP↑, silymarin attenuated the neurotoxicity of docetaxel by reducing apoptosis, inflammation, and oxidative stress

3289- SIL,    Silymarin: a promising modulator of apoptosis and survival signaling in cancer
- Review, Var, NA
*BioAv↝, silymarin’s poor bioavailability and limited thérapeutic efficacy have been overcome by encapsulation of silymarin into nanoparticles
*BioAv↓, Silymarin is barely 20–50% absorbed by the GIT cells and has an absolute oral bioavailability of 0.95%
Fas↑, silibinin, enhances the Fas pathway in most cancers cells by upregulating the Fas and Fas L
FasL↑,
FADD↑, silymarin triggered apoptosis via upregulating the expression of FADD (Fig. 2b), a downstream component of the death receptor pathway, subsequently leading to the cleavage of procaspase 8 and initiation of apoptotic cell death
pro‑Casp8↑,
Apoptosis↑,
DR5↑, silymarin promotes apoptosis through the death receptor-mediated pathway, contributing to its anticancer effects
Bcl-2↑, Bcl-2, an anti-apoptotic protein, was decreased
BAX↑, Bax is also upregulated and leads to the activation of caspase-3.
Casp3↑,
PI3K↓, Silibinin inhibits the PI3K activity, leading to the reduction of FoxM1 (Forkhead box M1) and the subsequent activation of the mitochondrial apoptotic pathway
Foxm1↓,
p‑mTOR↓, inhibiting phosphorylation of several key components in this pathway, such as mTOR, p70S6K and 4E-BP1
p‑P70S6K↓,
Hif1a↓, mTOR pathway signaling in turn may result in low levels of HIF-1α due to the unfavorable conditions of hypoxia.
Akt↑, silibinin activates the Akt pathway in cervical cancer cells. This activation of Akt could have some bearing on the overall antitumor activity of silibinin in cervical cancer cells.
angioG↓, silibinin inhibited STAT3, HIF-1α, and NF-κB, thereby reducing the population of lung macrophages and limiting angiogenesis
STAT3↓,
NF-kB↓,
lipid-P↓, silibinin delays the progression of endometrial carcinoma via inhibiting STAT3 activation and lowering lipid accumulation, which is regulated by SREBP1
eff↑, Sorafenib and silibinin work together to target both liver cancer cells and cancer stem cells. This combination operates by suppressing the STAT3/ERK/AKT pathways and decreasing the production of Mcl-1 and Bcl-2 proteins
CDK1↓, reducing the expression of CDK1, survivin, Bcl-xL, cyclinB1 and Mcl- 1 and simultaneously activate caspases 3 and 9
survivin↓,
CycB↓,
Mcl-1↓,
Casp9↑,
AP-1↓, hindered the activation of transcription factors NF-κB and AP-1
BioAv↑, Liang et al., created a chitosan-based lipid polymer hybrid nanoparticles that boosted the bioavailability of silymarin by 14.38-fold

3323- SIL,    Anticancer therapeutic potential of silibinin: current trends, scope and relevance
- Review, Var, NA
Inflam↓, Silibinin has been shown to have anti-inflammatory, anti-angiogenic, antioxidant, and anti-metastatic properties
angioG↓,
antiOx↑,
TumMeta↓,
TumCP↓, silibinin helps in preventing proliferation of the tumor cells, initiating the cell cycle arrest, and induce cancer cells to die
TumCCA↑,
TumCD↑,
α-SMA↓, figure
p‑Akt↓,
p‑STAT3↓,
COX2↓,
IL6↓,
MMP2↓,
HIF-1↓,
Snail↓,
Slug↓,
Zeb1↓,
NF-kB↓,
p‑EGFR↓,
JAK2↓,
PI3K↓,
PD-L1↓,
VEGF↓,
CDK4↓,
CDK2↓,
cycD1↓,
E2Fs↓,

3318- SIL,    Pharmaceutical prospects of Silymarin for the treatment of neurological patients: an updated insight
- Review, AD, NA - Review, Park, NA
*hepatoP↑, widely studied as a hepatoprotective drug for various liver disorders.
*neuroP↑, research studies have shown its putative neuroprotective nature against various brain disorders, including psychiatric, neurodegenerative, cognitive, metabolic and other neurological disorders
*TLR4↓, Silymarin treatment has shown anti-inflammatory action in AD models by suppressing toll-like receptor 4 (TLR4) pathways and decreasing the increased mRNA levels of TNF-α, IL-1β and NF-κB
*TNF-α↓,
*IL1β↓,
*NF-kB↓,
*memory↑, improvement in memory los
*cognitive↑, finally leading to normal cognitive functions
*NRF2↑, upregulating the Nrf-2/HO-1 signaling in mice model
*HO-1↑,
*ROS↓, inhibition of oxidative stress in the brain
*Akt↑, Figure 4
*mTOR↑,
*SOD↑,
*Catalase↑,
*GSH↑,
*IL10↑,
*IL6↑,
*NO↓,
*MDA↓,
*AChE↓,
*MAPK↓,

2360- SK,    Shikonin inhibits growth, invasion and glycolysis of nasopharyngeal carcinoma cells through inactivating the phosphatidylinositol 3 kinase/AKT signal pathway
- in-vitro, NPC, HONE1 - in-vitro, NPC, SUNE-1
TumCP↓, Shikonin treatment effectively suppressed cell proliferation and induced obvious cell apoptosis compared with the control.
Apoptosis↑,
TumCMig↓, Shikonin treatment suppressed cell migration and invasion effectively.
TumCI↓,
GlucoseCon↓, Shikonin treatment suppressed cell glucose uptake, lactate release and ATP level.
lactateProd↓,
ATP↓,
PKM2↓, activity of PKM2 was also largely inhibited by Shikonin
PI3K↓, PI3K/AKT signal pathway was inactivated by Shikonin treatment
Akt↓,
MMP3↓, MMP-3 and MMP-9 was decreased and the expression of TIMP was increased by Shikonin in HONE1 and SUNE-1 cells
MMP9↓,
TIMP1↑,

2355- SK,    Pharmacological properties and derivatives of shikonin-A review in recent years
- Review, Var, NA
AntiCan↑, anticancer effects on various types of cancer by inhibiting cell proliferation and migration, inducing apoptosis, autophagy, and necroptosis.
TumCP↓,
TumCMig↓,
Apoptosis↑,
TumAuto↑,
Necroptosis↑,
ROS↑, Shikonin also triggers Reactive Oxygen Species (ROS) generation
TrxR1↓, inhibiting the activation of TrxR1, PKM2, RIP1/3, Src, and FAK
PKM2↓,
RIP1↓,
RIP3↓,
Src↓,
FAK↓,
PI3K↓, modulating the PI3K/AKT/mTOR and MAPKs signaling;
Akt↓, shikonin induced a dose-dependent reduction of miR-19a to inhibit the activity of PI3K/AKT/mTOR pathway
mTOR↓,
GRP58↓, shikonin induced apoptosis in human myeloid cell line HL-60 cells through downregulating the expression of ERS protein ERP57 (42).
MMPs↓, hikonin suppressed cell migration through inhibiting the NF-κB pathway and reducing the expression of MMP-2 and MMP-9
ATF2↓, shikonin inhibited cell proliferation and tumor growth through suppressing the ATF2 pathway
cl‑PARP↑, shikonin significantly upregulated the expression of apoptosis-related proteins cleaved PARP and caspase-3 and increased cell apoptosis through increasing the phosphorylation of p38 MAPK and JNK, and inhibiting the phosphorylation of ERK
Casp3↑,
p‑p38↑,
p‑JNK↑,
p‑ERK↓,

2225- SK,    Shikonin protects skin cells against oxidative stress and cellular dysfunction induced by fine particulate matter
- in-vitro, Nor, HaCaT
*antiOx↑, antioxidant capabilities of shikonin and its ability to protect human keratinocytes from oxidative stress induced by fine particulate matter
*ROS↓, 3 µM was nontoxic to human keratinocytes and effectively scavenged reactive oxygen species (ROS) while increasing the production of reduced glutathione (GSH).
*GSH↑,
*GCLC↑, Shikonin increased the expression of GCLC and GSS via AKT and NRF2 activation
*GSS↑,
*Akt↑,
*NRF2↑,

2226- SK,    Shikonin, a Chinese plant-derived naphthoquinone, induces apoptosis in hepatocellular carcinoma cells through reactive oxygen species: A potential new treatment for hepatocellular carcinoma
- in-vitro, HCC, HUH7 - in-vitro, HCC, Bel-7402
selectivity↑, shikonin induced apoptosis of Huh7 and BEL7402 but not nontumorigenic cells.
ROS↑, ROS generation was detected
eff↓, ROS scavengers completely inhibited shikonin-induced apoptosis, indicating that ROS play an essential role
Akt↓, downregulation of Akt and RIP1/NF-κB activity was found to be involved in shikonin-induced apoptosis
RIP1↓,
NF-kB↓,

2224- SK,    Shikonin induces apoptosis and autophagy via downregulation of pyrroline-5-carboxylate reductase1 in hepatocellular carcinoma cells
- in-vitro, HCC, SMMC-7721 cell - in-vitro, HCC, HUH7 - in-vitro, HCC, HepG2
PYCR1↓, SK may induce apoptosis and autophagy by reducing the expression of PYCR1 and suppressing PI3K/Akt/mTOR
PI3K↓,
Akt↓,
mTOR↓,
eff↑, SK reinforces its anti-tumor effects by downregulating PYCR1 in HCC cells

2370- SK,    The role of pyruvate kinase M2 in anticancer therapeutic treatments
- Review, Var, NA
Glycolysis↓, In summary, shikonin is able to inhibit tumor growth by suppressing aerobic glycolysis, which is mediated by PKM2 in vivo
PKM2↓,
EGFR↓, another study indicated that shikonin reduced epidermal growth factor receptor, PI3K, p-AKT, Hypoxia inducible factor-1α (HIF-1α) and PKM2 expression levels
PI3K↓,
p‑Akt↓,
Hif1a↓,

2415- SK,    Shikonin induces programmed death of fibroblast synovial cells in rheumatoid arthritis by inhibiting energy pathways
- in-vivo, Arthritis, NA
Apoptosis?, shikonin induced apoptosis and autophagy in RA-FLSs by activating the production of reactive oxygen species (ROS) and inhibiting intracellular ATP levels, glycolysis-related proteins, and the PI3K-AKT-mTOR signaling pathway.
TumAuto↑,
ROS↑,
ATP↓,
Glycolysis↓, shikonin can inhibit RA-glycolysis in FLSs
PI3K↓,
Akt↓,
mTOR↓,
*Apoptosis↓, Shikonin can significantly reduce the expression of apoptosis-related proteins, paw swelling in rat arthritic tissues, and the levels of inflammatory factors in peripheral blood, such as TNF-α, IL-6, IL-8, IL-10, IL-17A, and IL-1β while showing less
*Inflam↓,
*TNF-α↓,
*IL6↓,
*IL8↓,
*IL10↓,
*IL17↓,
*hepatoP↑, while showing less toxicity to the liver and kidney.
*RenoP↑,
PKM2↓, The expression of glycogen proteins PKM2, GLUT1, and HK2 decreased with increasing concentrations of shikonin
GLUT1↓,
HK2↓,

2469- SK,    Shikonin induces the apoptosis and pyroptosis of EGFR-T790M-mutant drug-resistant non-small cell lung cancer cells via the degradation of cyclooxygenase-2
- in-vitro, Lung, H1975
Apoptosis↑, Shikonin induced cell apoptosis and pyroptosis by triggering the activation of the caspase cascade and cleavage of poly (ADP-ribose) polymerase and gasdermin E by elevating intracellular ROS levels
Pyro↑,
Casp↑,
cl‑PARP↑,
GSDME↑,
ROS↑,
COX2↓, shikonin induced the degradation of COX-2 via the proteasome pathway, thereby decreasing COX-2 protein level and enzymatic activity and subsequently inhibiting the downstream PDK1/Akt and Erk1/2 signaling pathways through the induction of ROS produc
PDK1↓,
Akt↓,
ERK↓,
eff↓, Notably, COX-2 overexpression attenuated shikonin-induced apoptosis and pyroptosis
eff↓, NAC pre-treatment inhibited the shikonin-induced activation of the caspase cascade (caspase-8/9/3) and cleavage of PARP and GSDME in H1975 cells
eff↑, Celecoxib augmented the cytotoxic effects of shikonin by promoting the apoptosis and pyroptosis of H1975 cells

3043- SK,    Shikonin Induces Apoptosis by Inhibiting Phosphorylation of IGF-1 Receptor in Myeloma Cells.
- in-vitro, Melanoma, RPMI-8226
IGF-1↓, Shikonin Induces Apoptosis by Inhibiting Phosphorylation of IGF-1 Receptor in Myeloma Cells
Apoptosis↑, Shikonin suppressed the cellular growth of RPMI8226 and IM9 myeloma cells, via induction of apoptosis in a dose (0–1 μM)- and time (0–24 h)-dependent manner.
TumCCA↑, Treatment with 0.5 μM Shikonin rapidly increased the population of cells in the G0/G1 phase with reduction of cells in the S phase
MMP↓, Shikonin-induced apoptosis was in association with the loss of mitochondrial transmembrane potentials, and activation of caspase-3.
Casp3↑,
P53↑, Expression of p53 and Bax proteins was increased with down-regulation of Mcl-1 protein
BAX↑,
Mcl-1↓,
EGFR↓, Shikonin has reported to be an inhibitor of protein tyrosine kinase such as EGFR, v-Src, and KDR/Flk-1.
Src↑,
KDR/FLK-1↓,
p‑IGF-1↓, Shikonin inhibited phosphorylation of IGF-1 receptor as early as 30 min with inhibition of PI3K/Akt signaling
PI3K↓,
Akt↓,

3049- SK,    Shikonin Attenuates Chronic Cerebral Hypoperfusion-Induced Cognitive Impairment by Inhibiting Apoptosis via PTEN/Akt/CREB/BDNF Signaling
- in-vivo, Nor, NA - NA, Stroke, NA
*neuroP↑, Shikonin (SK) exerts neuroprotective effects
*p‑PTEN↓, SK administration reversed the upregulation of p-PTEN and the downregulation of p-Akt, p-CREB, and BDNF
*p‑Akt↑,
*Bcl-2↑, SK treatment upregulated the expression of bcl-2 and downregulated the expression of bax, thereby elevating the bcl-2/bax ratio.
*BAX↓,
*cognitive↑, , consequently improving cognitive impairment.

