condition found tbRes List
Ba, Baicalein: Click to Expand ⟱
Features:
Baicalein is a flavone, a type of flavonoid, originally isolated from the roots of Scutellaria baicalensis and Scutellaria lateriflora. It is also a constituent of Oroxylum indicum and thyme.
Baicalein, a flavonoid found in several medicinal plants (notably Scutellaria baicalensis), has been investigated for its anticancer properties. Its activities involve modulation of multiple cellular pathways, including those that regulate cell proliferation, apoptosis, metastasis, and oxidative stress. Here are some of the key pathways and mechanisms implicated in its anticancer effects:
-Apoptosis and Cell Cycle Regulation
-Reactive Oxygen Species ROS↑ Generation and Oxidative Stress
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, Ca+2↑, Cyt‑c↑, Caspase-3↑, Caspase-9↑, DNA damage↑,
-Baicalein’s effects on ROS are context-dependent. In some cancer cells, it promotes ROS production to a degree that overwhelms the antioxidant defenses. Elevated ROS levels can damage cellular components and promote apoptosis, essentially tipping the balance toward cell death.
-Conversely, in normal cells, baicalein may exhibit antioxidant properties and reduce ROS↓ under conditions of oxidative stress, highlighting its dual role.
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, GSH↓, HO-1↓,
- Raises AntiOxidant defense in Normal Cells: NRF2↑, SOD↑, GSH↑, Catalase↑, HO-1↑,
-MAPK, ERK Pathway:
-PI3K/Akt Pathway: Inhibition of the PI3K, Akt pathway by baicalein.
-NF-κB Pathway: Baicalein can inhibit
-Inhibition of Metastasis and Invasion: Baicalein can downregulate MMPs, MMP2, MMP9
-Angiogenesis Suppression: VEGF
-Baicalein is a well-known inhibitor of 12-lipoxygenase
-inhibitor of Glycolysis↓ and HIF-1α↓, PKM2↓, cMyc↓, PDK1↓, GLUT1↓, LDHA↓, HK2↓
- promoting PTEN
-chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, neuroprotective, Cognitive, Renoprotection, Hepatoprotective, cardioProtective,
- Selectivity: Cancer Cells vs Normal Cells
-low bioavailability but liposomal highly improves bioavailability

In summary, baicalein affects cancer cells by modulating multiple pathways—promoting apoptosis, causing cell cycle arrest, generating or modulating ROS levels, inhibiting survival and proliferative signaling (such as MAPK, PI3K/Akt, and NF-κB pathways), and reducing angiogenesis and metastasis.

Many animal studies, doses have been reported in the range of approximately 10 to 200 mg/kg body weight.
For example, some studies exploring anticancer or anti-inflammatory effects in rodent models have used doses around 50–100 mg/kg.
However, these doses do not directly translate to human dosages.
Some human studies or formulations (where they are used as nutraceuticals or supplements) may suggest dosing in the range of a few hundred milligrams per day of the extract, but it is often not standardized to a specific amount of baicalein or baicalin.
-mix with oil?

-ic50 cancer cells 10-30uM, normal cells 50-100uM
-Animal studies, 10 to 100 mg/kg.
-Reported to induce apoptosis, cause cell cycle arrest, inhibit angiogenesis, and modulate various signaling pathways (e.g., STAT3, NF-κB, MAPK).


ChemoSen, chemo-sensitization: Click to Expand ⟱
Source:
Type:
The effectiveness of chemotherapy by increasing cancer cell sensitivity to the drugs used to treat them, which is known as “chemo-sensitization”.

