condition found tbRes List
AL, Allicin (mainly Garlic): Click to Expand ⟱
Features:
Garlic (Allium sativum L.) (active ingredient- Allicin, an active sulfer compound).
Summary:
- Four main organic sulfides in garlic, diallyl disulfide (DADS), diallyl trisulfide (DATS), S-allylmercaptocysteine (SAMC) and allicin.
- Reversible inhibitor of ACSS2.
- may inhibit NF-κB signaling
- induce oxidative stress in cancer cells by generating ROS
- might downregulate STAT3 activation
- Inconclusive evidence for cancer treatment.
- may inhibit platelet aggregation
Allicin is a reactive sulfur species (RSS) [23] with oxidizing properties, and it is able to oxidize thiols in cells, e.g., glutathione and cysteine residues in proteins.
-Allicin is not present in intact garlic; rather, it is formed when garlic is chopped or crushed. -Using crushed or chopped raw garlic or adding garlic at the end of the cooking process (after the heat is reduced) can help preserve its potential allicin content.
"Consumption of alliinase-inhibited cooked garlic was found to give higher than expected allicin bioequivalence, with AMS formation being about 30% (roasted garlic) or 16% (boiled garlic) that of crushed raw garlic."

-Note half-life reports vary 2.5-90hrs?.
-low solubility of apigenin in water : BioAv


Pathways:
- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, UPR↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, GSH↓
- Raises AntiOxidant defense in Normal Cells: NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- PI3K/AKT(Inhibition), JAK/STATs, Wnt/β-catenin, AMPK, MAPK/ERK, and JNK.
- inhibit Growth/Metastases : EMT↓, MMP2↓, MMP9↓, VEGF↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓(not commonly listed as inhibitor), DNMT1↓, P53↑, HSP↓
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, FAK↓, ERK↓,
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓,
- inhibits Cancer Stem Cells : CSC↓,
- Others: PI3K↓, AKT↓, STAT3, Wnt↓, β-catenin↓, AMPK↓, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,
- Selectivity: Cancer Cells vs Normal Cells

Allicin has been reported to exhibit a range of effects, including:
Antimicrobial activity: 10-50 μM
Antioxidant activity: 10-100 μM
Anti-inflammatory activity: 20-50 μM
Anticancer activity: 50-100 μM or (50–300uM) (2–5 mg allicin per kilogram of body weight per day)
Cardiovascular health: 20-50 μM

Approximate μM concentrations of allicin that can be achieved:
1 clove of garlic (3g): approximately 10-50 μM of allicin
single clove of garlic may yield about 5–9 mg of allicin,
1 tablespoon of minced garlic (15g): approximately 50-150 μM of allicin
1 cup of chopped garlic (100g): approximately 200-500 μM of allicin
1 tablespoon of chopped garlic chives (15g): approximately 5-20 μM of allicin
1 cup of chopped garlic chives (100g): approximately 20-50 μM of allicin
1 ounce (28g) of garlic microgreens: approximately 50-200 μM of allicin
1 cup of garlic microgreens (100g): approximately 200-500 μM of allicin
1 ounce (28g) of garlic chive microgreens: approximately 20-50 μM of allicin
1 cup of garlic chive microgreens (100g): approximately 50-100 μM of allicin

Allicin is a bioactive compound derived from garlic that has garnered significant interest for its potential anticancer properties through multiple mechanisms, including antioxidant activity, induction of apoptosis, cell cycle arrest, and modulation of key signaling pathways. While regular dietary intake of garlic is associated with cancer prevention benefits, allicin is also being explored as an adjunct to conventional cancer treatments.

Available in supplement tablet/capsule form for example at 2000mg (fresh bulb equilvalent)
IC50 of normal cells it >160mg/mL (large selectivity).
IC50 might be about 12-30ug/ml (approximately 62-185 µM) (which is about 30-90 grams of garlic consumption).
This makes it difficult to consume enough supplements to achieve that level.

Pathways:

ROS Generation and Oxidative Stress (inducing)
• ROS generation is often considered a primary trigger that feeds into downstream pathways (e.g., MAPK activation, mitochondrial membrane permeabilization).
Mitochondrial (Intrinsic) Apoptotic Pathway
• ROS-induced mitochondrial damage can lead to the release of cytochrome c and subsequent activation of caspases (e.g., caspase-9 and caspase-3).
NF-κB Signaling Inhibition (block)
Modulation of MAPK Pathways (e.g., p38 MAPK and JNK)
• ROS generation by allicin can activate stress-responsive kinases such as p38 MAPK and c-Jun N-terminal kinase (JNK).
Inhibition of PI3K/Akt Pathway
ROS levels and PI3K/Akt signaling, with increased oxidative stress often correlating with reduced Akt phosphorylation and activity.