1281- SK,    Enhancement of NK cells proliferation and function by Shikonin
- in-vivo, Colon, Caco-2
Perforin↑,
GranB↑,
p‑ERK↑,
p‑Akt↑,
NK cell↑, Shikonin had no effect on cells proliferation at 24 h, and enhanced cells proliferation at 48 h and 72 h at the dose of 1.56 ng/ml to 6.25 ng/ml. Meanwhile, Shikonin inhibits the cell proliferation at 100.0 ng/ml
eff↝, Meanwhile, Shikonin inhibits the cell proliferation at 100.0 ng/ml

2188- SK,    Molecular mechanism of shikonin inhibiting tumor growth and potential application in cancer treatment
- Review, Var, NA
ROS↑, their induction of reactive oxygen species production, inhibition of EGFR and PI3K/AKT signaling pathway activation, inhibition of angiogenesis and induction of apoptosis and necroptosis
EGFR↓,
PI3K↓,
Akt↓,
angioG↓,
Apoptosis↑,
Necroptosis↑,
GSH↓, leading to the increased consumption of reduced glutathione (GSH) and increased Ca2+ concentration in the cells and destroying the mitochondrial membrane potential.
Ca+2↓,
MMP↓,
ERK↓, 24 h of treatment with shikonin, ERK 1/2 and AKT activities were significantly inhibited, and p38 activity was upregulated, which ultimately led to pro-caspase-3 cleavage and triggered the apoptosis of GC cells.
p38↑,
proCasp3↑,
eff↓, pretreated with the ROS scavengers NAC and GSH before treatment with shikonin, the production of ROS was significantly inhibited, the cytotoxicity of shikonin was attenuated
VEGF↓, shikonin can inhibit the expression of VEGF
FOXO3↑, Activated FOXO3a/EGR1/SIRT1 signaling
EGR1↑,
SIRT1↑,
RIP1↑, Upregulation of RIP1 and RIP3
RIP3↑,
BioAv↓, limitations caused by its poor water solubility, it has a short half-life and nonselective biological distribution
NF-kB↓, Shikonin can also prevent the activation of NF-κB by AKT and then downregulate the expression of Bcl-xl,
Half-Life↓, due to the limitations caused by its poor water solubility, it has a short half-life and nonselective biological distribution.

2288- SNP,    Silver Nanoparticle-Mediated Cellular Responses in Various Cell Lines: An in Vitro Model
- Review, Var, NA
*ROS↑, Several studies have reported that AgNPs induce genotoxicity and cytotoxicity in both cancer and normal cell lines
Akt↓, high ROS levels, and reduced Akt and ERK signaling.
ERK↓,
DNAdam↑, increased ROS production, leading to oxidative DNA damage and apoptosis
Ca+2↑, The damage caused to the cell membrane is due to intracellular calcium overload, and further causes ROS overproduction and mitochondrial membrane potential variation
ROS↑,
MMP↓,
Cyt‑c↑, AgNPs induce apoptosis through release of cytochrome c into the cytosol and translocation of Bax to the mitochondria, and also cause cell cycle arrest in the G1 and S phases
TumCCA↑,
DNAdam↑, main result of AgNP toxicity is direct and oxidative DNA damage, ultimately causing apoptosis
Apoptosis↑,
P53↑, AgNPs induce apoptosis in spermatogonial stem cells through increased levels of ROS; mitochondrial dysfunction; upregulation of p53 expression; pErk1/2;
p‑ERK↑,
ER Stress↑, endoplasmic reticulum (ER) stress-induced apoptosis caused by AgNPs has attracted much research interest
cl‑ATF6↑, cleavage of activating transcription factor 6 (ATF6), and upregulation of glucose-regulated protein-78 and CCAAT/enhancer-binding protein-homologous protein (CHOP/GADD153)
GRP78/BiP↑,
CHOP↑,
UPR↑, In order to protect the cells against nanoparticle-mediated toxicity, the ER rapidly responds with the unfolded protein response (UPR), an important cellular self-protection mechanism

309- SNP,    Interference of silver, gold, and iron oxide nanoparticles on epidermal growth factor signal transduction in epithelial cells
- in-vitro, NA, A431
ROS↑,
Akt↓,
p‑ERK↓, Erk phosphorylation

334- SNP,    Silver-Based Nanoparticles Induce Apoptosis in Human Colon Cancer Cells Mediated Through P53
- in-vitro, Colon, HCT116
Bax:Bcl2↑,
P53↑,
P21↑,
Casp3↑,
Casp8↑,
Casp9↑,
Akt↓,
NF-kB↓,
DNAdam↑,

324- SNP,  CPT,    Silver Nanoparticles Potentiates Cytotoxicity and Apoptotic Potential of Camptothecin in Human Cervical Cancer Cells
- in-vitro, Cerv, HeLa
ROS↑,
Casp3↑,
Casp9↑,
Casp6↑,
GSH↓,
SOD↓,
GPx↓,
MMP↓, loss of
P53↑,
P21↑,
Cyt‑c↑,
BID↑,
BAX↑,
Bcl-2↓,
Bcl-xL↓,
Akt↓,
Raf↓,
ERK↓,
MAP2K1/MEK1↓,
JNK↑,
p38↑,

377- SNP,    Anticancer Action of Silver Nanoparticles in SKBR3 Breast Cancer Cells through Promotion of Oxidative Stress and Apoptosis
- in-vitro, BC, SkBr3
ROS↑,
Apoptosis↑,
Bax:Bcl2↑,
VEGF↑, VEGF-A
Akt↓,
PI3K↓,
TAC↓,
TOS↑,
OSI↑,
MDA↑,
Casp3↑,
Casp7↑,

1575- statins,  Citrate,    Inhibition of Lung Cancer Growth: ATP Citrate Lyase Knockdown and Statin Treatment Leads to Dual Blockade of Mitogen-Activated Protein Kinase (MAPK) and Phosphatidylinositol-3-Kinase (PI3K)/AKT Pathways
- in-vitro, NSCLC, A549
eff↑, we find that statins, inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, which act downstream of ACL in the cholesterol synthesis pathway, dramatically enhance the anti-tumor effects of ACL inhibition, even regressing tumors
HMG-CoA↓, statins, inhibitors of (HMG-CoA) reductase
eff↑, statins dramatically enhance the anti-tumor effects of ACL inhibition
AntiTum↑,
EGFR↓, reduce the growth of EGF receptor
eff↑, ACL knockdown cells, H2O2 induced more apoptosis, which was further amplified with statin treatment (Fig. 1I). These data suggest that oxidant stress can tip ACL knockdown cells into apoptosis and that statin treatment magnifies this effect.
ROS↑, suggesting involvement of reactive oxygen species (ROS) in the induction of apoptosis by PI3K inhibitors.
EMT↓, Reversal of EMT
E-cadherin↑, increase in E-cadherin
MUC1↑, Mucin staining in ACL knockdown tumors is markedly increased, further suggesting that differentiation is induced in this condition
p‑ACLY↓, Statin treatment downregulates the phosphorylation of ACL and AKT
p‑Akt↓,
eff↑, . In A549 cells, Na-citrate supplementation caused a slight downregulation of AKT phosphorylation

139- Tomatine,  CUR,    Combination of α-Tomatine and Curcumin Inhibits Growth and Induces Apoptosis in Human Prostate Cancer Cells
- in-vitro, Pca, PC3
NF-kB↓,
Bcl-2↓,
p‑Akt↓,
p‑ERK↓, ERK1/2

1019- TQ,    Thymoquinone suppresses migration of LoVo human colon cancer cells by reducing prostaglandin E2 induced COX-2 activation
- vitro+vivo, CRC, LoVo
TumCP↓, 20 μmol/L TQ significantly reduced human LoVo colon cancer cell proliferation
p‑PI3K↓,
p‑Akt↓,
p‑GSK‐3β↓,
β-catenin/ZEB1↓,
COX2↓,
PGE2↓,
EP2↓,
EP4↓,

1935- TQ,    Potential anticancer properties and mechanisms of thymoquinone in osteosarcoma and bone metastasis
- Review, OS, NA
Apoptosis↑, Nigella sativa, has received considerable attention in cancer treatment owing to its distinctive properties, including apoptosis induction, cell cycle arrest, angiogenesis and metastasis inhibition, and reactive oxygen species (ROS) generation
TumCCA↑,
angioG↓,
TumMeta↓,
ROS↑,
P53↑, TQ upregulated the expression of p53 in a time-dependent manner, promoting apoptosis in MCF-7
Twist↓, TQ to BT 549 cell lines (breast cancer cells) in a dose-dependent fashion reduced the transcription activity of TWIST1, one of the promotors of endothelial-to-mesenchymal transition (EMT)
E-cadherin↑, TQ engagement increased the expression of E-cadherin and decreased the expression of N-cadherin
N-cadherin↓,
NF-kB↓, fig 1
IL8↓,
XIAP↓,
Bcl-2↓,
STAT3↓,
MAPK↓,
PI3K↓,
Akt↓,
ERK↓,
MMP2↓,
MMP9↓,
*ROS↓, prevent cancer formation
HO-1↑, Moreover, TQ could stunt the growth of HCC cell lines through the generation of ROS, heme oxygenase-1 (HO-1)
selectivity↑, application of phytochemicals such as TQ is a promising strategy since these compounds show less toxicity against normal cells.
TumCG↓, Despite inhibiting the growth and viability of different cancer types, TQ has no adverse effects on healthy cells

2129- TQ,  doxoR,    Thymoquinone up-regulates PTEN expression and induces apoptosis in doxorubicin-resistant human breast cancer cells
- in-vitro, BC, MCF-7
ChemoSen↑, TQ greatly inhibits doxorubicin-resistant human breast cancer MCF-7/DOX cell proliferation
PTEN↑, TQ treatment increased cellular levels of PTEN proteins
p‑Akt↓, resulting in a substantial decrease of phosphorylated Akt, a known regulator of cell survival.
TumCCA↑, TQ arrested MCF-7/DOX cells at G2/M phase and increased cellular levels of p53 and p21 proteins.
P53↑,
P21↑,
Apoptosis↑, TQ-induced apoptosis was associated with disrupted mitochondrial membrane potential and activation of caspases and PARP cleavage in MCF-7/DOX cells.
MMP↓,
Casp↑,
cl‑PARP↑,
Bax:Bcl2↑, TQ treatment increased Bax/Bcl2 ratio via up-regulating Bax and down-regulating Bcl2 proteins.
eff↓, PTEN silencing by target specific siRNA enabled the suppression of TQ-induced apoptosis resulting in increased cell survival.
DNAdam↓, TQ treatment arrests MCF-7/DOX Cells in G2/M phase and induces DNA damage
p‑γH2AX↑, time-dependent increase in the phosphorylation of H2AX was observed following TQ treatment
ROS↑, DNA damage caused by TQ induced reactive species and oxidative stress.

2133- TQ,  CUR,  Cisplatin,    Thymoquinone and curcumin combination protects cisplatin-induced kidney injury, nephrotoxicity by attenuating NFκB, KIM-1 and ameliorating Nrf2/HO-1 signalling
- in-vitro, Nor, HEK293 - in-vivo, NA, NA
*creat↓, BUN, creatinine, CK and pro-inflammatory cytokines like TNF-α, IL-6 and MRP-1 to be elevated in the cisplatin-treated group while reducing glomerular filtration rate. Tq + Cur treatment significantly improved these conditions.
*TNF-α↓,
*IL6↓,
*MRP↓,
*GFR↑,
*mt-ATPase↑, antioxidant enzyme levels and mitochondrial ATPases were restored upon treatment,
*p‑Akt↑, Tq + Cur treatment increased the expressions of phosphorylated Akt, Nrf2 and HO-1 proteins while decreasing the levels of cleaved caspase 3 and NFκB in kidney homogenates.
*NRF2↑,
*HO-1↑,
*Casp3↓,
*NF-kB↓,
*RenoP↑, In summary, Tq + Cur had protective effects on cisplatin-induced nephrotoxicity and renal injury

2135- TQ,    Thymoquinone induces heme oxygenase-1 expression in HaCaT cells via Nrf2/ARE activation: Akt and AMPKα as upstream targets
- in-vitro, Nor, HaCaT
*HO-1↑, TQ induced the expression of HO-1 in HaCaT/ Cells treated with TQ (1, 5, 10, 20 lM) for 6 h induced the expression of HO-1 protein. maximal induction observed until 12 h and then returned to basal level time thereafter
*NRF2↑, Treatment with TQ increased the localization of nuclear factor (NF)-erythroid2-(E2)-related factor-2 (Nrf2) in the nucleus and elevated the antioxidant response element (ARE)-reporter gene activity.
*e-ERK↑, TQ induced the phosphorylation of extracellular signal-regulated kinase (ERK), Akt and cyclic AMP-activated protein kinase-α (AMPKα).
*e-Akt↑,
*AMPKα↑,
*ROS↑, Treatment of HaCaT cells with TQ resulted in a concentration-dependent increase in the intracellular accumulation of ROS (most occurs at 20uM concentration -see figure 5A)
*eff↓, pretreatment with N-acetyl cysteine (NAC) abrogated TQ-induced ROS accumulation, Akt and AMPKα activation, Nrf2 nuclear localization, the ARE-luciferase activity, and HO-1 expression in HaCaT cells
*tumCV∅, does not change much 1-20uM of TQ (normal cells) see figure 1A

