condition found tbRes List
AL, Allicin (mainly Garlic): Click to Expand ⟱
Features:
Garlic (Allium sativum L.) (active ingredient- Allicin, an active sulfer compound).
Summary:
- Four main organic sulfides in garlic, diallyl disulfide (DADS), diallyl trisulfide (DATS), S-allylmercaptocysteine (SAMC) and allicin.
- Reversible inhibitor of ACSS2.
- may inhibit NF-κB signaling
- induce oxidative stress in cancer cells by generating ROS
- might downregulate STAT3 activation
- Inconclusive evidence for cancer treatment.
- may inhibit platelet aggregation
Allicin is a reactive sulfur species (RSS) [23] with oxidizing properties, and it is able to oxidize thiols in cells, e.g., glutathione and cysteine residues in proteins.
-Allicin is not present in intact garlic; rather, it is formed when garlic is chopped or crushed. -Using crushed or chopped raw garlic or adding garlic at the end of the cooking process (after the heat is reduced) can help preserve its potential allicin content.
"Consumption of alliinase-inhibited cooked garlic was found to give higher than expected allicin bioequivalence, with AMS formation being about 30% (roasted garlic) or 16% (boiled garlic) that of crushed raw garlic."

-Note half-life reports vary 2.5-90hrs?.
-low solubility of apigenin in water : BioAv


Pathways:
- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, UPR↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, GSH↓
- Raises AntiOxidant defense in Normal Cells: NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- PI3K/AKT(Inhibition), JAK/STATs, Wnt/β-catenin, AMPK, MAPK/ERK, and JNK.
- inhibit Growth/Metastases : EMT↓, MMP2↓, MMP9↓, VEGF↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓(not commonly listed as inhibitor), DNMT1↓, P53↑, HSP↓
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, FAK↓, ERK↓,
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓,
- inhibits Cancer Stem Cells : CSC↓,
- Others: PI3K↓, AKT↓, STAT3, Wnt↓, β-catenin↓, AMPK↓, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,
- Selectivity: Cancer Cells vs Normal Cells

Allicin has been reported to exhibit a range of effects, including:
Antimicrobial activity: 10-50 μM
Antioxidant activity: 10-100 μM
Anti-inflammatory activity: 20-50 μM
Anticancer activity: 50-100 μM or (50–300uM) (2–5 mg allicin per kilogram of body weight per day)
Cardiovascular health: 20-50 μM

Approximate μM concentrations of allicin that can be achieved:
1 clove of garlic (3g): approximately 10-50 μM of allicin
single clove of garlic may yield about 5–9 mg of allicin,
1 tablespoon of minced garlic (15g): approximately 50-150 μM of allicin
1 cup of chopped garlic (100g): approximately 200-500 μM of allicin
1 tablespoon of chopped garlic chives (15g): approximately 5-20 μM of allicin
1 cup of chopped garlic chives (100g): approximately 20-50 μM of allicin
1 ounce (28g) of garlic microgreens: approximately 50-200 μM of allicin
1 cup of garlic microgreens (100g): approximately 200-500 μM of allicin
1 ounce (28g) of garlic chive microgreens: approximately 20-50 μM of allicin
1 cup of garlic chive microgreens (100g): approximately 50-100 μM of allicin

Allicin is a bioactive compound derived from garlic that has garnered significant interest for its potential anticancer properties through multiple mechanisms, including antioxidant activity, induction of apoptosis, cell cycle arrest, and modulation of key signaling pathways. While regular dietary intake of garlic is associated with cancer prevention benefits, allicin is also being explored as an adjunct to conventional cancer treatments.

Available in supplement tablet/capsule form for example at 2000mg (fresh bulb equilvalent)
IC50 of normal cells it >160mg/mL (large selectivity).
IC50 might be about 12-30ug/ml (approximately 62-185 µM) (which is about 30-90 grams of garlic consumption).
This makes it difficult to consume enough supplements to achieve that level.

Pathways:

ROS Generation and Oxidative Stress (inducing)
• ROS generation is often considered a primary trigger that feeds into downstream pathways (e.g., MAPK activation, mitochondrial membrane permeabilization).
Mitochondrial (Intrinsic) Apoptotic Pathway
• ROS-induced mitochondrial damage can lead to the release of cytochrome c and subsequent activation of caspases (e.g., caspase-9 and caspase-3).
NF-κB Signaling Inhibition (block)
Modulation of MAPK Pathways (e.g., p38 MAPK and JNK)
• ROS generation by allicin can activate stress-responsive kinases such as p38 MAPK and c-Jun N-terminal kinase (JNK).
Inhibition of PI3K/Akt Pathway
ROS levels and PI3K/Akt signaling, with increased oxidative stress often correlating with reduced Akt phosphorylation and activity.

At lower doses, allicin may lead to a modest increase in ROS levels that the cell’s antioxidant defenses (e.g., glutathione, superoxide dismutase) can manage


β-catenin/ZEB1, β-catenin/ZEB1: Click to Expand ⟱
Source: HalifaxProj (inactivate)
Type:
β-catenin and ZEB1 are two important proteins that play significant roles in cancer biology, particularly in the processes of cell adhesion, epithelial-mesenchymal transition (EMT), and tumor progression.
β-catenin is a key component of the Wnt signaling pathway, which is crucial for cell proliferation, differentiation, and survival. It also plays a role in cell-cell adhesion by linking cadherins to the actin cytoskeleton.
Role in Cancer: ZEB1 is often upregulated in cancer and is associated with increased invasiveness and metastasis. It can repress epithelial markers (like E-cadherin) and promote mesenchymal markers (like N-cadherin and vimentin), facilitating the transition to a more aggressive cancer phenotype.