At lower doses, allicin may lead to a modest increase in ROS levels that the cell’s antioxidant defenses (e.g., glutathione, superoxide dismutase) can manage


ER Stress, endoplasmic reticulum (ER) stress signaling pathway: Click to Expand ⟱
Source:
Type:
Protein expression of ATF, GRP78, and GADD153 which is a hall marker of ER stress.
The endoplasmic reticulum (ER) stress signaling pathway plays a crucial role in maintaining cellular homeostasis and responding to various stressors, including those encountered in cancer. When cells experience stress, such as the accumulation of misfolded proteins, they activate a series of signaling pathways collectively known as the unfolded protein response (UPR). The UPR aims to restore normal function by enhancing the protein-folding capacity of the ER, degrading misfolded proteins, and, if the stress is unresolved, triggering apoptosis.
The activation of ER stress pathways can contribute to resistance against chemotherapy and targeted therapies. Cancer cells may utilize the UPR to survive treatment-induced stress, making it challenging to achieve effective therapeutic outcomes.

-ER stress-associated proteins include: phosphorylation of PERK, eIF2α, ATF4, CHOP and cleaved-caspase 12



Scientific Papers found: Click to Expand⟱
2646- AL,    Anti-Cancer Potential of Homemade Fresh Garlic Extract Is Related to Increased Endoplasmic Reticulum Stress
- in-vitro, Pca, DU145 - in-vitro, Melanoma, RPMI-8226
AntiCan↑, simple homemade ethanol-based garlic extract (GE). We show that GE inhibits growth of several different cancer cells in vitro
eff↓, These activities were lost during freeze or vacuum drying, suggesting that the main anti-cancer compounds in GE are volatile.
ChemoSen↑, We found that GE enhanced the activities of chemotherapeutics
ER Stress↑, Our data indicate that the reduced proliferation of the cancer cells treated by GE is at least partly mediated by increased endoplasmic reticulum (ER) stress.
tumCV↓, homemade GE was found to reduce the viability of the two multiple myeloma (MM) cell lines, RPMI-8226 and JJN3, as well as the prostate cancer cell line DU145 in a dose-dependent manner,
DNAdam↑, GE alone slightly increased the percentage of tail DNA (% Tail) (representing cumulative levels of abasic sites, as well as single- and double-strand DNA breaks) measured at day one, compared to untreated cells
GSH∅, We could not detect any changes in cellular GSH levels after treatments with GE
HSP70/HSPA5↓, ; however, in support of increased ER stress after GE treatment, we detected an increased pulldown of HSPA5 (BIP), a member of the Hsp70 family
UPR↑, s leading to the accumulation of unfolded proteins in the ER (also known as GRP78)
β-catenin/ZEB1↓, we also found a reduction in the β-catenin leve
ROS↑, In further support for increased ER stress induced by GE, which will lead to elevated ROS-levels and oxidative stress
HO-2↑, we found a significant increase in proteins activated by and important for regulating cellular ROS levels, e.g., OXR1, Txnl1, Hmox2, and Sirt1
SIRT1↑,
GlucoseCon∅, glucose consumption, as well as lactate secretion, were not changed.
lactateProd∅,
chemoP↑, Garlic is reported to reduce cisplatin-induced nephrotoxicity and oxidative stress

2647- AL,    The Mechanism in Gastric Cancer Chemoprevention by Allicin
- Review, GC, NA
ChemoSen↓, Experiments have shown that allicin can be chemopreventive to gastric cancer
TumCG↓, by inhibiting the growth of cancer cells, arresting cell cycle at G2/M phase, endoplasmic reticulum (ER) stress, and mitochondria-mediated apoptosis, which includes the caspase-dependent/-independent pathways and death receptor pathway.
TumCCA↑,
ER Stress↑,
Apoptosis↑,
Casp↑,
DR5↑, DR5 (death receptor 5) was found to be upregulated following allicin treatment

2655- AL,    Allicin and Digestive System Cancers: From Chemical Structure to Its Therapeutic Opportunities
- Review, GC, NA
TGF-β↓, Allicin can reduce the expression of TGF-2 and its receptor after entering directly into gastric cancer cell
cycD1↓, followed by not only downexpression of cyclinD1, cyclinE, and cyclin-dependent kinase (CDK),
cycE↓,
CDK1↓, cyclin-dependent kinase (CDK)
DNAdam↑, but also causing DNA damage and generating ROS
ROS↑,
BAX↑, Allicin increases the levels of Bax (proapoptotic protein), Bcl-2 (antiapoptotic protein), and JNK
JNK↑,
MMP↓, through reduction in outer mitochondrial membrane potential
p38↑, allicin induces p38 mitogen that could induce the protein kinase (MAPK) and then increase the expression of Fas binding to Fas ligand (Fas L) and finally activate death pathway through activation of cyt C and caspase-8.
MAPK↑,
Fas↑,
Cyt‑c↑,
Casp8↑,
PARP↑, allicin makes caspase-dependent apoptosis through elevating PARP, caspase-3 and caspase-9, which are mediated by enhanced discharging of mitochondria cyt C to the cytosol.
Casp3↑,
Casp9↑,
Ca+2↑, allicin induces apoptosis via increasing the amounts of free Ca2+, ER stress.
ER Stress↑,
P21↑, generating ROS to produce p21 and phospho-p53 (Ser15).
CDK2↓, Then p21 suppressed the CDK-4/6/cyclinD complex, P21-PCNA, P21-CDK2, and subsequently reduced cdk1/cyclinB1 complex for G2/M phase cell cycle arrest
CDK6↑,
TumCCA↑,
CDK4↓, Then p21 suppressed the CDK-4/6/cyclinD complex