2128- TQ,    Thymoquinone inhibits phorbol ester-induced activation of NF-κB and expression of COX-2, and induces expression of cytoprotective enzymes in mouse skin in vivo
- in-vivo, NA, NA
*COX2↓, Pretreatment of female HR-1 hairless mouse skin with TQ attenuated 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced expression of cyclooxygenase-2 (COX-2)
*NF-kB↓, TQ diminished nuclear translocation and the DNA binding of nuclear factor-kappaB (NF-κB) via the blockade of phosphorylation and subsequent degradation of IκBα in TPA-treated mouse skin
*p‑Akt↓, Pretreatment with TQ attenuated the phosphorylation of Akt, c-Jun-N-terminal kinase and p38 mitogen-activated protein kinase,
*p‑cJun↓,
*p‑p38↓,
*HO-1↑, Moreover, topical application of TQ induced the expression of heme oxygenase-1, NAD(P)H-quinoneoxidoreductase-1, glutathione-S-transferase and glutamate cysteine ligase in mouse skin
*NADPH↑,
*GSTA1↑,
*antiOx↑, provide a mechanistic basis of anti-inflammatory and antioxidative effects of TQ in hairless mouse skin.
*Inflam↓,
*NQO1↑, Topical application of TQ (5 lmol) significantly increased the expression of HO-1 (Fig. 4A), NQO1 (Fig. 4B), GCL (Fig. 4C) and GST (Fig. 4D) in mouse epidermal tissue
*GCLC↑,
*GSTA1↑,

2127- TQ,    Therapeutic Potential of Thymoquinone in Glioblastoma Treatment: Targeting Major Gliomagenesis Signaling Pathways
- Review, GBM, NA
chemoP↑, TQ can specifically sensitize tumor cells towards conventional cancer treatments and minimize therapy-associated toxic effects in normal cells
ChemoSen↑,
BioAv↑, TQ adds another advantage in overcoming blood-brain barrier
PTEN↑, TQ upregulates PTEN signaling [72, 73], interferes with PI3K/Akt signaling and promotes G(1) arrest, downregulates PI3K/Akt
PI3K↓,
Akt↓,
TumCCA↓,
NF-kB↓, and NF-κB and their regulated gene products, such as p-AKT, p65, XIAP, Bcl-2, COX-2, and VEGF, and attenuates mTOR activity
p‑Akt↓,
p65↓,
XIAP↓,
Bcl-2↓,
COX2↓,
VEGF↓,
mTOR↓,
RAS↓, Studies in colorectal cancer have demonstrated that TQ inhibits the Ras/Raf/MEK/ERK signaling
Raf↓,
MEK↓,
ERK↓,
MMP2↓, Multiple studies have reported that TQ downregulates FAC and reduces the secretion of MMP-2 and MMP-9 and thereby reduces GBM cells migration, adhesion, and invasion
MMP9↓,
TumCMig↓,
TumCI↓,
Casp↑, caspase activation and PARP cleavage
cl‑PARP↑,
ROS⇅, TQ is hypothesized to act as an antoxidant at lower concentrations and a prooxidant at higher concentrations depending on its environment [89]
ROS↑, In tumor cells specifically, TQ generates ROS production that leads to reduced expression of prosurvival genes, loss of mitochondrial potential,
MMP↓,
eff↑, elevated level of ROS generation and simultaneous DNA damage when treated with a combination of TQ and artemisinin
Telomerase↓, inhibition of telomerase by TQ through the formation of G-quadruplex DNA stabilizer, subsequently leads to rapid DNA damage which can eventually induce apoptosis in cancer cells specifically
DNAdam↑,
Apoptosis↑,
STAT3↓, TQ has shown to suppress STAT3 in myeloma, gastric, and colon cancer [86, 171, 172]
RadioS↑, TQ might enhance radiation therapeutic benefit by enhancing the cytotoxic efficacy of radiation through modulation of cell cycle and apoptosis [31]

2123- TQ,    Thymoquinone suppresses growth and induces apoptosis via generation of reactive oxygen species in primary effusion lymphoma
- in-vitro, lymphoma, PEL
Akt↓, TQ treatment results in down-regulation of constitutive activation of AKT via generation of reactive oxygen species (ROS)
ROS↑,
BAX↓, and it causes conformational changes in Bax protein, leading to loss of mitochondrial membrane potential and release of cytochrome c to the cytosol.
MMP↓,
Cyt‑c↑,
eff↑, subtoxic doses of TQ sensitized PEL cells to TRAIL via up-regulation of DR5
Casp9↑, TQ-induced signaling causes caspase-9/3 activation and PARP cleavage in PEL cells
Casp3↑,
cl‑PARP↑,
DR5↑, TQ-induced ROS generation regulates up-regulation of DR5

2106- TQ,    Cancer: Thymoquinone antioxidant/pro-oxidant effect as potential anticancer remedy
- Review, Var, NA
Apoptosis↑, The anticancer power of TQ is accomplished by several aspects; including promotion of apoptosis, arrest of cell cycle and ROS generation.
TumCCA↑,
ROS↑,
*Catalase↑, activation of antioxidant cytoprotective enzymes including, CAT, SOD, glutathione reductase (GR) [80], glutathione-S-transferase (GST) [81] and glutathione peroxidase (GPx) - scavenging H2O2 and superoxide radicals and preventing lipid peroxidation
*SOD↑,
*GR↑,
*GSTA1↓,
*GPx↑,
*H2O2↓,
*ROS↓,
*lipid-P↓,
*HO-1↑, application of TQ to HaCaT (normal) cells promoted the expression of HO-1 in a concentration and time-dependent pattern
p‑Akt↓, TQ could induce ROS which provoked phosphorylation and activation of Akt and AMPK-α
AMPKα↑,
NK cell↑, TQ was outlined to enhance natural killer (NK) cells activity
selectivity↑, Many researchers have noticed that the growth inhibitory potential of TQ is particular to cancer cells
Dose↝, Moreover, TQ has a dual effect in which it can acts as both pro-oxidant and antioxidant in a dose-dependent manner; it acts as an antioxidant at low concentration whereas, at higher concentrations it possess pro-oxidant property
eff↑, Pro-oxidant property of TQ occurs in the presence of metal ions including copper and iron which induce conversion of TQ into semiquinone. This leads to generation of reactive oxygen species (ROS) causing DNA damage and induction of cellular apoptosis
GSH↓, TQ for one hour resulted in three-fold increase of ROS while reduced GSH level by 60%
eff↓, pre-treatment of cells with N-acetylcysteine, counteracted TQ-induced ROS production and alleviated growth inhibition
P53↑, TQ provokes apoptosis in MCF-7 cancer cells by up regulating the expression of P53 by time-dependent manner.
p‑STAT3↓, TQ inhibited the phosphorylation of STAT3
PI3K↑, via up regulation of PI3K and MPAK signalling pathway
MAPK↑,
GSK‐3β↑, TQ produced apoptosis in cancer cells and modulated Wnt signaling by activating GSK-3β, translocating β-catenin
ChemoSen↑, Co-administration of TQ and chemotherapeutic agents possess greater cytotoxic influence on cancer cells.
RadioS↑, Treatment of cells with both TQ and IR enhanced the antiproliferative power of TQ as observed by shifting the IC50 values for MCF7 and T47D cells from ∼104 and 37 μM to 72 and 18 μM, respectively.
BioAv↓, TQ cannot be used as the primary therapeutic agent because of its poor bioavailability [177,178] and lower efficacy
NRF2↑, TQ to HaCaT cells promoted the expression of HO-1 in a concentration and time-dependent pattern. This was achieved via increasing stabilization of Nrf2

2085- TQ,    Anticancer Activities of Nigella Sativa (Black Cumin)
- Review, Var, NA
MMP↓, TQ induces apoptosis, disrupts mitochondrial membrane potential and triggers the activation of caspases 8, 9 and 3 in HL-60 cells.
Casp3↑,
Casp8↑,
Casp9↓,
cl‑PARP↑, PARP cleavage and the release of cytochrome c from mitochondria into the cytoplasm.
Cyt‑c↑,
Bax:Bcl2↑, marked increase in Bax/Bcl2 ratios
NF-kB↓, TQ also down-regulates the expression of NF-kappa B-regulated antiapoptotic (IAP1, IAP2, XIAP Bcl-2, Bcl-xL, and survivin) gene products
IAP1↓,
IAP2↓,
XIAP↓,
Bcl-xL↓,
survivin↓,
cJun↑, TQ inducing apoptosis by the activation of c-Jun NH(2)-terminal kinase and p38 mitogen-activated protein kinase pathways in pancreatic cancer cell.
p38↑,
Akt↑, TQ effectively inhibited human umbilical vein endothelial cell migration, invasion, and tube formation by suppressing the activation of AKT
chemoP↑, TQ can lower the toxicity of other anticancer drugs (for example, cyclophosphamide) by an up-regulation of antioxidant mechanisms, indicating a potential clinical application for these agents to minimize the toxic effects of treatment with anticancer
radioP↑, Cemek et al. (2006) showed that N. sativa and glutathione treatment significantly antagonize the effects of radiation. Therefore, N. sativa may be a beneficial agent in protection against ionizing radiation-related tissue injury.

2084- TQ,    Thymoquinone, as an anticancer molecule: from basic research to clinical investigation
- Review, Var, NA
*ROS↓, An interesting study reported that thymoquinone is actually a potent apoptosis inducer in cancer cells, but it exerts antiapoptotic effect through attenuating oxidative stress in other types of cell injury
*chemoP↑, antioxidant activity of thymoquinone is responsible for its chemopreventive activities
ROS↑, other studies reported thymoquinone induce apoptosis in cancer cells by exerting oxidative damage
ROS⇅, Another hypothesis states that thymoquinone acts as an antioxidant at lower concentrations and a prooxidant at higher concentrations
MUC4↓, Torres et al. [17] revealed that thymoquinone down-regulates glycoprotein mucin 4 (MUC4)
selectivity↑, thymoquinone was found to inhibit DNA synthesis, proliferation, and viability of cancerous cells, such as LNCaP, C4-B, DU145, and PC-3, but not noncancerous BPH-1 prostate epithelial cells [20].
AR↓, Down-regulation of androgen receptor (AR) and cell proliferation regulator E2F-1 was indicated as the mechanism behind thymoquinone’s action in prostate cancer
cycD1↓, expression of STAT3-regulated gene products, such as cyclin D1, Bcl-2, Bcl-xL, survivin, Mcl-1 and vascular endothelial growth factor (VEGF), was inhibited by thymoquinone, which ultimately increased apoptosis and killed cancer cells
Bcl-2↓,
Bcl-xL↓,
survivin↓,
Mcl-1↓,
VEGF↓,
cl‑PARP↑, induction of the cleavage of poly-(ADP-ribose) polymerase (PARP
ROS↑, In ALL cell line CEM-ss, thymoquinone treatment generated reactive oxygen species (ROS) and HSP70
HSP70/HSPA5↑,
P53↑, thymoquinone can induce apoptosis in MCF-7 breast cancer cells via the up-regulation of p53 expression
miR-34a↑, Thymoquinone significantly increased the expression of miR-34a via p53, and down-regulated Rac1 expression
Rac1↓,
TumCCA↑, In hepatic carcinoma, thymoquinone induced cell cycle arrest and apoptosis by repressing the Notch signaling pathway
NOTCH↓,
NF-kB↓, Evidence revealed that thymoquinone suppresses tumor necrosis factor (TNF-α)-induced NF-kappa B (NF-κB) activation
IκB↓, consequently inhibits the activation of I kappa B alpha (I-κBα) kinase, I-κBα phosphorylation, I-κBα degradation, p65 phosphorylation
p‑p65↓,
IAP1↓, down-regulated the expression of NF-κB -regulated antiapoptotic gene products, like IAP1, IAP2, XIAP Bcl-2, Bcl-xL;
IAP2↑,
XIAP↓,
TNF-α↓, It also inhibited monocyte chemo-attractant protein-1 (MCP-1), TNF-α, interleukin (IL)-1β and COX-2, ultimately reducing the NF-κB activation in pancreatic ductal adenocarcinoma cells
COX2↓,
Inflam↓, indicating its role as an inhibitor of proinflammatory pathways
α-tubulin↓, Without affecting the tubulin levels in normal human fibroblast, thymoquinone induces degradation of α and β tubulin proteins in human astrocytoma U87 cells and in T lymphoblastic leukaemia Jurkat cells, and thus exerts anticancer activity
Twist↓, thymoquinone treatment inhibits TWIST1 promoter activity and decreases its expression in breast cancer cell lines; leading to the inhibition of epithelial-mesenchymal transition (EMT)
EMT↓,
mTOR↓, thymoquinone also attenuated mTOR activity, and inhibited PI3K/Akt signaling in bladder cancer
PI3K↓,
Akt↓,
BioAv↓, Thymoquinone is chemically hydrophobic, which causes its poor solubility, and thus bioavailability. bioavailability of thymoquinone was reported ~58% with a lag time of ~23 min
ChemoSen↑, Some studies revealed that thymoquinone in combination with other chemotherapeutic drugs can show better anticancer activities
BioAv↑, Thymoquinone-loaded liposomes (TQ-LP) and thymoquinone loaded in liposomes modified with Triton X-100 (XLP) with diameters of about 100 nm were found to maintain stability, improve bioavailability and maintain thymoquinone’s anticancer activity
PTEN↑, Thymoquinone also induces apoptosis by up-regulating PTEN
chemoP↑, A recent study showed that thymoquinone can potentiate the chemopreventive effect of vitamin D during the initiation phase of colon cancer in rat model
RadioS↑, thymoquinone also mediates radiosensitization and cancer chemo-radiotherapy
*Half-Life↝, Thymoquinone-loaded nanostructured lipid carrier (TQ-NLC) has been developed to improve its bioavailability (elimination half-life ~5 hours)
*BioAv↝, calculated absolute bioavailability of thymoquinone was reported ~58% with a lag time of ~23 min by Alkharfy et al.

