condition found tbRes List
AL, Allicin (mainly Garlic): Click to Expand ⟱
Features:
Garlic (Allium sativum L.) (active ingredient- Allicin, an active sulfer compound).
Summary:
- Four main organic sulfides in garlic, diallyl disulfide (DADS), diallyl trisulfide (DATS), S-allylmercaptocysteine (SAMC) and allicin.
- Reversible inhibitor of ACSS2.
- may inhibit NF-κB signaling
- induce oxidative stress in cancer cells by generating ROS
- might downregulate STAT3 activation
- Inconclusive evidence for cancer treatment.
- may inhibit platelet aggregation
Allicin is a reactive sulfur species (RSS) [23] with oxidizing properties, and it is able to oxidize thiols in cells, e.g., glutathione and cysteine residues in proteins.
-Allicin is not present in intact garlic; rather, it is formed when garlic is chopped or crushed. -Using crushed or chopped raw garlic or adding garlic at the end of the cooking process (after the heat is reduced) can help preserve its potential allicin content.
"Consumption of alliinase-inhibited cooked garlic was found to give higher than expected allicin bioequivalence, with AMS formation being about 30% (roasted garlic) or 16% (boiled garlic) that of crushed raw garlic."

-Note half-life reports vary 2.5-90hrs?.
-low solubility of apigenin in water : BioAv


Pathways:
- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, UPR↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, GSH↓
- Raises AntiOxidant defense in Normal Cells: NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- PI3K/AKT(Inhibition), JAK/STATs, Wnt/β-catenin, AMPK, MAPK/ERK, and JNK.
- inhibit Growth/Metastases : EMT↓, MMP2↓, MMP9↓, VEGF↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓(not commonly listed as inhibitor), DNMT1↓, P53↑, HSP↓
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, FAK↓, ERK↓,
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓,
- inhibits Cancer Stem Cells : CSC↓,
- Others: PI3K↓, AKT↓, STAT3, Wnt↓, β-catenin↓, AMPK↓, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,
- Selectivity: Cancer Cells vs Normal Cells

Allicin has been reported to exhibit a range of effects, including:
Antimicrobial activity: 10-50 μM
Antioxidant activity: 10-100 μM
Anti-inflammatory activity: 20-50 μM
Anticancer activity: 50-100 μM or (50–300uM) (2–5 mg allicin per kilogram of body weight per day)
Cardiovascular health: 20-50 μM

Approximate μM concentrations of allicin that can be achieved:
1 clove of garlic (3g): approximately 10-50 μM of allicin
single clove of garlic may yield about 5–9 mg of allicin,
1 tablespoon of minced garlic (15g): approximately 50-150 μM of allicin
1 cup of chopped garlic (100g): approximately 200-500 μM of allicin
1 tablespoon of chopped garlic chives (15g): approximately 5-20 μM of allicin
1 cup of chopped garlic chives (100g): approximately 20-50 μM of allicin
1 ounce (28g) of garlic microgreens: approximately 50-200 μM of allicin
1 cup of garlic microgreens (100g): approximately 200-500 μM of allicin
1 ounce (28g) of garlic chive microgreens: approximately 20-50 μM of allicin
1 cup of garlic chive microgreens (100g): approximately 50-100 μM of allicin

Allicin is a bioactive compound derived from garlic that has garnered significant interest for its potential anticancer properties through multiple mechanisms, including antioxidant activity, induction of apoptosis, cell cycle arrest, and modulation of key signaling pathways. While regular dietary intake of garlic is associated with cancer prevention benefits, allicin is also being explored as an adjunct to conventional cancer treatments.

Available in supplement tablet/capsule form for example at 2000mg (fresh bulb equilvalent)
IC50 of normal cells it >160mg/mL (large selectivity).
IC50 might be about 12-30ug/ml (approximately 62-185 µM) (which is about 30-90 grams of garlic consumption).
This makes it difficult to consume enough supplements to achieve that level.

Pathways:

ROS Generation and Oxidative Stress (inducing)
• ROS generation is often considered a primary trigger that feeds into downstream pathways (e.g., MAPK activation, mitochondrial membrane permeabilization).
Mitochondrial (Intrinsic) Apoptotic Pathway
• ROS-induced mitochondrial damage can lead to the release of cytochrome c and subsequent activation of caspases (e.g., caspase-9 and caspase-3).
NF-κB Signaling Inhibition (block)
Modulation of MAPK Pathways (e.g., p38 MAPK and JNK)
• ROS generation by allicin can activate stress-responsive kinases such as p38 MAPK and c-Jun N-terminal kinase (JNK).
Inhibition of PI3K/Akt Pathway
ROS levels and PI3K/Akt signaling, with increased oxidative stress often correlating with reduced Akt phosphorylation and activity.

At lower doses, allicin may lead to a modest increase in ROS levels that the cell’s antioxidant defenses (e.g., glutathione, superoxide dismutase) can manage


JNK, c-Jun N-terminal kinase (JNK): Click to Expand ⟱
Source:
Type:
JNK acts synergistically with NF-κB, JAK/STAT, and other signaling molecules to exert a survival function. Janus signaling promotes cancer cell survival.
JNK, or c-Jun N-terminal kinase, is a member of the mitogen-activated protein kinase (MAPK) family. It plays a crucial role in various cellular processes, including cell proliferation, differentiation, and apoptosis (programmed cell death). JNK is activated in response to various stress signals, such as UV radiation, oxidative stress, and inflammatory cytokines.
JNK activation can promote apoptosis in cancer cells, acting as a tumor suppressor. However, in other contexts, it can promote cell survival and proliferation, contributing to tumor progression.