Chemo-Sensitizers:
-Curcumin
-Resveratrol
-EGCG
-Quercetin
-Genistein
-Berberine
-Piperine: alkaloid from black pepper
-Ginsenosides: active components of ginseng
-Silymarin
-Allicin
-Lycopene
-Ellagic acid
-caffeic acid phenethyl ester
-flavopiridol
-oleandrin
-ursolic acid
-butein
-betulinic acid



Scientific Papers found: Click to Expand⟱
2608- Ba,    Baicalein sensitizes hepatocellular carcinoma cells to 5-FU and Epirubicin by activating apoptosis and ameliorating P-glycoprotein activity
- in-vitro, HCC, Bel-7402
Apoptosis↑, Baicalein induced apoptosis and autophagy and decreased P-gp and Bcl-xl expression levels.
TumAuto↑,
P-gp↓,
Bcl-xL↓,
ChemoSen↑, We showed that Baicalein can reverse P-glycoprotein (P-gp)-mediated drug resistance.

2606- Ba,    Baicalein: A review of its anti-cancer effects and mechanisms in Hepatocellular Carcinoma
- Review, HCC, NA
ChemoSen↑, In addition, the combination of baicalein and silymarin eradicates HepG2 cells efficiently superior to baicalein or silymarin alone
TumCP↓, Cell viability assays have demonstrated that baicalein is significantly cytotoxic against several HCC cell lines and can inhibit the proliferation of HCC cells through arresting the cell cycle.
TumCCA↑,
TumCMig↓, Baicalein has been proved to inhibit migration and invasion of human HCC cells by reducing the expression and their proteinase activity of matrix metalloproteinases (MMPs),
TumCI↓,
MMPs↓,
MAPK↓, A large number of studies found that baicalein could inhibit migration and invasion of cancer cells by targeting the MAPK, TGF-b/Smad4, GPR30 pathway and molecules such as, ezrin, zinc-finger protein X-linked (ZFX),
TGF-β↓,
ZFX↓,
p‑MEK↓, Baicalein could inhibited the phosphorylation of MEK1 and ERK1/2, leading to decreased expression and proteinase activity of MMP-2/9 and urokinase-type plasminogen activator (u-PA),
ERK↓,
MMP2↓,
MMP9↓,
uPA↓,
TIMP1↓, as well as increased expression of TIMP-1 and TIMP-2
TIMP2↓,
NF-kB↓, Additionally, the nuclear translocation of NF-kB/p50 and p65/RelA and the phosphorylation of I-kappa-B (IKB)-b could be down-regulated by baicalein
p65↓,
p‑IKKα↓,
Fas↑, Hep3 B cells via activating Fas, Caspase -2, -3, -8, -9, down-regulating Bcl-xL, and upregulating Bax [
Casp2↑,
Casp3↑,
Casp8↑,
Casp9↑,
Bcl-xL↓,
BAX↑,
ER Stress↑, baicalein could induced apoptosis via endoplasmic reticulum (ER) stress in SMMC-7721 and Bel-7402
Ca+2↑, increasing intracellular calcium(Ca2+ ), and activating JNK pathwa
JNK↑,
P53↑, selectively induce apoptosis in HCC J5 cells via upregulation of p53
ROS↑, baicalein could induced cell apoptosis through regulating ROS via increasing intracellular H2O 2 level [
H2O2↑,
cMyc↓, baicalein could promote apoptosis in HepG2 and Bel-7402 cells through inhibiting c-Myc and CD24 expression
CD24↓,
12LOX↓, baicalein could induced cell apoptosis in SMMC-7721 and HepG2 cells by specifically inhibiting expression of 12-lipoxygenase(12-LOX), a critical anti-apoptotic genes