3431- TQ,    PI3K-AKT Pathway Modulation by Thymoquinone Limits Tumor Growth and Glycolytic Metabolism in Colorectal Cancer
- in-vitro, CRC, HCT116 - in-vitro, CRC, SW48
Glycolysis↓, we provide evidence that thymoquinone inhibits glycolytic metabolism (Warburg effect) in colorectal cancer cell lines.
Warburg↓,
HK2↓, was due, at least in part, to the inhibition of the rate-limiting glycolytic enzyme, Hexokinase 2 (HK2),
ATP↓, such reduction in glucose fermentation capacity also led to a significant reduction in overall ATP production as well as maintaining the redox state (NADPH production) of these cells
NADPH↓, showed a significant reduction in glucose fermentation, ATP and NADPH production rates
PI3K↓, reduction in HK2 levels upon TQ treatment coincided with significant inhibition in PI3K-AKT activation
Akt↓,
TumCP↓, Thymoquinone Inhibits Cell Migration and Invasion via Modulating Glucose Metabolic Reprogramming
E-cadherin↑, TQ was able to induce E-cadherin while inhibiting N-cadherin expression
N-cadherin↓,
Hif1a↓, TQ is reported to induce cell death in renal cell carcinoma [81] and pancreatic cancers [82] via inhibiting HIF1α and pyruvate kinase M2 (PKM2)-mediated glycolysis
PKM2↓,
GlucoseCon↓, TQ treatment inhibited the glucose uptake and subsequent lactate production in HCT116 and SW480 cells
lactateProd↓,
EMT↓, TQ inhibits cell proliferation, clonogenicity and epithelial-mesenchymal transition (EMT) in CRC cells (HCT116 and SW480)

3422- TQ,    Thymoquinone, as a Novel Therapeutic Candidate of Cancers
- Review, Var, NA
selectivity↑, TQ selectively inhibits the cancer cells’ proliferation in leukemia [9], breast [10], lungs [11], larynx [12], colon [13,14], and osteosarcoma [15]. However, there is no effect against healthy cells
P53↑, It also re-expressed tumor suppressor genes (TSG), such as p53 and Phosphatase and tensin homolog (PTEN) in lung cancer
PTEN↑,
NF-kB↓, antitumor properties by regulating different targets, such as nuclear factor kappa B (NF-Kb), peroxisome proliferator-activated receptor-γ (PPARγ), and c-Myc [1], which resulted in caspases protein activation
PPARγ↓,
cMyc↓,
Casp↑,
*BioAv↓, Due to hydrophobicity, there are limitations in the bioavailability and drug formation of TQ.
BioAv↝, TQ is sensitive to light; a short period of exposure results in severe degradation, regardless of the solution’s acidity and solvent type [27]. It is also unstable in alkaline solutions because TQ’s stability decreases with rising pH
eff↑, Encapsulating TQ with CS improves the uptake and bioavailability of TQ but has low encapsulation efficiency (35%)
survivin↓, TQ showed antiproliferative and pro-apoptotic potency on breast cancer through the suppression of anti-apoptotic proteins, such as survivin, Bcl-xL, and Bcl-2
Bcl-xL↓,
Bcl-2↓,
Akt↓, treating doxorubicin-resistant MCF-7/DOX cells with TQ inhibited Akt and Bcl2 phosphorylation and increased the expression of PTEN and apoptotic regulators such as Bax, cleaved PARP, cleaved caspases, p53, and p21 [
BAX↑,
cl‑PARP↑,
CXCR4↓, inhibited metastasis with significant inhibition of chemokine receptor Type 4 (CXCR4), which is considered a poor prognosis indicator, matrix metallopeptidase 9 (MMP9), vascular endothelial growth factor Receptor 2 (VEGFR2), Ki67, and COX2
MMP9↓,
VEGFR2↓,
Ki-67↓,
COX2↓,
JAK2↓, TQ at 25, 50 and 75 µM inhibited JAK2 and c-Src activity and induced apoptosis by inhibiting the phosphorylation of STAT3 and STAT3 downstream genes, such as Bcl-2, cyclin D, survivin, and VEGF, and upregulating caspases-3, caspases-7, and caspases-9
cSrc↓,
Apoptosis↑,
p‑STAT3↓,
cycD1↓,
Casp3↑,
Casp7↑,
Casp9↑,
N-cadherin↓, downregulated the mesenchymal genes expression N-cadherin, vimentin, and TWIST, while upregulating epithelial genes like E-cadherin and cytokeratin-19.
Vim↓,
Twist↓,
E-cadherin↑,
ChemoSen↑, The combined treatment of 5 μM TQ and 2 μg/mL cisplatin was more effective in cancer growth and progression than either agent alone in a xenograft tumor mouse model.
eff↑, TQ–artemisinin hybrid therapy (2.6 μM) showed an enhanced ROS generation level and concomitant DNA damage induction in human colon cancer cells, while not affecting nonmalignant colon epithelial at 100 μM
EMT↓, TQ inhibits the survival signaling pathways to reduce carcinogenesis progress rate, and decreases cancer metastasis through regulation of epithelial to mesenchymal transition (EMT).
ROS↑, Apoptosis is induced by TQ in cancer cells through producing ROS, demethylating and re-expressing the TSG
DNMT1↓, inhibits DNMT1, figure 2
eff↑, TQ–vitamin D3 combination significantly reduced pro-cancerous molecules (Wnt, β-catenin, NF-κB, COX-2, iNOS, VEGF and HSP-90) a
EZH2↓, reduced angiogenesis by downregulating significant angiogenic genes such as versican (VCAN), the growth factor receptor-binding protein 2 (Grb2), and enhancer of zeste homolog 2 (EZH2), which participates in histone methylatio
hepatoP↑, Moreover, TQ improved liver function as well as reduced hepatocellular carcinoma progression
Zeb1↓, TQ decreases the Twist1 and Zeb1 promoter activities,
RadioS↑, TQ combined with radiation inhibited proliferation and induced apoptosis more than a TQ–cisplatin combination against SCC25 and CAL27 cell lines
HDAC↓, TQ has inhibited the histone deacetylase (HDAC) enzyme and reduced its total activity.
HDAC1↓, as well as decreasing the expression of HDAC1, HDAC2, and HDAC3 by 40–60%
HDAC2↓,
HDAC3↓,
*NAD↑, In non-cancer cells, TQ can increase cellular NAD+
*SIRT1↑, An increase in the levels of intracellular NAD+ led to the activation of the SIRT1-dependent metabolic pathways
SIRT1↓, On the other hand, TQ induced apoptosis by downregulating SIRT1 and upregulating p73 in the T cell leukemia Jurkat cell line
*Inflam↓, TQ treatment of male Sprague–Dawley rats has reduced the inflammatory markers (CRP, TNF-α, IL-6, and IL-1β) and anti-inflammatory cytokines (IL-10 and IL-4) triggered by sodium nitrite
*CRP↓,
*TNF-α↓,
*IL6↓,
*IL1β↓,
*eff↑, The TQ–piperin combination has also decreased the oxidative damage triggered by microcystin in liver tissue and reduced malondialdehyde (MDA) and NO, while inducing glutathione (GSH) levels and superoxide dismutase (SOD), catalase (CAT), and glutathi
*MDA↓,
*NO↓,
*GSH↑,
*SOD↑,
*Catalase↑,
*GPx↑,
PI3K↓, repressing the activation of vital pathways, such as JAK/STAT and PI3K/AKT/mTOR.
mTOR↓,

3425- TQ,    Advances in research on the relationship between thymoquinone and pancreatic cancer
Apoptosis↑, TQ can inhibit cell proliferation, promote cancer cell apoptosis, inhibit cell invasion and metastasis, enhance chemotherapeutic sensitivity, inhibit angiogenesis, and exert anti-inflammatory effects.
TumCP↓,
TumCI↓,
TumMeta↓,
ChemoSen↑,
angioG↓,
Inflam↓,
NF-kB↓, These anticancer effects predominantly involve the nuclear factor (NF)-κB, phosphoinositide 3 kinase (PI3K)/Akt, Notch, transforming growth factor (TGF)-β, c-Jun N-terminal kinase (JNK)
PI3K↓,
Akt↓,
TGF-β↓,
Jun↓,
p38↑, and p38 mitogen-activated protein kinase (MAPK) signaling pathways as well as the regulation of the cell cycle, matrix metallopeptidase (MMP)-9 expression, and pyruvate kinase isozyme type M2 (PKM2) activity.
MAPK↑, activation of the JNK and p38 MAPK
MMP9↓,
PKM2↓, decrease in PKM2 activity
ROS↑, ROS-mediated activation
JNK↑, activation of the JNK and p38 MAPK
MUC4↓, downregulation of MUC4;
TGF-β↑, TQ led to the activation of the TGF-β pathway and subsequent downregulation of MUC4
Dose↝, Q acts as an antioxidant (free radical scavenger) at low concentrations and as a pro-oxidant at high concentrations.
FAK↓, TQ can inhibit several key molecules such as FAK, Akt, NF-κB, and MMP-9 and that these molecules interact in a cascade to affect the metastasis of pancreatic cancer
NOTCH↓, TQ involved in increasing chemosensitivity consist of blocking the Notch1/PTEN, PI3K/Akt/mTOR, and NF-κB signaling pathways, reducing PKM2 expression, and inhibiting the Warburg effect.
PTEN↑, it also restored the PTEN protein that had been inhibited by GEM
mTOR↓,
Warburg↓, reducing PKM2 expression, and inhibiting the Warburg effect.
XIAP↓,
COX2↓,
Casp9↑,
Ki-67↓,
CD34↓,
VEGF↓,
MCP1↓,
survivin↓,
Cyt‑c↑,
Casp3↑,
H4↑,
HDAC↓,

3427- TQ,    Chemopreventive and Anticancer Effects of Thymoquinone: Cellular and Molecular Targets
ROS⇅, It appears that the cellular and/or physiological context(s) determines whether TQ acts as a pro-oxidant or an anti-ox- idant in vivo
Fas↑, Figure 2, cell death
DR5↑,
TRAIL↑,
Casp3↑,
Casp8↑,
Casp9↑,
P53↑,
mTOR↓,
Bcl-2↓,
BID↓,
CXCR4↓,
JNK↑,
p38↑,
MAPK↑,
LC3II↑,
ATG7↑,
Beclin-1↑,
AMPK↑,
PPARγ↑, cell survival
eIF2α↓,
P70S6K↓,
VEGF↓,
ERK↓,
NF-kB↓,
XIAP↓,
survivin↓,
p65↓,
DLC1↑, epigenetic
FOXO↑,
TET2↑,
CYP1B1↑,
UHRF1↓,
DNMT1↓,
HDAC1↓,
IL2↑, inflammation
IL1↓,
IL6↓,
IL10↓,
IL12↓,
TNF-α↓,
iNOS↓,
COX2↓,
5LO↓,
AP-1↓,
PI3K↓, invastion
Akt↓,
cMET↓,
VEGFR2↓,
CXCL1↓,
ITGA5↓,
Wnt↓,
β-catenin/ZEB1↓,
GSK‐3β↓,
Myc↓,
cycD1↓,
N-cadherin↓,
Snail↓,
Slug↓,
Vim↓,
Twist↓,
Zeb1↓,
MMP2↓,
MMP7↓,
MMP9↓,
JAK2↓, cell proliferiation
STAT3↓,
NOTCH↓,
cycA1↓,
CDK2↓,
CDK4↓,
CDK6↓,
CDC2↓,
CDC25↓,
Mcl-1↓,
E2Fs↓,
p16↑,
p27↑,
P21↑,
ChemoSen↑, Such chemo-potentiating effects of TQ in different cancer cells have been observed with 5-fluorouracil in gastric cancer and colorectal cancer models

3397- TQ,    Thymoquinone: A Promising Therapeutic Agent for the Treatment of Colorectal Cancer
- Review, CRC, NA
ChemoSen↑, TQ can be used synergistically with chemotherapeutic agents to enhance their anticancer effects and to influence the expression of signaling pathways and other genes important in cancer development.
*Half-Life↝, These parameters remained associated with an elimination half-life (t1/2) of 63.43 ± 10.69 and 274.61 ± 8.48 min for intravenous and oral administration, respectively
*BioAv↝, TQ is characterized by slow absorption, rapid metabolism, rapid elimination and low physicochemical stability, which limits its pharmaceutical applications
*antiOx↑, Biologically active compounds from Nigella sativa have been shown to have antioxidant, antimicrobial, anti-inflammatory, antidiabetic, hepatoprotective, antiproliferative, proapoptotic, antiepileptic and immunomodulatory activities,
*Inflam↓,
*hepatoP↑,
TumCP↓, TQ exerts tumorigenic effects in a variety of ways, including modulation of the epigenetic machinery and effects on proliferation, the cell cycle, apoptosis, angiogenesis, carcinogenesis and metastasis
TumCCA↑,
Apoptosis↑,
angioG↑,
selectivity↑, TQ has low toxicity to normal cells, as confirmed by several studies, including studies on normal mouse kidney cells, normal human lung fibroblasts and normal human intestinal cells.
JNK↑, activation of c-Jun N-terminal kinases (JNK) and p38, as well as the phosphorylation of nuclear factor-?B (NF-?B) and the reduction of extracellular signal-regulated kinase 1/2 (ERK1/2) and phosphatidylinositol 4,5-bisphosphate 3-kinase (PI3K) activi
p38↑,
p‑NF-kB↑,
ERK↓,
PI3K↓,
PTEN↑, showing higher expression of p21/p27/PTEN/BAX/Cyto-C/Casp-3
Akt↓, TQ has also been shown to downregulate the PI3K/PTEN/Akt/mTOR and WNT/?-catenin pathways, which are critical for tumorigenesis
mTOR↓,
EMT↓, downregulating the epithelial to mesenchymal transition (EMT) transcription factors twist-related protein 1 (TWIST1) and E-cadherin
Twist↓,
E-cadherin↓,
ROS⇅, TQ has been shown to act as an antioxidant at low concentrations. Higher concentrations, however, induce apoptosis of cancer cells through the induction of oxidative stress
*Catalase↑, Thymoquinone upregulates the expression of genes encoding specific enzymes, such as catalase, superoxide dismutase, glutathione reductase, glutathione S-transferase and glutathione peroxidase, whose role is to protect against reactive oxygen species
*SOD↑,
*GSTA1↑,
*GPx↑,
*PGE2↓, TQ has the ability to downregulate NF-?B, interleukin-1?, tumor necrosis factor alpha, cyclooxygenase-2 (COX-2,) matrix metalloproteinase 13 (MMP-13), prostaglandin E2 (PGE2), the interferon regulatory factor, which are associated with inflammation a
*IL1β↓,
*COX2↓,
*MMP13↓,
MMPs↓, Figure 2
TumMeta↓,
VEGF↓,
STAT3↓, TQ affects the induction of apoptosis in cancer cells by blocking the signal transducer and activator of transcription 3 (STAT3) signaling
BAX↑, upregulation of Bax and inhibition of Bcl-2 and B-cell lymphoma-extra large (Bcl-xl) expression, as well as activated caspase-9, -7 and -3, and induced cleavage of poly (ADP-ribose) polymerase (PARP).
Bcl-2↑,
Casp9↑,
Casp7↑,
Casp3↑,
cl‑PARP↑,
survivin↓, TQ also attenuated the expression of STAT3 target gene products, such as survivin, c-Myc and cyclin-D1, -D2, and enhanced the expression of cell cycle inhibitory proteins p27 and p21
cMyc↓,
cycD1↓,
p27↑,
P21↑,
GSK‐3β↓, TQ reduces the levels of p-PI3K, p-Akt, p-glycogen synthase kinase 3 (p-GSK3?) and ?-catenin, thereby inhibiting downstream COX-2 expression, which in turn leads to a reduction in PGE2
β-catenin/ZEB1↓,
chemoP↑, results support the potential use of thymoquinone in colorectal cancer chemoprevention, as TQ is effective in protecting and treating the DMH-initiated early phase of colorectal cancer.