(MMP)-2 and MMP-9, which are the down-stream targets of β-catenin and play a crucial role in cancer cell metastasis.


Scientific Papers found: Click to Expand⟱
2646- AL,    Anti-Cancer Potential of Homemade Fresh Garlic Extract Is Related to Increased Endoplasmic Reticulum Stress
- in-vitro, Pca, DU145 - in-vitro, Melanoma, RPMI-8226
AntiCan↑, simple homemade ethanol-based garlic extract (GE). We show that GE inhibits growth of several different cancer cells in vitro
eff↓, These activities were lost during freeze or vacuum drying, suggesting that the main anti-cancer compounds in GE are volatile.
ChemoSen↑, We found that GE enhanced the activities of chemotherapeutics
ER Stress↑, Our data indicate that the reduced proliferation of the cancer cells treated by GE is at least partly mediated by increased endoplasmic reticulum (ER) stress.
tumCV↓, homemade GE was found to reduce the viability of the two multiple myeloma (MM) cell lines, RPMI-8226 and JJN3, as well as the prostate cancer cell line DU145 in a dose-dependent manner,
DNAdam↑, GE alone slightly increased the percentage of tail DNA (% Tail) (representing cumulative levels of abasic sites, as well as single- and double-strand DNA breaks) measured at day one, compared to untreated cells
GSH∅, We could not detect any changes in cellular GSH levels after treatments with GE
HSP70/HSPA5↓, ; however, in support of increased ER stress after GE treatment, we detected an increased pulldown of HSPA5 (BIP), a member of the Hsp70 family
UPR↑, s leading to the accumulation of unfolded proteins in the ER (also known as GRP78)
β-catenin/ZEB1↓, we also found a reduction in the β-catenin leve
ROS↑, In further support for increased ER stress induced by GE, which will lead to elevated ROS-levels and oxidative stress
HO-2↑, we found a significant increase in proteins activated by and important for regulating cellular ROS levels, e.g., OXR1, Txnl1, Hmox2, and Sirt1
SIRT1↑,
GlucoseCon∅, glucose consumption, as well as lactate secretion, were not changed.
lactateProd∅,
chemoP↑, Garlic is reported to reduce cisplatin-induced nephrotoxicity and oxidative stress

2648- AL,    Allicin Inhibits Osteosarcoma Growth by Promoting Oxidative Stress and Autophagy via the Inactivation of the lncRNA MALAT1-miR-376a-Wnt/β-Catenin Signaling Pathway
- in-vitro, OS, SaOS2 - in-vivo, OS, NA
ROS↑, Allicin inhibited osteosarcoma growth and promoted oxidative stress and autophagy via MALATI-miR-376a
TumCG↓,
TumAuto↑,
Wnt↓, allicin promotes oxidative stress and autophagy to inhibit osteosarcoma growth by inhibiting the Wnt/β-catenin pathway in vivo and in vitro.
β-catenin/ZEB1↓,
MALAT1↓, Allicin Inhibited OS Growth by Promoting Oxidative Stress and Autophagy via Inactivation of the MALAT1-miR-376a-Wnt/β-Catenin Signal Pathway Axis In Vitro and In Vivo

2666- AL,    Targeting the Interplay of Autophagy and ROS for Cancer Therapy: An Updated Overview on Phytochemicals
- Review, Var, NA
Inflam↓, , anti-inflammatory, anti-cancer, and immune-modulatory activities
AntiCan↑,
ROS↑, allicin treatment led to the accumulation of ROS
MAPK↑, activation of MAPK/JNK
JNK↑,
TumAuto↑, of autophagy in non small cell lung cancer (NSCLC) cells.
other↑, autophagy at a low dose of allicin is cytoprotective
Dose↝, whereas a high dose of allicin leads to autophagic cell death.
MALAT1↓, allicin could considerably induce oxidative stress and autophagy to suppress osteosarcoma growth via inactivating the MALAT1-miR-376a-Wnt/β-catenin axis,
Wnt↓,
β-catenin/ZEB1↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 3

Results for Effect on Cancer/Diseased Cells:
AntiCan↑,2,   chemoP↑,1,   ChemoSen↑,1,   DNAdam↑,1,   Dose↝,1,   eff↓,1,   ER Stress↑,1,   GlucoseCon∅,1,   GSH∅,1,   HO-2↑,1,   HSP70/HSPA5↓,1,   Inflam↓,1,   JNK↑,1,   lactateProd∅,1,   MALAT1↓,2,   MAPK↑,1,   other↑,1,   ROS↑,3,   SIRT1↑,1,   TumAuto↑,2,   TumCG↓,1,   tumCV↓,1,   UPR↑,1,   Wnt↓,2,   β-catenin/ZEB1↓,3,  
Total Targets: 25

Results for Effect on Normal Cells:

Total Targets: 0

Scientific Paper Hit Count for: β-catenin/ZEB1, β-catenin/ZEB1
3 Allicin (mainly Garlic)
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:27  Target#:342  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page