condition found tbRes List
Ba, Baicalein: Click to Expand ⟱
Features:
Baicalein is a flavone, a type of flavonoid, originally isolated from the roots of Scutellaria baicalensis and Scutellaria lateriflora. It is also a constituent of Oroxylum indicum and thyme.
Baicalein, a flavonoid found in several medicinal plants (notably Scutellaria baicalensis), has been investigated for its anticancer properties. Its activities involve modulation of multiple cellular pathways, including those that regulate cell proliferation, apoptosis, metastasis, and oxidative stress. Here are some of the key pathways and mechanisms implicated in its anticancer effects:
-Apoptosis and Cell Cycle Regulation
-Reactive Oxygen Species ROS↑ Generation and Oxidative Stress
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, Ca+2↑, Cyt‑c↑, Caspase-3↑, Caspase-9↑, DNA damage↑,
-Baicalein’s effects on ROS are context-dependent. In some cancer cells, it promotes ROS production to a degree that overwhelms the antioxidant defenses. Elevated ROS levels can damage cellular components and promote apoptosis, essentially tipping the balance toward cell death.
-Conversely, in normal cells, baicalein may exhibit antioxidant properties and reduce ROS↓ under conditions of oxidative stress, highlighting its dual role.
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, GSH↓, HO-1↓,
- Raises AntiOxidant defense in Normal Cells: NRF2↑, SOD↑, GSH↑, Catalase↑, HO-1↑,
-MAPK, ERK Pathway:
-PI3K/Akt Pathway: Inhibition of the PI3K, Akt pathway by baicalein.
-NF-κB Pathway: Baicalein can inhibit
-Inhibition of Metastasis and Invasion: Baicalein can downregulate MMPs, MMP2, MMP9
-Angiogenesis Suppression: VEGF
-Baicalein is a well-known inhibitor of 12-lipoxygenase
-inhibitor of Glycolysis↓ and HIF-1α↓, PKM2↓, cMyc↓, PDK1↓, GLUT1↓, LDHA↓, HK2↓
- promoting PTEN
-chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, neuroprotective, Cognitive, Renoprotection, Hepatoprotective, cardioProtective,
- Selectivity: Cancer Cells vs Normal Cells
-low bioavailability but liposomal highly improves bioavailability

In summary, baicalein affects cancer cells by modulating multiple pathways—promoting apoptosis, causing cell cycle arrest, generating or modulating ROS levels, inhibiting survival and proliferative signaling (such as MAPK, PI3K/Akt, and NF-κB pathways), and reducing angiogenesis and metastasis.

Many animal studies, doses have been reported in the range of approximately 10 to 200 mg/kg body weight.
For example, some studies exploring anticancer or anti-inflammatory effects in rodent models have used doses around 50–100 mg/kg.
However, these doses do not directly translate to human dosages.
Some human studies or formulations (where they are used as nutraceuticals or supplements) may suggest dosing in the range of a few hundred milligrams per day of the extract, but it is often not standardized to a specific amount of baicalein or baicalin.
-mix with oil?

-ic50 cancer cells 10-30uM, normal cells 50-100uM
-Animal studies, 10 to 100 mg/kg.
-Reported to induce apoptosis, cause cell cycle arrest, inhibit angiogenesis, and modulate various signaling pathways (e.g., STAT3, NF-κB, MAPK).


RenoP, K,Renoprotection: Click to Expand ⟱
Source:
Type:
Protects kidneys
-Same as nephroprotective
Opposite is : Nephrotoxicity is toxicity in the kidneys


Scientific Papers found: Click to Expand⟱
2630- Ba,    Baicalein decreases uric acid and prevents hyperuricemic nephropathy in mice
- in-vivo, Nor, NA
*RenoP↑, Thus, we concluded that baicalein executed a kidney-protection action in hyperuricemia and therefore may be used as a therapeutic alternative for hyperuricemic nephropathy.
*uricA↓, Baicalein lowered UA and protected kidney against hyperuricemia
*ROS↓, Baicalein prevented renal oxidative stress in hyperuricemia mice.
EMT↓, Baicalein inhibits hyperuricemia-induced epithelial-mesenchymal transition (EMT) process