3407- TQ,    Thymoquinone and its pharmacological perspective: A review
- Review, NA, NA
*antiOx↑, TQ has been reported for its antioxidant properties to combat oxidative stress in several literatures
*ROS↓, scavenges the highly reactive oxygen
*GSTs↑, induction of glutathione transferase and quinone reductase
*GSR↑,
*GSH↑, TQ induces the Glutathione production with simultaneous inhibition of superoxide radical production
*RenoP↑, Improved renal function against mercuric chloride, doxorubicin and cisplatin damage have been reported through TQ based induction of Glutathione
*IL1β↓, Decreased the levels of IL-1β, TNFα, MMP-13, cox-2 and PGE(2)
*TNF-α↓,
*MMP13↓,
*COX2↓, reducing COX-2 gene expression, it also inhibited colon cancer cell migration.
*PGE2↓,
*radioP↑, Normal cell protection from ionizing radiation in cancer cell treatment.
Twist↓, TQ treatment have evidenced the inhibition of TWIST1 promoter activity and reduces it expression in cancer cell line leading inhibition of epithelial-mesenchymal transition mediated metastasis
EMT↓,
NF-kB↓, inhibiting the NF-κB expression in breast cancer model of mice
p‑PI3K↓, TQ (20 M) decreased the activation of prostaglandin receptors EP2 and EP4 in LoVo colon cancer cells by reducing p-PI3K, p-Akt, p-GSK3, and -catenin.
p‑Akt↓,
p‑GSK‐3β↓,
DNMT1↓, TQ's anticancer effects are mediated by DNMT1-dependent (dependent DNA methylation mediates) DNA methylation,
HDAC↓, inhibiting histone deacetylase (HDAC)

3411- TQ,    Anticancer and Anti-Metastatic Role of Thymoquinone: Regulation of Oncogenic Signaling Cascades by Thymoquinone
- Review, Var, NA
p‑STAT3↓, Thymoquinone inhibited the JAK2-mediated phosphorylation of STAT3 on the 727th serine residue in SK-MEL-28 cells
cycD1↓, levels of cyclin D1, D2, and D3 were reported to be reduced in STAT3-depleted SK-MEL-28 cells
JAK2↓, The JAK2/STAT3 pathway is inactivated by thymoquinone in B16-F10 melanoma cells
β-catenin/ZEB1↓, Levels of β-catenin and Wnt/β-catenin target genes, such as c-Myc, matrix metalloproteinase-7, and Met, were found to be reduced in thymoquinone-treated bladder cancer cells.
cMyc↓,
MMP7↓,
MET↓,
p‑Akt↓, Thymoquinone dose-dependently reduced the levels of p-AKT (threonine-308), p-AKT (serine-473), p-mTOR1, and p-mTOR2 in gastric cancer cells.
p‑mTOR↓,
CXCR4↓, Thymoquinone decreased the surface expression of CXCR4 on multiple myeloma cells
Bcl-2↓, Thymoquinone time-dependently decreased BCL-2 levels and simultaneously enhanced BAX levels
BAX↑,
ROS↑, Thymoquinone-mediated ROS accumulation triggered conformational changes in BAX that sequentially resulted in the activation of the mitochondrial apoptotic pathway
Cyt‑c↑, Thymoquinone effectively increased the release of cytochrome c into the cytosol
Twist↓, Thymoquinone downregulated TWIST1 and ZEB1 and simultaneously upregulated E-cadherin in SiHa and CaSki cell lines [82].
Zeb1↓,
E-cadherin↑,
p‑p38↑, Thymoquinone-induced ROS enhanced the phosphorylation of p38-MAPK in MCF-7 cells.
p‑MAPK↑,
ERK↑, The thymoquinone-induced activation of ERK1/2
eff↑, FR180204 (ERK inhibitor) significantly reduced the viability of thymoquinone and docetaxel-treated cancer cells [
ERK↓, Thymoquinone inhibited the proliferation, migration, and invasion of A549 cells by inactivating the ERK1/2 signaling cascade
TumCP↓,
TumCMig↓,
TumCI↓,

3555- TQ,    Thymoquinone administration ameliorates Alzheimer's disease-like phenotype by promoting cell survival in the hippocampus of amyloid beta1-42 infused rat model
- in-vivo, AD, NA
*memory↑, TQ enhanced the memory performance of Aβ1-42 infused rats
*BAX↓, expression profiles of mir29c and Bax which significantly upregulated in the Aβ1-42-infused animals were attenuated by TQ
*Aβ↓, administration of TQ decreased the expressions of Aβ, phosphorylated-tau, and BACE-1 proteins. removing Aβ plaques and by restoring neuron viability
*p‑tau↓,
*AChE↓, a decrease of AChE level was noted in the Aβ+TQ group compared to that of the Aβ group
*p‑Akt↓, Q treatment decreased the phosphorylation of AKT
*Ach↑, When the degradation of acetylcholine by AChE enzyme decreases, increment in acetylcholine concentration leads to an improvement in memory
*Inflam↓, The healing effect of TQ on the reduction of the Aβ accumulation may be due to its anti-inflammatory effect

3559- TQ,    Molecular signaling pathway targeted therapeutic potential of thymoquinone in Alzheimer’s disease
- Review, AD, NA - Review, Var, NA
*antiOx↑, promising potential in the prevention and treatment of AD due to its significant antioxidative, anti-inflammatory,
*Inflam↑, anti-inflammatory activity of TQ is mediated through the Toll-like receptors (TLRs)
*AChE↓, In addition, it shows anticholinesterase activity and prevents α-synuclein induced synaptic damage.
AntiCan↑, NS plant, has been proven to have a wide range of pharmacological interventions, including antidiabetic, anticancer, cardioprotective, retinoprotective, renoprotective, neuroprotective, hepatoprotective and antihypertensive effects
*cardioP↑,
*RenoP↑,
*neuroP↑,
*hepatoP↑,
TumCG↓, potential ability to inhibit tumor growth by stimulating apoptosis as well as by suppression of the P13K/Akt pathways, cell cycle arrest and by inhibition of angiogenesis
Apoptosis↑,
PI3K↓,
Akt↑,
TumCCA↑,
angioG↓,
*NF-kB↓, TQ inhibits nuclear translocation of NF-kB which subsequently blocks the production of NF-kB mediated neuroinflammatory cytokines
*TLR2↓, TQ administration at different doses (10, 20, 40 mg/kg) significantly down-regulated the mRNA expression of TLR-2, TLR-4, MyD88, TRIF and their downstream effectors Interferon regulatory factor 3 (IRF-3)
*TLR4↓,
*MyD88↓,
*TRIF↓,
*IRF3↓,
*IL1β↓, TQ also inhibits LPS induced pro-inflammatory cytokine release like IL-1B, IL-6 and IL-12 p40/70 via its interaction with NF-kB
*IL6↓,
*IL12↓,
*NRF2↑, Nuclear erythroid-2 related factor/antioxidant response element (Nrf 2/ARE) being an upstream signaling pathway of NF-kB signaling pathway, its activation by TQ
*COX2↓, TQ also inhibits the expression of all genes regulated by NF-kB, i.e., COX-2, VEGF, MMP-9, c-Myc, and cyclin D1 which distinctively lowers NF-kB activation making it a potentially effective inhibitor of inflammation, proliferation and invasion
*VEGF↓,
*MMP9↓,
*cMyc↓,
*cycD1↓,
*TumCP↓,
*TumCI↓,
*MDA↓, it prevents the rise of malondialdehyde (MDA), transforming growth factor beta (TGF-β), c-reactive protein, IL1-β, caspase-3 and concomitantly upregulates glutathione (GSH), cytochrome c oxidase, and IL-10 levels [92].
*TGF-β↓,
*CRP↓,
*Casp3↓,
*GSH↑,
*IL10↑,
*iNOS↑, decline of inducible nitric oxide synthase (iNOS) protein expression
*lipid-P↓, TQ prominently mitigated hippocampal lipid peroxidation and improved SOD activity
*SOD↑,
*H2O2↓, TQ is a strong hydrogen peroxide, hydroxyl scavenger and lipid peroxidation inhibitor
*ROS↓, TQ (0.1 and 1 μM) ensured the inhibition of free radical generation, lowering of the release of lactate dehydrogenase (LDH)
*LDH↓,
*Catalase↑, upsurge the levels of GSH, SOD, catalase (CAT) and glutathione peroxidase (GPX)
*GPx↑,
*AChE↓, TQ exhibited the highest AChEI activity of 53.7 g/mL in which NS extract overall exhibited 84.7 g/mL, which suggests a significant AChE inhibition.
*cognitive↑, Most prominently, TQ has been found to regulate neurite maintenance for cognitive benefits by phosphorylating and thereby activating the MAPK protein, particularly the JNK proteins for embryogenesis and also lower the expression levels of BAX
*MAPK↑,
*JNK↑,
*BAX↓,
*memory↑, TQ portrays its potential of spatial memory enhancement by reversing the conditions as observed by MWM task
*Aβ↓, TQ thus, has been shown to ameliorate the Aβ accumulation
*MMP↑, improving the cellular activity, inhibiting mitochondrial membrane depolarization and suppressing ROS

2350- UA,    Ursolic acid-mediated changes in glycolytic pathway promote cytotoxic autophagy and apoptosis in phenotypically different breast cancer cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
Akt↓, UA (20 µM) also diminished AKT signaling that affected glycolysis as judged by decreased levels of HK2, PKM2, ATP and lactate.
Glycolysis↓,
HK2↓,
PKM2↓,
ATP↓, 20 µM UA caused a decrease in intracellular ATP and lactate pools
lactateProd↓,
AMPK↑, UA-induced energy stress activated AMPK that resulted in cytotoxic autophagy and apoptosis
TumAuto↑,
Apoptosis↑,
ERK↓, UA-promoted apoptosis was associated with decreased pERK1/2 signals and the depolarization of mitochondrial membrane potential.
MMP↓,
NO↑, 20 µM UA treatment resulted in an increase in nitric oxide levels
ROS↑, UA-induced elevation in total reactive oxygen species (ROS), total superoxide and mitochondrial superoxide production was more potent than BA-mediated oxidative stress
DNAdam↑, UA and BA promoted DNA breaks,

3135- VitC,    The interplay between vitamin C and thyroid
- Review, Thyroid, NA
AntiCan↑, found anti‐cancer effects for intravenous (IV) administration of vitamin C
ChemoSen↑, vitamin C could enhance the efficacy of monotherapies agents like cisplatin, 23 gemcitabine, 44 , 45 , 46 sorafenib, 47 PLX4032 21 and 5‐fluorouracil 44 in different types of cancers
radioP↑, vitamins like vitamin E and vitamin C as antioxidant agents are game changers and can reduce the toxicity level of radiopharmaceuticals with a higher efficacy of vitamin C.
MAPK↓, Mechanistic studies have also revealed that vitamin C inhibits the MAPK/ERK and PI3K/AKT signalling pathways in BRAF wild‐type or mutant thyroid cancer cells.
ERK↓,
PI3K↓,
Akt↓,
QoL↑, Cancers can influence patients' quality of life, and vitamin C is shown to positively affect pain relief and well‐being.
OS↑, Altogether, high‐dose vitamin C was shown to prolong the survival duration of patients

2365- VitD3,    Vitamin D Affects the Warburg Effect and Stemness Maintenance of Non- Small-Cell Lung Cancer Cells by Regulating the PI3K/AKT/mTOR Signaling Pathway
- in-vitro, Lung, A549 - in-vitro, Lung, H1975 - in-vivo, NA, NA
Glycolysis↓, vitamin D inhibited glycolysis and stemness maintenance in A549 and NCI-H1975 cells.
Warburg↓, vitamin D attenuated the expression of metabolism-related enzymes associated with the Warburg effect (GLUT1, LDHA, HK2, and PKM2).
GLUT1↓,
LDHA↓,
HK2↓,
PKM2↓,
OCT4↓, In addition, vitamin D down-regulated the expression of stemness-related genes (Oct-4, SOX-2, and Nanog) and the expression of PI3K, AKT, and mTOR.
SOX2↓,
Nanog↓,
PI3K↓,
Akt↓,
mTOR↓,