2657- AL,    Allicin pharmacology: Common molecular mechanisms against neuroinflammation and cardiovascular diseases
- Review, CardioV, NA - Review, AD, NA
*Inflam↓, allicin integrate a broad spectrum of properties (e.g., anti-inflammatory, immunomodulatory, antibiotic, antifungal, antiparasitic, antioxidant, nephroprotective, neuroprotective, cardioprotective, and anti-tumoral activities, among others).
*antiOx↑, improving the antioxidant system
*neuroP↑,
*cardioP↑,
*AntiTum↑,
*mtDam↑, Indeed, the current evidence suggests that allicin improves mitochondrial function by enhancing the expression of HSP70 and NRF2, decreasing RAAS activation, and promoting mitochondrial fusion processes.
*HSP70/HSPA5↑, llicin improves mitochondrial function by enhancing the expression of HSP70 and decreasing RAAS activation
*NRF2↑,
*RAAS↓,
*cognitive↑, Allicin enhances the cognitive function of APP (amyloid precursor protein)/PS1 (presenilin 1) double transgenic mice by decreasing the expression levels of Aβ, oxidative stress, and improving mitochondrial function.
*SOD↑, positive effects on cognition in an AD mouse model by administrating a preventive dose of allicin. These effects might be mediated by an increase of SOD and reduction of ROS
*ROS↓,
*NRF2↑, Chronic treatment with allicin increased the expression of NRF2 and targeted downstream of NRF2, such as NADPH, quinone oxidoreductase 1 (NQO1), and γ-glutamyl cysteine synthetase (γ-GCS), in the hippocampus of aged mice
*ER Stress↓, protective effects of 16 weeks of allicin treatment in a rat model of endoplasmic reticulum stress-related cognitive deficits.
*neuroP↑, allicin was able to ameliorate depressive-like behaviors by decreasing neuroinflammation, oxidative stress iron aberrant accumulation,
*memory↑, allicin improved lead acetate-caused learning and memory deficits and decreased the ROS level
*TBARS↓, Oral administration of allicin was able to reduce thiobarbituric reactive substances (TBARS) and myeloperoxidase (MPO) levels, and concurrently increased (SOD) activity, glutathione S-transferase (GST) and glutathione (GSH) levels in a rat model of
*MPO↓,
*SOD↑,
*GSH↑,
*iNOS↓, decreasing the expression of iNOS and increased the phosphorylation of endothelial NOS (eNOS)
*p‑eNOS↑,
*HO-1↑, OSCs upregulate the endogenous antioxidant NRF2 and heme oxygenase-1 (HO-1)


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 4

Results for Effect on Cancer/Diseased Cells:
AntiCan↑,1,   Apoptosis↑,1,   BAX↑,1,   Ca+2↑,1,   Casp↑,1,   Casp3↑,1,   Casp8↑,1,   Casp9↑,1,   CDK1↓,1,   CDK2↓,1,   CDK4↓,1,   CDK6↑,1,   chemoP↑,1,   ChemoSen↓,1,   ChemoSen↑,1,   cycD1↓,1,   cycE↓,1,   Cyt‑c↑,1,   DNAdam↑,2,   DR5↑,1,   eff↓,1,   ER Stress↑,3,   Fas↑,1,   GlucoseCon∅,1,   GSH∅,1,   HO-2↑,1,   HSP70/HSPA5↓,1,   JNK↑,1,   lactateProd∅,1,   MAPK↑,1,   MMP↓,1,   P21↑,1,   p38↑,1,   PARP↑,1,   ROS↑,2,   SIRT1↑,1,   TGF-β↓,1,   TumCCA↑,2,   TumCG↓,1,   tumCV↓,1,   UPR↑,1,   β-catenin/ZEB1↓,1,  
Total Targets: 42

Results for Effect on Normal Cells:
antiOx↑,1,   AntiTum↑,1,   cardioP↑,1,   cognitive↑,1,   p‑eNOS↑,1,   ER Stress↓,1,   GSH↑,1,   HO-1↑,1,   HSP70/HSPA5↑,1,   Inflam↓,1,   iNOS↓,1,   memory↑,1,   MPO↓,1,   mtDam↑,1,   neuroP↑,2,   NRF2↑,2,   RAAS↓,1,   ROS↓,1,   SOD↑,2,   TBARS↓,1,  
Total Targets: 20

Scientific Paper Hit Count for: ER Stress, endoplasmic reticulum (ER) stress signaling pathway
4 Allicin (mainly Garlic)
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:27  Target#:103  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page