2605- Ba,  BA,    Potential therapeutic effects of baicalin and baicalein
- Review, Var, NA - Review, Stroke, NA - Review, IBD, NA - Review, Arthritis, NA - Review, AD, NA - Review, Park, NA
cardioP↑, cardioprotective activities.
Inflam↓, Decreasing the accumulation of inflammatory mediators and improving cognitive function
cognitive↑,
*hepatoP↑, Decreasing inflammation, reducing oxidative stress, regulating the metabolism of lipids, and decreasing fibrosis, apoptosis, and steatosis are their main hepatoprotective mechanisms
*ROS?, Reducing oxidative stress and protecting the mitochondria to inhibit apoptosis are proposed as hepatoprotective mechanisms of baicalin in NAFLD
*SOD↑, Baicalin could reduce the levels of ROS and fatty acid-induced MDA, and increase superoxide dismutase (SOD) and glutathione amounts compared to the control.
*GSH↑,
*MMP↑, Moreover, baicalin could partially restore mitochondrial morphology and increase ATP5A expression and mitochondrial membrane potential (Gao et al., 2022).
*GutMicro↑, After baicalein treatment, a remodelling in the overall structure of the gut microbiota was observed
ChemoSen↑, Besides, a combination of baicalin and doxorubicin could elevate the chemosensitivity of MCF-7 and MDA-MB-231 breast cancer cells
*TNF-α↓, Baicalin can protect cardiomyocytes from hypoxia/reoxygenation injury by elevating the SOD activity and anti-inflammatory responses through reducing TNF-α, enhancing IL-10 levels, decreasing IL-6, and inhibiting the translocation of NF-κB to the nucl
*IL10↑,
*IL6↓,
*eff↑, Studies show that baicalin and baicalein may be effective against IBD by suppressing oxidative stress and inflammation, and regulating the immune system.
*ROS↓,
*COX2↓, baicalein can improve the symptoms of ulcerative colitis by lowering the expression of pregnane X receptor (PXR), (iNOS), (COX-2), and caudal-type homeobox 2 (Cdx2), as well as the NF-κβ and STAT3
*NF-kB↓,
*STAT3↓,
*PGE2↓, Administration of baicalin (30-90 mg/kg) could decrease the levels of prostaglandin E2 (PEG2), myeloperoxidase (MPO), IL-1β, TNF-α, and the apoptosis-related genes including Bcl-2 and caspase-9
*MPO↓,
*IL1β↓,
*MMP2↓, Rheumatoid arthritis RA mouse model by supressing relevant proinflammatory cytokines such as IL-1b, IL-6, MMP-2, MMP-9, TNF-α, iNOS, and COX-2)
*MMP9↓,
*β-Amyloid↓, Alzheimer’s disease (AD) : reduce β-amyloid and trigger non-amyloidogenic amyloid precursor proteins.
*neuroP↑, For instance, administration of baicalin orally for 14 days (100 mg/kg body weight) exhibited neuroprotective effects on pathological changes and behavioral deficits of Aβ 1–42 protein-induced AD in vivo.
*Dose↝, administration of baicalin (500 mg/day, orally for 12 weeks) could improve the levels of total cholesterol, TGs, LDLC and apolipoproteins (APOs), and high-sensitivity C-reactive protein (hs-CRP) in patients with rheumatoid arthritis and coronary arte
*BioAv↝, the total absorption of baicalin depends on the activity of intestinal bacteria to convert baicalin to baicalein as the first step.
*BioAv↝, Kidneys, liver, and lungs are the main organs in which baicalin accumulates the most.
*BBB↑, Baicalin and baicalein can pass through the blood brain barrier (BBB)

2597- Ba,    Baicalein – An Intriguing Therapeutic Phytochemical in Pancreatic Cancer
- Review, PC, NA
chemoP↑, Compounds such as baicalein, offer promise in dietary chemoprevention, as chemotherapeutic adjuvants, or as targeted therapy.
ChemoSen↑,
12LOX?, LOX-12 specific inhibitor baicalein attenuates cancer cell growth
Bcl-2↓, baicalein, human pancreatic cancer cells expressed decreased anti-apoptotic proteins Bcl-2 and Mcl-1 and increased pro-apoptotic protein bax
BAX↑,
Mcl-1↓,
ERK↓, activation of the ERK pathway in melanoma
Prx6↑, up-regulation in the expression of PRDX6 in colorectal cancer
Dose↝, concentrations at which we and others have found baicalein to be anti-proliferative in vitro are between 10μM and 100μM.
BioAv↓, it is thought that only 10% of ingested dietary polyphenols or their conjugates are found in the urine or plasma.
eff↑, It is possible that the antitumor properties of baicalein in vivo are due to baicalin as opposed to baicalein, as these compounds are inter-converted in the intestine by naturally occurring microbes