2283- VitK2,    Vitamin K Contribution to DNA Damage—Advantage or Disadvantage? A Human Health Response
- Review, Var, NA
*ER Stress↓, protective effect of vitamin K on blood vessels, by reducing inflammation and stress ER
*toxicity↓, Natural forms of vitamin K–K1 and K2—have only a low potential for toxicity
*toxicity↑, However, K3 may demonstrate harmful potential: synthetic vitamin K3 can lead to liver damage
ROS↑, Like another quinone, doxorubicin, menadione exerts its cytotoxic effects by stimulating the generation of oxidative stress, leading to DNA damage
PI3K↑, In bladder cancer cells (T24), vitamin K2 significantly induces PI3K/Akt phosphorylation and increases expression of HIF-1α, intensifying glucose consumption and lactate formation.
Akt↑,
Hif1a↑,
GlucoseCon↑,
lactateProd↑,
ChemoSen↑, Numerous studies indicate that the K vitamins have an additive or synergistic effect on various chemotherapeutic agents.
eff↑, A strong synergism between K1 and sorafenib has been demonstrated in numerous studies
eff↑, ascorbic acid (AA), has a synergistic effect on K3 [73,122,123]. The AA/K3 association leads to an excessive increase in oxidative stress and a decrease in the potential of the mitochondrial membrane, which is a crucial trigger of tumor cell death

2281- VitK2,    The biological responses of vitamin K2: A comprehensive review
- Review, Var, NA
*ROS↓, VitK1 and MK-4 prevent oxidative cell death by blocking the activation of 12-LOX and ROS generation
*12LOX↓,
*NF-kB↓, VitK2 modulates osteoblast and osteoclast formation and activity via downregulation of basal and cytokine-induced NF-κB activation
*BMD↑, strengthens bone construction
*hepatoP↑, VitK2 significantly increased serum albumin levels with concurrent reduction of the levels of alanine and aspartate aminotransferases, suggesting that VitK2 enhances liver regeneration.
cycD1↓, figure 5
PKCδ↓,
STAT3↓,
ERK↑,
MAPK↓,
ROS↑,
PI3K↝,
Akt↝,
Hif1a↝,
*neuroP↑, An increasing body of evidence suggests the possible role of VitK supplementation as a novel neuroprotective strategy in the maintenance of nerve integrity and normal brain function, including cognition and behavior

1213- VitK2,    Vitamin K2 Inhibits Hepatocellular Carcinoma Cell Proliferation by Binding to 17β-Hydroxysteroid Dehydrogenase 4
- in-vitro, HCC, HepG2
HSD17B4↓, VK2 directly binds to HSD17B4, but does not affect the expression of HSD17B4, to inhibit the proliferation of HCC cells by inhibiting the activation of Akt and MEK/ERK signaling pathways, leading to decreased STAT3 activation
Akt↓,
MEK↓,
ERK↓,
STAT3↓,
TumCP↓,

1214- VitK2,    Vitamin K2 promotes PI3K/AKT/HIF-1α-mediated glycolysis that leads to AMPK-dependent autophagic cell death in bladder cancer cells
- in-vitro, Bladder, T24 - in-vitro, Bladder, J82
Glycolysis↑, Vitamin K2 renders bladder cancer cells more dependence on glycolysis than TCA cycle
GlucoseCon↑, results suggest that Vitamin K2 is able to induce metabolic stress, including glucose starvation and energy shortage, in bladder cancer cells, upon glucose limitation.
lactateProd↑,
TCA↓, Vitamin K2 promotes glycolysis and inhibits TCA cycle in bladder cancer cells
PI3K↑,
Akt↑,
AMPK↑, Vitamin K2 remarkably activated AMPK pathway
mTORC1↓,
TumAuto↑,
GLUT1↑, Vitamin K2 stepwise elevated the expression of some glycolytic proteins or enzymes, such as GLUT-1, Hexokinase II (HK2), PFKFB2, LDHA and PDHK1, in bladder cancer T24
HK2↑,
LDHA↑, Vitamin K2 stepwise elevated the expression of some glycolytic proteins or enzymes, such as GLUT-1, Hexokinase II (HK2), PFKFB2, LDHA and PDHK1, in bladder cancer T24
ACC↓, Vitamin K2 remarkably decreased the amounts of Acetyl coenzyme A (Acetyl-CoA) in T24 cells
PDH↓, suggesting that Vitamin K2 inactivates PDH
eff↓, Intriguingly, glucose supplementation profoundly abrogated AMPK activation and rescued bladder cancer cells from Vitamin K2-triggered autophagic cell death.
cMyc↓, c-MYC protein level was also significantly reduced in T24 cells following treatment with Vitamin K2 for 18 hours
Hif1a↑, Besides, the increased expression of GLUT-1, HIF-1α, p-AKT and p-AMPK were also detected in Vitamin K2-treated tumor group
p‑Akt↑,
eff↓, 2-DG, 3BP and DCA-induced glycolysis attenuation significantly prevented metabolic stress and rescued bladder cancer cells from Vitamin K2-triggered AMPK-dependent autophagic cell death
eff↓, inhibition of PI3K/AKT and HIF-1α notably attenuated Vitamin K2-upregulated glycolysis, indicating that Vitamin K2 promotes glycolysis in bladder cancer cells via PI3K/AKT and HIF-1α signal pathways.
eff↓, (NAC, a ROS scavenger) not only alleviated Vitamin K2-induced AKT activation and glycolysis promotion, but also significantly suppressed the subsequent AMPK-dependent autophagic cell death.
eff↓, glucose supplementation not only restored c-MYC expression, but also rescued bladder cancer cells from Vitamin K2-triggered AMPK-dependent autophagic cell death
ROS↑, under glucose limited condition, the increased glycolysis inevitably resulted in metabolic stress, which augments ROS accumulation due to lack of glucose for sustained glycolysis.

2301- Wog,    Flavonoids Targeting HIF-1: Implications on Cancer Metabolism
- Review, Var, NA
HK2↓, wogonin was accompanied by decreases in HKII, PDK1, and LDHA expression
PDK1↓,
LDHA↓, Wogonin treatment suppressed LDHA activity in human gastric cancer (SGC-7901) and human lung adenocarcinoma (A549) cells
Hif1a↓, wogonin could reduce HIF-1α expression by inhibiting the PI3K/Akt signaling pathway
PI3K↓,
Akt↓,
Glycolysis↓, suppression of glycolytic-related proteins, and inhibition of PI3K/Akt signaling in vivo
P53↑, Wogonin was found to upregulate p53 and p53-inducible glycolysis in colon cancer (HCT-116), ovarian cancer (A2780), and liver cancer (HepG2) cells
GLUT1↓, also inhibited glycolysis in A2780 xenografts accompanied by the downregulation of GLUT1

1222- Z,    Zinc regulates primary ovarian tumor growth and metastasis through the epithelial to mesenchymal transition
- in-vitro, Ovarian, NA
EMT↑, zinc contributes to ovarian tumor metastasis by promoting EMT through a MTF-1 dependent pathway
TumCMig↑,
TumCI↑,
ERK↑,
Akt↑, .

2425- γ-Toc,    Anticancer Effects of γ-Tocotrienol Are Associated with a Suppression in Aerobic Glycolysis
- in-vitro, NA, MCF-7 - in-vivo, NA, NA
TumCG↓, Treatment with γ-tocotrienol resulted in a dose-responsive inhibition of both +SA and MCF-7 mammary tumor cell growth
GlucoseCon↓, induced a relatively large reduction in glucose utilization, intracellular ATP production and extracellular lactate excretion.
ATP↓,
lactateProd↓,
Glycolysis↓, These effects were also associated with a large decrease in enzyme expression levels involved in regulating aerobic glycolysis
HK2↓, including hexokinase-II, phosphofructokinase, pyruvate kinase M2, and lactate dehydrogenase A
PFK↓,
PKM2↓,
LDHA↓,
Akt↓, γ-Tocotrienol treatment was also associated with a corresponding reduction in the levels of phosphorylated (active) Akt, phosphorylated (active) mTOR, and c-Myc
p‑mTOR↓,
cMyc↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 382