2629- Ba,    Baicalein, a Component of Scutellaria baicalensis, Attenuates Kidney Injury Induced by Myocardial Ischemia and Reperfusion
- in-vivo, Nor, NA
*RenoP↑, Intravenous pretreatment with baicalein (in doses of 3, 10, or 30 mg/kg), however, significantly reduced the increases in the creatinine level, renal histological damage, and apoptosis induced by myocardial ischemia and reperfusion.
*Apoptosis↓,
*TNF-α↓, In addition, the increases in the serum levels of tumor necrosis factor-α, interleukin-1, and interleukin-6, and of tumor necrosis factor-α in the kidneys were significantly reduced
*IL1↓,
*Bcl-2↑, Western blot analysis revealed that baicalein significantly increased Bcl-2 and reduced Bax in the kidneys
*BAX↓,
*Akt↑, inhibition of apoptosis, possibly through the reduction of tumor necrosis factor-α production, the modulation of Bcl-2 and Bax, and the activation of Akt and extracellular signal-regulated kinases 1 and 2.

2628- Ba,  Cisplatin,    Baicalein alleviates cisplatin-induced acute kidney injury by inhibiting ALOX12-dependent ferroptosis
- in-vitro, Nor, HK-2
*RenoP↑, Baicalein alleviated cisplatin- and folic acid-induced renal dysfunction and pathological damage and improved cisplatin-induced HK2 cell injury
*12LOX↓, Mechanistically, baicalein reduced the expression of 12-lipoxygenase (ALOX12), which inhibits phospholipid peroxidation and ferroptosis in AKI
*Ferroptosis↓,

2627- Ba,  Cisplatin,    Baicalein, a Bioflavonoid, Prevents Cisplatin-Induced Acute Kidney Injury by Up-Regulating Antioxidant Defenses and Down-Regulating the MAPKs and NF-κB Pathways
RenoP↑, Pretreatment with baicalein ameliorated the cisplatin-induced renal oxidative stress, apoptosis and inflammation and improved kidney injury and function
*iNOS↑, Baicalein inhibited the cisplatin-induced expression of iNOS, TNF-α, IL-6 and mononuclear cell infiltration and concealed redox-sensitive transcription factor NF-κB activation via reduced DNA-binding activity, IκBα phosphorylation and p65 nuclear tra
*TNF-α↓,
*IL6↓,
*NF-kB↓,
*MAPK↓, baicalein markedly attenuated cisplatin-induced p38 MAPK, ERK1/2 and JNK phosphorylation in kidneys
*ERK↓,
*JNK↓,
*antiOx↑, Baicalein also restored the renal antioxidants and increased the amount of total and nuclear accumulation of Nrf2 and downstream target protein, HO-1 in kidneys.
*NRF2↓,
*HO-1↑,
*Cyt‑c∅, inhibited cisplatin-induced apoptosis by suppressing p53 expression, Bax/Bcl-2 imbalance, cytochrome c release and activation of caspase-9, caspase-3 and PARP
*Casp3∅,
*Casp9∅,
*PARP∅,