2615- Ba,    The Multifaceted Role of Baicalein in Cancer Management through Modulation of Cell Signalling Pathways
- Review, Var, NA
*AntiCan↓, Baicalein is known to display anticancer activity through the inhibition of inflammation and cell proliferation
*Inflam↓,
TumCP↓,
NF-kB↓, baicalein decreased the activation of nuclear factor-κB (NF-κB)
PPARγ↑, anti-inflammatory effects of baicalein might be initiated via PPARγ activation.
TumCCA↑, baicalein inhibited cell cycle progression and cell growth, and promoted apoptosis of cancer cells
JAK2↓, inactivation of the signaling pathway JAK2/STAT3 [63]
STAT3↓,
TumCMig↓, baicalein suppressed migration as well as invasion through decreasing the aerobic glycolysis and expression of MMP-2/9 proteins.
Glycolysis↓,
MMP2↓,
MMP9↓,
selectivity↑, Furthermore, baicalein and baicalin had less inhibitory effects on normal ovarian cells’ viability.
VEGF↓, baicalein is more effective in inhibiting the expressions of VEGF, HIF-1α, cMyc, and NFκB
Hif1a↓,
cMyc↓,
ChemoSen↑, baicalein enhanced the cisplatin sensitivity of SGC-7901/DDP gastric cancer cells by inducing autophagy and apoptosis through the Akt/mTOR and Keap 1/Nrf2 pathways
ROS↑, oral squamous cell carcinoma Cal27 cells. Significantly, it was noticed that baicalein activated reactive oxygen species (ROS) generation in Cal27 cells
p‑mTOR↓, results suggest that p-mTOR, p-Akt, p-IκB, and NF-κB protein expressions were decreased
PTEN↑, Baicalein upregulated PTEN expression, downregulated miR-424-3p, and downregulated PI3K and p-Akt.

1053- Ba,  docx,    Baicalin, a Potent Inhibitor of NF-κB Signaling Pathway, Enhances Chemosensitivity of Breast Cancer Cells to Docetaxel and Inhibits Tumor Growth and Metastasis Both In Vitro and In Vivo
- in-vivo, BC, 4T1
TumCP↓,
Apoptosis↑,
ROS↑, cellular induction of reactive oxygen species
Bax:Bcl2↑,
NF-kB↓,
ChemoSen↑, BA sensitized BC cells to docetaxel (DXL) by suppressing the expression of survivin/Bcl-2
survivin↓,

2298- Ba,    Flavonoids Targeting HIF-1: Implications on Cancer Metabolism
- Review, Var, NA
TumCG↓, Baicalein significantly reduced intracerebral tumor growth and proliferation and promoted apoptosis and cell cycle arrest in orthotopic U87 gliomas in mice
TumCP↓,
Hif1a↓, suppression of HIF-1α by baicalein contributed to its reduction of cell viability in ovarian cancer (OVCAR-3 and CP-70) cell lines. 20-μM and 40-μM.
VEGF↓, Suppression of HIF-1α/VEGF pathway
ChemoSen↑, Moreover, baicalein increased the sensitivity of gastric cancer cells (AGS) to 5-fluorouracil (5-FU) under hypoxic conditions
Glycolysis↓, baicalein suppressed the expression of glycolysis-associated enzymes including HKII, PDK1, and LDHA via inhibition of Akt-phosphorylation, which led to HIF-1α suppression
HK2↓,
PDK1↓,
LDHA↓,
p‑Akt↓,
PTEN↑, Furthermore, baicalein inhibited hypoxia-induced Akt phosphorylation by promoting PTEN accumulation, thereby attenuating hypoxia-inducible factor-alpha ( HIF-1a) expression in AGS cells. (orginal paper)