Results for Effect on Cancer/Diseased Cells:
12LOX↓,3,   14-3-3 proteins↓,1,   4E-BP1↓,1,   p‑4E-BP1↓,3,   5HT↓,1,   5LO↓,3,   ABCG2↓,1,   ACC↓,1,   ACC↑,3,   ACLY↓,3,   p‑ACLY↓,1,   ADAM17↓,1,   adiP↑,1,   AEG1↓,1,   AhR↓,1,   AIF↑,6,   Akt↓,239,   Akt↑,16,   Akt↝,2,   Akt∅,1,   p‑Akt↓,118,   p‑Akt↑,4,   p‑Akt↝,1,   AKT1↓,3,   Akt2↓,2,   ALAT↓,4,   ALDH↓,1,   ALDH1A1↓,1,   ALP↓,4,   AMPK↓,3,   AMPK↑,23,   p‑AMPK↑,2,   AMPKα↑,2,   angioG↓,57,   angioG↑,1,   AntiAg↓,1,   AntiAg↑,3,   AntiCan↓,1,   AntiCan↑,15,   antiOx↓,2,   antiOx↑,7,   antiOx⇅,1,   AntiTum↑,6,   AP-1↓,12,   AP-1↝,1,   APAF1↑,5,   Apoptosis?,1,   Apoptosis↑,108,   Apoptosis↝,2,   mt-Apoptosis↑,1,   Appetite↑,1,   AQPs↓,1,   AR↓,16,   AR↝,1,   AR-V7?,1,   ASC↓,1,   ASC↑,1,   ascitic↓,1,   ASK1↑,2,   AST↓,3,   ATF2↓,1,   ATF3↑,2,   ATF4↓,1,   ATF4↑,8,   ATF4↝,1,   ATF6↑,2,   cl‑ATF6↑,1,   ATFs↑,1,   ATG3↓,1,   ATG3↑,3,   ATG5↑,5,   ATG7↑,2,   p‑ATM↑,1,   ATP↓,19,   mt-ATP↓,1,   ATPase↓,1,   p‑ATR↑,1,   AXL↓,3,   BAD↓,2,   BAD↑,9,   p‑BAD↓,2,   Bak↑,11,   BAX↓,2,   BAX↑,78,   BAX↝,1,   Bax:Bcl2↑,24,   BBB↓,1,   BBB↑,2,   Bcl-2↓,86,   Bcl-2↑,3,   Bcl-2↝,1,   Bcl-2∅,1,   cl‑Bcl-2↓,1,   Bcl-xL↓,24,   Bcl-xL↝,1,   Beclin-1↓,3,   Beclin-1↑,14,   BG↓,1,   BID↓,1,   BID↑,6,   BIM↓,1,   BIM↑,10,   BioAv↓,16,   BioAv↑,21,   BioAv↝,5,   BioEnh?,1,   BioEnh↑,5,   BMP2↓,1,   BMPs↑,2,   BNIP3↑,3,   BOK↑,2,   BRCA1↑,1,   CA↓,1,   Ca+2↓,4,   Ca+2↑,20,   Ca+2↝,2,   i-Ca+2?,1,   i-Ca+2↑,1,   cachexia↓,1,   CAFs/TAFs↓,1,   CAIX↓,1,   CAIX↑,1,   cal2↓,1,   cal2↑,1,   CaMKII ↓,2,   cardioP↑,6,   Casp↑,18,   Casp1↓,2,   Casp10↑,2,   Casp12↑,2,   cl‑Casp12↑,1,   Casp2↑,3,   Casp3↓,2,   Casp3↑,103,   Casp3↝,1,   Casp3∅,1,   cl‑Casp3↑,13,   proCasp3↓,1,   proCasp3↑,1,   Casp6↑,1,   Casp7↑,12,   cl‑Casp7↑,1,   Casp8↓,1,   Casp8↑,26,   Casp8∅,2,   cl‑Casp8↑,5,   pro‑Casp8↑,1,   Casp9↓,2,   Casp9↑,59,   cl‑Casp9↑,9,   proCasp9↓,1,   Catalase↓,6,   Catalase↑,2,   Cav1↓,1,   CCR7↓,1,   CD133↓,4,   CD24↓,1,   CD31↓,2,   CD34↓,2,   CD4+↑,1,   CD44↓,6,   CD8+↑,1,   CDC2↓,6,   CDC2↑,1,   cDC2↓,1,   CDC25↓,7,   Cdc42↓,1,   CDK1↓,10,   p‑CDK1↓,2,   CDK1/2/5/9↓,1,   CDK2↓,29,   CDK2↑,2,   CDK4↓,32,   CDK4↑,2,   CDK4/6↓,2,   CDK6↓,19,   CDK6↑,2,   CDK8↓,2,   CEA↓,1,   cFLIP↓,6,   cFos↓,6,   cFos↑,1,   chemoP↓,1,   chemoP↑,23,   ChemoSen↓,2,   ChemoSen↑,70,   ChemoSen⇅,1,   ChemoSideEff↓,6,   ChemoSideEff∅,1,   CHK1↓,2,   p‑CHK1↑,1,   Chk2↓,1,   p‑Chk2↑,1,   CHOP↑,22,   CIP2A↓,1,   cJun↓,6,   cJun↑,1,   p‑cJun↑,1,   CK2↓,7,   CLDN1↓,2,   CLDN2↓,2,   cMET↓,8,   p‑cMET↑,1,   cMyc↓,34,   p‑cMyc↑,1,   cognitive?,1,   cognitive↑,1,   COL1↓,2,   COL3A1↓,1,   COL4↓,1,   COMT↓,2,   COX1↓,2,   COX2↓,60,   COX2↑,2,   COX2↝,1,   CRP↓,3,   CSCs↓,14,   cSrc↓,3,   CTR1↑,1,   CXCL1↓,1,   CXCL12↓,2,   CXCR4↓,12,   Cyc↓,2,   Cyc↝,1,   cycA1↓,8,   cycA1↑,2,   CycB↓,16,   CycB↑,1,   cycD1↓,61,   cycD1↝,1,   CycD3↓,1,   cycE↓,13,   cycE↑,1,   cycE1↓,2,   CYP19?,1,   CYP19↓,1,   CYP1A1↓,2,   CYP1A1↑,2,   CYP1A2↓,1,   CYP1B1↑,1,   Cyt‑c↑,63,   Cyt‑c↝,1,   DFF45↑,1,   Diablo↑,9,   Diff↓,1,   DLC1↑,1,   DNAdam↓,2,   DNAdam↑,36,   DNArepair↑,1,   DNMT1↓,8,   DNMT3A↓,1,   DNMTs↓,2,   Dose?,3,   Dose↓,1,   Dose↑,3,   Dose↝,10,   Dose∅,8,   DR4↑,4,   DR5↓,1,   DR5↑,26,   E-cadherin↓,8,   E-cadherin↑,38,   E2Fs↓,2,   E6↓,5,   E7↓,5,   ECAR↓,1,   ECAR↝,1,   ECAR∅,1,   eff↓,28,   eff↑,126,   eff↝,6,   eff∅,2,   EGF↓,6,   EGF↑,1,   EGFR↓,44,   EGFR↑,1,   EGFR↝,1,   p‑EGFR↓,6,   EGR1↑,1,   eIF2α↓,2,   eIF2α↑,6,   p‑eIF2α↑,5,   EIF4E↓,1,   EM↑,1,   EMT↓,66,   EMT↑,3,   Endoglin↑,1,   p‑ENO1↓,1,   eNOS↓,3,   EP2↓,1,   EP4↓,1,   ER Stress↓,1,   ER Stress↑,37,   ER-α36↓,2,   ER(estro)↓,1,   ERK↓,58,   ERK↑,8,   ERK∅,1,   p‑ERK↓,25,   p‑ERK↑,6,   p‑ERK⇅,1,   EZH2↓,4,   F-actin↓,1,   FABP4↑,1,   FADD↑,4,   FAK↓,16,   p‑FAK↓,3,   p‑FAK↑,1,   Fap1↓,1,   Fas↑,14,   FasL↑,4,   FASN↓,5,   FASN↑,1,   FBPase↑,1,   Fenton↑,2,   Ferroptosis↑,5,   FGF↓,2,   FGF↑,1,   FGF21↑,1,   FGFR1↓,4,   FGFR2↓,1,   Fibronectin↓,6,   FOXD3↑,1,   Foxm1↓,4,   FOXO↑,2,   FOXO1↓,1,   FOXO1↑,1,   FOXO3↓,2,   FOXO3↑,6,   p‑FOXO3↓,2,   FOXO4↓,1,   FOXP3↓,2,   frataxin↑,1,   FTH1↓,1,   Furin↓,2,   GIT1↓,1,   Gli↓,1,   Gli1↓,5,   GLI2↓,2,   GLO-I↓,2,   glucoNG↑,1,   GlucoseCon↓,22,   GlucoseCon↑,2,   GLUT1↓,20,   GLUT1↑,2,   GLUT3↑,1,   GLUT4↓,1,   GlutMet↓,1,   glyC↓,1,   Glycolysis↓,41,   Glycolysis↑,1,   GPx↓,4,   GPx↑,2,   GPx1↓,1,   GPx4↓,4,   GranB↑,1,   GRP58↓,1,   GRP78/BiP↑,13,   p‑GS3Kβ↓,1,   GSDME↑,1,   GSH↓,17,   GSH↑,7,   GSK‐3β↓,13,   GSK‐3β↑,5,   p‑GSK‐3β↓,6,   p‑GSK‐3β↑,1,   GSR↓,2,   GSR↑,1,   GSTs↓,2,   GSTs↑,2,   GutMicro↑,4,   GutMicro↝,1,   H2O2↓,1,   H2O2↑,1,   H3↓,2,   H3↑,1,   ac‑H3↑,1,   H4↓,1,   H4↑,1,   ac‑H4↑,1,   Half-Life↓,2,   Half-Life↝,7,   Half-Life∅,2,   HATs↓,1,   HATs↑,1,   HDAC↓,15,   HDAC∅,1,   HDAC1↓,5,   HDAC10↓,1,   HDAC10↑,1,   HDAC2↓,2,   HDAC3↓,3,   HDAC4↓,2,   HDAC8↓,4,   HemoG↓,1,   hepatoP↑,4,   HER2/EBBR2↓,12,   p‑HER2/EBBR2↓,1,   HEY1↓,2,   HGF/c-Met↓,2,   HH↓,5,   HIF-1↓,4,   Hif1a↓,58,   Hif1a↑,3,   Hif1a↝,1,   Hippo↓,1,   HK2↓,29,   HK2↑,1,   HMG-CoA↓,1,   HO-1↓,7,   HO-1↑,19,   HO-2↓,1,   HR↓,1,   HSD17B4↓,1,   HSF1↓,2,   HSP27↓,4,   HSP27↑,1,   HSP27↝,1,   HSP70/HSPA5↓,7,   HSP70/HSPA5↑,3,   HSP70/HSPA5↝,1,   HSP90↓,9,   HSPs↓,1,   hTERT↓,7,   hyperG↓,1,   IAP1↓,3,   IAP2↓,2,   IAP2↑,1,   cl‑IAP2↑,1,   ICAD↓,1,   ICAM-1↓,4,   IFN-γ↓,3,   IFN-γ↑,1,   IGF-1↓,11,   p‑IGF-1↓,1,   IGF-1R↓,11,   IGF-1R↑,1,   p‑IGF-1R↓,1,   IGF-2↓,1,   IGFBP1↑,1,   IGFBP3↓,1,   IGFBP3↑,3,   IGFBP7↑,1,   p‑IGFR↓,1,   Igs↑,1,   IKKα↓,6,   IKKα↑,2,   p‑IKKα↓,2,   IL1↓,4,   IL1↑,1,   IL10↓,6,   IL10↑,2,   IL12↓,2,   IL1α↓,1,   IL1β↓,9,   IL2↓,2,   IL2↑,5,   IL4↓,2,   IL6↓,29,   IL6↑,1,   IL6↝,1,   IL8↓,7,   IL8↑,1,   IM↓,1,   Inflam↓,15,   Inflam↑,1,   iNOS↓,11,   Insulin↓,2,   IRE1↑,3,   Iron↑,3,   IronCh↑,1,   ITGA5↓,1,   ITGB1↓,3,   ITGB1↑,1,   ITGB3↓,1,   ITGB4↓,1,   IκB↓,1,   IκB↑,1,   p‑IκB↓,3,   JAK↓,3,   JAK1↓,2,   JAK2↓,11,   JNK↓,2,   JNK↑,18,   JNK↝,1,   p‑JNK↓,4,   p‑JNK↑,5,   Jun↓,1,   JWA↑,1,   K17↓,1,   KDR/FLK-1↓,2,   Keap1↓,1,   Ki-67↓,16,   KLF2↓,1,   KLF5↓,1,   lactateProd↓,19,   lactateProd↑,2,   LAMs↓,1,   LC3‑Ⅱ/LC3‑Ⅰ↓,1,   LC3‑Ⅱ/LC3‑Ⅰ↑,4,   LC3B↓,1,   LC3B↑,2,   LC3B-II↑,3,   LC3I↓,1,   LC3II↓,2,   LC3II↑,10,   LDH↓,6,   LDH↑,1,   i-LDH↓,1,   LDHA↓,13,   LDHA↑,1,   LDL↓,1,   LEF1↓,1,   Let-7↑,2,   lipid-P↓,7,   lipid-P↑,8,   LOX1↓,1,   M2 MC↓,1,   MAD↓,1,   MALAT1↓,1,   MAP2K1/MEK1↓,1,   MAPK↓,24,   MAPK↑,15,   p‑MAPK↑,1,   MARK4↓,1,   Maspin↑,1,   Mcl-1↓,28,   MCP1↓,3,   MCU↓,1,   MDA↓,1,   MDA↑,6,   MDM2↓,7,   p‑MDM2↓,1,   MDR1↓,4,   MDSCs↓,1,   MEK↓,8,   MET↓,3,   p‑MET↓,1,   MGMT↓,1,   MIP2↓,1,   miR-155↓,1,   miR-205↑,1,   miR-21↓,3,   miR-21↑,1,   miR-210↓,1,   miR-27a-3p↓,1,   miR-34a↑,3,   mitResp↓,2,   MKK4↓,1,   MKP1↓,1,   MKP2↓,1,   MLKL↑,1,   MMP↓,61,   MMP↑,3,   MMP-10↓,1,   MMP1↓,4,   MMP13↓,1,   MMP17↓,1,   MMP2↓,67,   MMP2↑,1,   MMP2↝,1,   MMP3↓,4,   MMP7↓,9,   MMP9↓,75,   MMP9↑,1,   MMPs↓,19,   MPO↓,1,   MRP1↓,2,   mtDam↑,6,   mTOR↓,100,   mTOR↑,2,   mTOR⇅,1,   mTOR↝,1,   mTOR∅,1,   p‑mTOR↓,27,   mTORC1↓,6,   p‑mTORC1↓,1,   mTORC2↓,2,   mTORC2↑,1,   MUC1↑,1,   MUC4↓,2,   Myc↓,5,   N-cadherin↓,25,   n-MYC↓,2,   NA↓,3,   NADPH↓,4,   NADPH↑,3,   NADPH/NADP+↓,1,   NAIP↓,2,   Nanog↓,8,   NCAM↑,1,   NCOA4↑,1,   Necroptosis↑,3,   necrosis↑,1,   NEDD9↓,3,   Nestin↓,4,   neuroP↑,5,   NF-kB↓,109,   NF-kB↑,2,   NF-kB↝,1,   p‑NF-kB↑,2,   NHE1↓,1,   NICD↓,1,   NK cell↑,3,   NLRP3↓,2,   NO↓,4,   NO↑,3,   NO↝,1,   NOTCH↓,13,   NOTCH1↓,10,   NOTCH1↑,3,   NOTCH3↓,3,   NOXA↑,3,   NQO1↓,1,   NQO1↑,4,   NRF2↓,14,   NRF2↑,20,   NRF2↝,1,   p‑NRF2↓,1,   NSE↓,1,   OCR↓,3,   OCR↑,1,   OCT4↓,6,   oncosis↑,1,   OS↑,6,   OSI↑,1,   other?,1,   other↓,4,   other↝,2,   OXPHOS↓,2,   OXPHOS↝,1,   P-gp↓,7,   p16↑,4,   p19↑,2,   P21↓,2,   P21↑,53,   P21↝,1,   p27↓,1,   p27↑,26,   p38↓,8,   p38↑,22,   p‑p38↓,2,   p‑p38↑,6,   p‑p42↓,1,   p‑p44↓,1,   P450↓,4,   p50↓,3,   P53?,1,   P53↓,3,   P53↑,64,   P53↝,1,   p‑P53↑,2,   p53 Wildtype∅,1,   p62↓,5,   p62↑,4,   p65↓,5,   p‑p65↓,3,   p70S6↓,5,   p‑p70S6↓,2,   p‑p70S6↑,1,   P70S6K↓,5,   p‑P70S6K↓,5,   p73↑,1,   p85S6K↓,1,   P90RSK↓,1,   p‑P90RSK↑,1,   Pain↓,1,   PAO↑,1,   PARP↓,3,   PARP↑,11,   p‑PARP↑,1,   cl‑PARP↑,49,   PARP1↑,1,   cl‑PARP1↑,1,   p‑PCK1↓,1,   PCNA↓,18,   PD-1↓,3,   PD-L1↓,7,   PDGF↓,4,   PDGFR-BB↓,1,   PDH↓,2,   PDH↑,1,   PDH↝,1,   PDK1?,2,   PDK1↓,12,   p‑PDK1↓,2,   PDK3↑,1,   Perforin↑,1,   PERK↑,6,   p‑PERK↑,1,   PFK↓,4,   PFK1↓,3,   PFK2↓,2,   PFKP↓,1,   PGE2↓,14,   PI3K↓,131,   PI3K↑,10,   PI3K↝,2,   p‑PI3K↓,15,   PI3K/Akt↓,5,   PI3k/Akt/mTOR↓,3,   PIAS-3↑,1,   PIK3CA↓,1,   p‑PIK3R1↓,1,   PIP3↑,1,   PKA↓,1,   PKCδ↓,7,   PKM2↓,23,   PKM2:PKM1↓,1,   POLD1↓,1,   polyA↓,1,   PPARα↓,1,   PPARα↑,1,   PPARγ↓,2,   PPARγ↑,3,   pRB↓,1,   pRB↑,1,   p‑pRB↓,2,   PRKCG↑,1,   Prx↓,1,   Prx4↑,1,   PSA↓,2,   PSA↝,1,   PTCH1↓,1,   PTEN↓,3,   PTEN↑,37,   PTEN↝,1,   p‑PTEN↓,1,   PUMA↑,4,   PYCR1↓,2,   Pyro↑,1,   Pyruv↓,1,   QoL↑,2,   Rac1↓,2,   RAD51↓,1,   radioP↑,7,   RadioS↑,33,   Raf↓,8,   e-Raf↓,1,   RAGE↓,2,   RANKL↓,1,   RARα↓,1,   RARβ↑,1,   RARγ↑,1,   RAS↓,9,   RAS↑,1,   RB1↓,1,   p‑RB1↓,4,   RenoP↑,4,   RET↓,1,   Rho↓,2,   Rho↑,1,   RIP1↓,2,   RIP1↑,1,   p‑RIP1↑,1,   RIP3↓,1,   RIP3↑,1,   Risk↓,1,   ROCK1↓,2,   ROCK1↑,1,   ROS↓,24,   ROS↑,160,   ROS⇅,7,   ROS↝,2,   i-ROS↑,1,   mt-ROS↑,2,   RPS6KA1↓,1,   p‑S6↓,3,   S6K↓,1,   p‑S6K↓,3,   SCF↓,2,   SDC1↑,1,   Securin↓,1,   selectivity↑,31,   Sepsis↓,2,   SESN2↑,1,   Sharpin↓,1,   Shh↓,8,   SHP1↑,1,   SIRT1↓,6,   SIRT1↑,7,   SIRT2↓,1,   SIRT3↓,1,   SIRT3↑,2,   SIRT6↓,1,   SIRT6↑,2,   Sleep↑,1,   Slug↓,16,   Smad1↑,1,   SMAD2↓,3,   p‑SMAD2↓,1,   SMAD3↓,6,   p‑SMAD3↓,1,   Smo↓,2,   Snail?,1,   Snail↓,29,   Snail↑,1,   SOCS-3↑,1,   SOCS1↑,1,   SOD↓,8,   SOD↑,7,   SOD1↓,1,   SOD1↑,1,   SOD2↓,2,   SOD2↑,1,   SOX2↓,9,   SOX4↑,1,   SOX9?,1,   SOX9↓,1,   Sp1/3/4↓,9,   Src↓,4,   Src↑,1,   p‑Src↓,1,   SREBF2↓,1,   SREBP1↓,1,   SSAT↑,1,   STAC2↓,1,   STAT↓,1,   STAT1↓,1,   p‑STAT1↓,1,   STAT3↓,52,   STAT3↑,1,   p‑STAT3↓,17,   p‑STAT3↑,1,   STAT5↓,1,   STAT6↓,2,   p‑STAT6↓,1,   survivin↓,36,   Symptoms↓,1,   T-Cell↑,2,   TAC↓,1,   TAp63α↑,1,   TAZ↓,1,   TCA↓,3,   TCA↑,1,   TCF↓,1,   TCF↑,1,   TCF-4↓,2,   Telomerase↓,9,   TET1↓,1,   TET1↑,2,   TET2↑,1,   TGF-β↓,15,   TGF-β↑,2,   Th1 response↑,2,   TIMP1↓,1,   TIMP1↑,8,   TIMP2↓,1,   TIMP2↑,4,   TLR4↓,4,   TNF-α↓,20,   TNF-α↑,4,   TNF-α↝,1,   TNF-α∅,1,   TNFR 1↑,1,   TOP1?,1,   TOP1↓,4,   TOP2↓,6,   TOS↑,1,   toxicity↓,3,   toxicity↝,1,   TP53↓,1,   TP53↑,4,   TRAIL↑,5,   TRAILR↑,2,   Treg lymp↓,1,   TRIB3↑,1,   TRPV1↑,2,   Trx↓,1,   Trx1↑,1,   TrxR↓,7,   TrxR1↓,1,   TS↓,1,   TSC1↑,1,   TSC2↑,3,   p‑TSC2↑,1,   TSP-1↑,3,   TumAuto↑,29,   TumCA↓,1,   TumCCA?,1,   TumCCA↓,1,   TumCCA↑,103,   TumCD↑,5,   TumCG?,1,   TumCG↓,40,   TumCG↑,1,   TumCI↓,51,   TumCI↑,1,   TumCMig↓,48,   TumCMig↑,2,   TumCP↓,82,   tumCV↓,26,   TumMeta↓,30,   TumMeta↑,2,   TumVol↓,3,   TumW↓,7,   Twist↓,28,   Twist↑,1,   Tyro3↓,2,   tyrosinase↓,1,   UHRF1↓,1,   uPA↓,20,   uPAR↓,1,   UPR↑,8,   VCAM-1↓,2,   VEGF↓,88,   VEGF↑,2,   VEGF↝,1,   VEGFR2↓,16,   Vim?,1,   Vim↓,35,   Vim↑,3,   VitC↓,1,   VitE↓,1,   Warburg↓,9,   Weight∅,2,   Wnt?,1,   Wnt↓,23,   Wnt↑,1,   Wnt/(β-catenin)↓,6,   XBP-1↓,1,   XBP-1↑,1,   XIAP↓,25,   YAP/TEAD↓,2,   YAP/TEAD↑,1,   ZBTB10↑,1,   Zeb1↓,12,   Zeb1↑,1,   ZEB2↓,1,   ZO-1↑,3,   α-SMA↓,3,   α-SMA↑,1,   α-tubulin↓,2,   ac‑α-tubulin↑,1,   β-catenin/ZEB1↓,38,   β-catenin/ZEB1↑,1,   β-catenin/ZEB1↝,1,   p‑β-catenin/ZEB1↑,1,   β-TRCP↑,1,   γH2AX↑,2,   p‑γH2AX↑,1,  
Total Targets: 941