2626- Ba,    Molecular targets and therapeutic potential of baicalein: a review
- Review, Var, NA - Review, AD, NA - Review, Stroke, NA
AntiCan↓, anticancer, antidiabetic, antimicrobial, antiaging, neuroprotective, cardioprotective, respiratory protective, gastroprotective, hepatic protective, and renal protective effects
*neuroP↑,
*cardioP↑, Cardioprotective action of baicalein
*hepatoP↑,
*RenoP↑, baicalein’s capacity to lessen cisplatin-induced nephrotoxicity is probably due, at least in part, to the attenuation of renal oxidative and/or nitrative stress
TumCCA↑, Baicalein induces G1/S arrest in lung squamous carcinoma (CH27) cells by downregulating CDK4 and cyclin D1, as well as upregulating cyclin E
CDK4↓,
cycD1↓,
cycE↑,
BAX↑, SGC-7901 cells showed that when baicalein was administered, Bcl-2 was downregulated and Bax was increased
Bcl-2↓,
VEGF↓, Baicalein inhibits the synthesis of vascular endothelial growth factor (VEGF), HIF-1, c-Myc, and nuclear factor kappa B (NF-κB) in the G1 and S phases of ovarian cancer cell
Hif1a↓,
cMyc↓,
NF-kB↓,
ROS↑, Baicalein produced intracellular reactive oxygen species (ROS) and activated BNIP3 to slow down the development and hasten the apoptosis of MG-63,OS cell
BNIP3↑,
*neuroP↑, Baicalein exhibits neuroprotective qualities against amyloid (AN) functions by preventing AN from aggregating in PC12 neuronal cells to cause A𝛽-induced cytotoxicity
*cognitive↑, baicalein encourages non-amyloidogenic processing of APP, which lowers the generation of A𝛽 and enhances cognitive function
*NO↓, baicalein effectively reduced NO generation and iNOS gene expression
*iNOS↓,
*COX2↓, Baicalein therapy significantly decreased the expression of COX-2 and iNOS, as well as PGE2 and NF-κB, indicating a protective effect against cerebral I/R injury.
*PGE2↓,
*NRF2↑, Baicalein therapy markedly elevated nuclear Nrf2 expression and AMPK phosphorylation in the ischemic cerebral cortex
*p‑AMPK↑,
*Ferroptosis↓, Baicalein suppressed ferroptosis associated with 12/15-LOX, hence lessening the severity of post-traumatic epileptic episodes generated by FeCl3
*lipid-P↓, HT22 cells were damaged by ferroptosis, which is mitigated by baicalein may be due to its lipid peroxidation inhibitor
*ALAT↓, Baicalin lowers the raised levels of hepatic markers alanine transaminase (ALT), aspartate aminotransferase (AST)
*AST↓,
*Fas↓, Baicalin has also been shown to suppress apoptosis, decrease FAS protein expression, block the caspase-8 pathway, and decrease Bax protein production
*BAX↓,
*Apoptosis↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 5

Results for Effect on Cancer/Diseased Cells:
AntiCan↓,1,   BAX↑,1,   Bcl-2↓,1,   BNIP3↑,1,   CDK4↓,1,   cMyc↓,1,   cycD1↓,1,   cycE↑,1,   EMT↓,1,   Hif1a↓,1,   NF-kB↓,1,   RenoP↑,1,   ROS↑,1,   TumCCA↑,1,   VEGF↓,1,  
Total Targets: 15

Results for Effect on Normal Cells:
12LOX↓,1,   Akt↑,1,   ALAT↓,1,   p‑AMPK↑,1,   antiOx↑,1,   Apoptosis↓,2,   AST↓,1,   BAX↓,2,   Bcl-2↑,1,   cardioP↑,1,   Casp3∅,1,   Casp9∅,1,   cognitive↑,1,   COX2↓,1,   Cyt‑c∅,1,   ERK↓,1,   Fas↓,1,   Ferroptosis↓,2,   hepatoP↑,1,   HO-1↑,1,   IL1↓,1,   IL6↓,1,   iNOS↓,1,   iNOS↑,1,   JNK↓,1,   lipid-P↓,1,   MAPK↓,1,   neuroP↑,2,   NF-kB↓,1,   NO↓,1,   NRF2↓,1,   NRF2↑,1,   PARP∅,1,   PGE2↓,1,   RenoP↑,4,   ROS↓,1,   TNF-α↓,2,   uricA↓,1,  
Total Targets: 38

Scientific Paper Hit Count for: RenoP, K,Renoprotection
5 Baicalein
2 Cisplatin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:38  Target#:1175  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page