2295- Ba,  5-FU,    Baicalein reverses hypoxia-induced 5-FU resistance in gastric cancer AGS cells through suppression of glycolysis and the PTEN/Akt/HIF-1α signaling pathway
- in-vitro, GC, AGS
ChemoSen↑, baicalein increased the sensitivity of AGS cells to 5-FU treatment under hypoxia
HK2↓, hypoxia-enhanced glycolytic flux and expression of several critical glycolysis-associated enzymes (HK2, LDH-A and PDK1) in the AGS cells were suppressed by baicalein
LDHA↓,
PDK1↓,
Akt↓, baicalein inhibited hypoxia-induced Akt phosphorylation by promoting PTEN accumulation, thereby attenuating hypoxia-inducible factor-1α (HIF-1α) expression in AGS cells
PTEN↑,
Hif1a↓,
Glycolysis↓, results together suggest that inhibition of glycolysis via regulation of the PTEN/Akt/HIF-1α signaling pathway may be one of the mechanisms whereby baicalein reverses 5-FU resistance in cancer cells under hypoxia.
ROS↑, Taniguchi et al found that baicalein overcomes tumor necrosis factor-related apoptosis-inducing ligand resistance in cancer cells through DR5 upregulation mediated by ROS induction and CHOP/GADD153 activation
CHOP↑,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 8

Results for Effect on Cancer/Diseased Cells:
12LOX?,1,   12LOX↓,1,   Akt↓,1,   p‑Akt↓,1,   Apoptosis↑,2,   BAX↑,2,   Bax:Bcl2↑,1,   Bcl-2↓,1,   Bcl-xL↓,2,   BioAv↓,1,   Ca+2↑,1,   cardioP↑,1,   Casp2↑,1,   Casp3↑,1,   Casp8↑,1,   Casp9↑,1,   CD24↓,1,   chemoP↑,1,   ChemoSen↑,8,   CHOP↑,1,   cMyc↓,2,   cognitive↑,1,   Dose↝,1,   eff↑,1,   ER Stress↑,1,   ERK↓,2,   Fas↑,1,   Glycolysis↓,3,   H2O2↑,1,   Hif1a↓,3,   HK2↓,2,   p‑IKKα↓,1,   Inflam↓,1,   JAK2↓,1,   JNK↑,1,   LDHA↓,2,   MAPK↓,1,   Mcl-1↓,1,   p‑MEK↓,1,   MMP2↓,2,   MMP9↓,2,   MMPs↓,1,   p‑mTOR↓,1,   NF-kB↓,3,   P-gp↓,1,   P53↑,1,   p65↓,1,   PDK1↓,2,   PPARγ↑,1,   Prx6↑,1,   PTEN↑,3,   ROS↑,4,   selectivity↑,1,   STAT3↓,1,   survivin↓,1,   TGF-β↓,1,   TIMP1↓,1,   TIMP2↓,1,   TumAuto↑,1,   TumCCA↑,2,   TumCG↓,1,   TumCI↓,1,   TumCMig↓,2,   TumCP↓,4,   uPA↓,1,   VEGF↓,2,   ZFX↓,1,  
Total Targets: 67

Results for Effect on Normal Cells:
AntiCan↓,1,   BBB↑,1,   BioAv↝,2,   COX2↓,1,   Dose↝,1,   eff↑,1,   GSH↑,1,   GutMicro↑,1,   hepatoP↑,1,   IL10↑,1,   IL1β↓,1,   IL6↓,1,   Inflam↓,1,   MMP↑,1,   MMP2↓,1,   MMP9↓,1,   MPO↓,1,   neuroP↑,1,   NF-kB↓,1,   PGE2↓,1,   ROS?,1,   ROS↓,1,   SOD↑,1,   STAT3↓,1,   TNF-α↓,1,   β-Amyloid↓,1,  
Total Targets: 26

Scientific Paper Hit Count for: ChemoSen, chemo-sensitization
8 Baicalein
1 Baicalin
1 Docetaxel
1 5-fluorouracil
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:38  Target#:1106  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page