Results for Effect on Normal Cells:
12LOX↓,2,   5LO↓,1,   Ach↑,2,   AChE↓,8,   adiP↑,2,   Akt?,1,   Akt↓,10,   Akt↑,17,   p‑Akt↓,4,   p‑Akt↑,4,   e-Akt↑,1,   ALAT↓,4,   ALP↓,1,   AMP↓,1,   AMPK↓,2,   AMPK↑,5,   AMPK⇅,1,   AMPKα↑,1,   angioG↓,1,   angioG↑,2,   AntiAg↑,3,   AntiAge↑,1,   AntiCan↑,1,   antiOx?,2,   antiOx↓,3,   antiOx↑,38,   Apoptosis↓,4,   AST↓,5,   ATP↑,1,   mt-ATPase↑,1,   Aβ↓,10,   BAD↓,1,   BAX↓,7,   Bax:Bcl2↓,1,   BBB↑,9,   BChE↓,1,   Bcl-2↑,4,   Bcl-xL↑,1,   Beclin-1↓,1,   BioAv↓,22,   BioAv↑,7,   BioAv↝,11,   BioEnh↑,2,   BMD↑,1,   BMP2↑,1,   BP↓,2,   BP↝,1,   Ca+2?,1,   Ca+2↓,4,   Ca+2↑,1,   Ca+2↝,1,   cAMP↑,1,   cardioP↓,1,   cardioP↑,17,   Casp3?,1,   Casp3↓,7,   Casp3∅,1,   Casp6↓,1,   Casp9↓,1,   Catalase↑,23,   ChAT↑,1,   chemoP↑,3,   CHOP↓,1,   p‑cJun↓,1,   cMyc↓,1,   p‑cMyc↑,1,   cognitive↓,1,   cognitive↑,12,   Copper↓,1,   COX1↓,1,   COX2↓,17,   creat↓,2,   CRP↓,2,   cycD1↓,1,   Cyt‑c↓,1,   Cyt‑c∅,1,   Diff↑,1,   DNArepair↑,1,   Dose↑,2,   Dose↝,2,   E-cadherin↑,1,   eff↓,2,   eff↑,7,   eNOS↑,2,   ER Stress↓,1,   ERK↓,2,   ERK↑,7,   p‑ERK↑,2,   e-ERK↑,1,   FAO↑,1,   FASN↓,1,   Fenton↓,1,   Ferritin↑,1,   FGF↑,2,   FOXO1↝,1,   GCLC↑,2,   GFR↑,1,   glucose↓,2,   glucose↑,1,   GlucoseCon↑,3,   GLUT1↓,1,   GLUT1↑,1,   GLUT4↑,2,   GPx↓,1,   GPx↑,16,   GR↑,1,   GRP78/BiP↓,1,   GSH↓,1,   GSH↑,30,   GSH/GSSG↑,1,   GSK‐3β↓,1,   GSR↑,5,   GSS↑,1,   GSTA1↓,1,   GSTA1↑,4,   GSTs↓,1,   GSTs↑,5,   GutMicro↑,2,   H2O2↓,5,   H2O2∅,1,   H2S↑,1,   Half-Life↓,1,   Half-Life↑,1,   Half-Life↝,6,   Half-Life∅,2,   hepatoP↑,16,   HGF/c-Met↑,1,   HIF-1↓,1,   Hif1a↓,3,   HMGB1↓,1,   HO-1↑,14,   HO-2↓,1,   HSP70/HSPA5↑,1,   ICAM-1↓,1,   IFN-γ↑,1,   IKKα↓,1,   IKKα↑,1,   IL1↓,1,   IL1↑,1,   IL10↓,3,   IL10↑,5,   IL12↓,1,   IL17↓,2,   IL18↓,1,   IL1β↓,16,   IL2↓,1,   IL2↑,1,   IL22↓,1,   IL4↓,1,   IL5↓,1,   IL6↓,16,   IL6↑,1,   IL8↓,4,   Inflam↓,38,   Inflam↑,2,   iNOS↓,8,   iNOS↑,1,   Insulin↓,1,   IRF3↓,1,   Iron↓,1,   IronCh↓,1,   IronCh↑,6,   JNK↓,2,   JNK↑,1,   p‑JNK↓,1,   p‑JNK↑,1,   Keap1↓,3,   Keap1↑,1,   LDH↓,5,   LDHA↑,1,   LDL↓,2,   lipid-P↓,9,   lipidLev↓,1,   MAPK↓,5,   MAPK↑,5,   MDA↓,11,   memory↑,17,   MMP↑,4,   MMP∅,1,   MMP13↓,2,   MMP2↓,1,   MMP3↓,1,   MMP9↓,5,   MMPs↑,1,   motorD↑,2,   MPO↓,4,   MRP↓,1,   mTOR↓,2,   mTOR↑,3,   p‑mTOR↑,1,   MyD88↓,1,   NAD↑,1,   NADPH↓,2,   NADPH↑,3,   NADPH∅,1,   neuroP↑,34,   NF-kB↓,25,   p‑NF-kB↓,1,   NO↓,10,   NO↑,2,   NQO1↑,2,   NRF2↑,29,   other↓,1,   other↑,2,   other↝,2,   P-gp↓,1,   p16↓,1,   P21↓,1,   p300↓,1,   p38↓,3,   p38↑,3,   p‑p38↓,1,   P53↓,1,   p‑P70S6K↑,1,   PDGF↑,1,   p‑PDK1↓,1,   PGC-1α↑,3,   PGE2↓,7,   PGE2↑,1,   PI3K↓,7,   PI3K↑,11,   PKA↑,1,   PKCδ?,1,   PKCδ↓,2,   PKCδ↑,2,   PKM2↓,1,   PPARγ↑,2,   p‑PPARγ↓,1,   Prx↑,1,   PTEN↓,2,   PTEN↑,1,   p‑PTEN↓,1,   Rac1↑,1,   p‑Rac1↓,1,   radioP↑,2,   RAS↓,1,   RenoP↑,9,   Rho↓,1,   RNS↓,1,   ROS↓,58,   ROS↑,3,   ROS∅,2,   mt-ROS↓,1,   Sepsis↓,1,   SIRT1↑,2,   SIRT3↑,2,   SMAD3↓,1,   SOD↑,25,   SOD2↑,2,   STAT3↓,1,   TAC↑,1,   tau↓,1,   p‑tau↓,2,   TBARS↓,1,   TGF-β↓,4,   TGF-β1↑,1,   Th1 response↓,1,   Th2↑,2,   TIMP2↑,1,   TLR2↓,2,   TLR4↓,3,   TNF-α↓,19,   TNF-α↑,1,   toxicity↓,13,   toxicity↑,2,   toxicity∅,9,   TRIF↓,1,   TumCI↓,1,   TumCP↓,1,   tumCV∅,1,   uPA↓,1,   VCAM-1↓,3,   VEGF↓,3,   VEGF↑,3,   Vim↓,1,   VitC↑,1,   VitE↑,1,   α-SMA↓,2,   β-catenin/ZEB1↑,1,  
Total Targets: 279

Scientific Paper Hit Count for: Akt, PKB-Protein kinase B
26 Curcumin
23 Apigenin (mainly Parsley)
21 Quercetin
20 Thymoquinone
15 Baicalein
15 Fisetin
14 Resveratrol
13 Alpha-Lipoic-Acid
12 Chrysin
12 Shikonin
10 Sulforaphane (mainly Broccoli)
9 Berberine
9 EGCG (Epigallocatechin Gallate)
9 Honokiol
8 Ellagic acid
8 Piperlongumine
7 Propolis -bee glue
7 Citric Acid
7 Rosmarinic acid
6 Ashwagandha
6 Magnetic Fields
6 Emodin
6 Luteolin
6 Lycopene
5 Cisplatin
5 Artemisinin
5 Naringin
5 Silymarin (Milk Thistle) silibinin
5 Silver-NanoParticles
4 Allicin (mainly Garlic)
4 Boswellia (frankincense)
4 Capsaicin
4 Deguelin
4 Vitamin K2
3 Chemotherapy
3 5-fluorouracil
3 Betulinic acid
3 Radiotherapy/Radiation
3 diet FMD Fasting Mimicking Diet
3 Gallic acid
3 Garcinol
3 Sanguinarine
2 doxorubicin
2 Gemcitabine (Gemzar)
2 Paclitaxel
2 Astragalus
2 Baicalin
2 Boron
2 Ursolic acid
2 diet Methionine-Restricted Diet
2 Ferulic acid
2 Juglone
2 Magnolol
2 Melatonin
2 Magnetic Field Rotating
2 Myricetin
2 Parthenolide
1 Andrographis
1 almonertinib
1 Carnosic acid
1 Trastuzumab
1 Caffeic acid
1 Caffeine
1 Carvacrol
1 Celastrol
1 Chlorogenic acid
1 Cinnamon
1 gefitinib, erlotinib
1 Photodynamic Therapy
1 Dichloroacetophenone(2,2-)
1 Docosahexaenoic Acid
1 Sorafenib (brand name Nexavar)
1 Fucoidan
1 Ai-Tong-An-Gao-Ji
1 flavonoids
1 Gambogic Acid
1 Grapeseed extract
1 Genistein
1 Graviola
1 Hydrogen Gas
1 Hydroxycinnamic-acid
1 itraconazole
1 Laetrile B17 Amygdalin
1 Licorice
1 MCToil
1 Metformin
1 nelfinavir/Viracept
1 Docetaxel
1 Proanthocyanidins
1 sericin
1 Piperine
1 Plumbagin
1 Pterostilbene
1 Selenite
1 Selenate
1 Auranofin
1 Formononetin
1 acetazolamide
1 Camptothecin
1 statins
1 Tomatine
1 Vitamin C (Ascorbic Acid)
1 Vitamin D3
1 Wogonin
1 Zinc
1 γ-Tocotrienol
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:%  Target#:4  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page