JNK is often unregulated in cancers, leading to increased cancer cell proliferation, survival, and resistance to apoptosis. This activation is typically associated with poor prognosis and aggressive tumor behavior.


Scientific Papers found: Click to Expand⟱
2558- AL,    Allicin, an Antioxidant and Neuroprotective Agent, Ameliorates Cognitive Impairment
- Review, AD, NA
*AntiCan↑, Allicin has shown anticancer, antimicrobial, antioxidant properties and also serves as an efficient therapeutic agent against cardiovascular diseases
*antiOx↑,
*cardioP↑,
*neuroP↑, present review describes allicin as an antioxidant, and neuroprotective molecule
cognitive↑, that can ameliorate the cognitive abilities in case of neurodegenerative and neuropsychological disorders.
*ROS↓, As an antioxidant, allicin fights the reactive oxygen species (ROS) by downregulation of NOX (NADPH oxidizing) enzymes, it can directly interact to reduce the cellular levels of different types of ROS produced by a variety of peroxidases.
*NOX↓,
*TLR4↓, inhibition of TLR4/MyD88/NF-κB, P38 and JNK pathways.
*NF-kB↓,
*JNK↓,
*AntiAg↑, A low concentration of allicin (0.4 mM) can inhibit the platelet aggregation up to 90%, the impact is significantly higher than of similar concentration of aspirin.
*H2S↑, Allicin decomposes rapidly and undergoes a series of reactions with glutathione resulting in the production of hydrogen sulphide (H2S).
*BP↓, H2S is a gaseous signalling molecule involved in the regulation of blood pressure.
Telomerase↓, Allicin inhibits the activity of telomerase in a dose dependent manner subsequently inhibiting the proliferation in the cancer cells
*Insulin↑, Studies have shown a significant increase in the blood insulin levels after treatment with allicin
BioAv↝, optimum temperature for the activity of alliinase is 33 °C, it operates best at pH 6.5, the enzyme is sensitive to acids [42,43] (Figure 3), enteric-coated formulations of garlic supplements are therefore recommended
*GSH↑, It helps to lower the hyperglycaemic conditions and improves the glutathione and catalase biosynthesis [37,38]
*Catalase↑,

2655- AL,    Allicin and Digestive System Cancers: From Chemical Structure to Its Therapeutic Opportunities
- Review, GC, NA
TGF-β↓, Allicin can reduce the expression of TGF-2 and its receptor after entering directly into gastric cancer cell
cycD1↓, followed by not only downexpression of cyclinD1, cyclinE, and cyclin-dependent kinase (CDK),
cycE↓,
CDK1↓, cyclin-dependent kinase (CDK)
DNAdam↑, but also causing DNA damage and generating ROS
ROS↑,
BAX↑, Allicin increases the levels of Bax (proapoptotic protein), Bcl-2 (antiapoptotic protein), and JNK
JNK↑,
MMP↓, through reduction in outer mitochondrial membrane potential
p38↑, allicin induces p38 mitogen that could induce the protein kinase (MAPK) and then increase the expression of Fas binding to Fas ligand (Fas L) and finally activate death pathway through activation of cyt C and caspase-8.
MAPK↑,
Fas↑,
Cyt‑c↑,
Casp8↑,
PARP↑, allicin makes caspase-dependent apoptosis through elevating PARP, caspase-3 and caspase-9, which are mediated by enhanced discharging of mitochondria cyt C to the cytosol.
Casp3↑,
Casp9↑,
Ca+2↑, allicin induces apoptosis via increasing the amounts of free Ca2+, ER stress.
ER Stress↑,
P21↑, generating ROS to produce p21 and phospho-p53 (Ser15).
CDK2↓, Then p21 suppressed the CDK-4/6/cyclinD complex, P21-PCNA, P21-CDK2, and subsequently reduced cdk1/cyclinB1 complex for G2/M phase cell cycle arrest
CDK6↑,
TumCCA↑,
CDK4↓, Then p21 suppressed the CDK-4/6/cyclinD complex

2666- AL,    Targeting the Interplay of Autophagy and ROS for Cancer Therapy: An Updated Overview on Phytochemicals
- Review, Var, NA
Inflam↓, , anti-inflammatory, anti-cancer, and immune-modulatory activities
AntiCan↑,
ROS↑, allicin treatment led to the accumulation of ROS
MAPK↑, activation of MAPK/JNK
JNK↑,
TumAuto↑, of autophagy in non small cell lung cancer (NSCLC) cells.
other↑, autophagy at a low dose of allicin is cytoprotective
Dose↝, whereas a high dose of allicin leads to autophagic cell death.
MALAT1↓, allicin could considerably induce oxidative stress and autophagy to suppress osteosarcoma growth via inactivating the MALAT1-miR-376a-Wnt/β-catenin axis,
Wnt↓,
β-catenin/ZEB1↓,

2669- AL,  Rad,    Inhibition of ICAM-1 expression by garlic component, allicin, in gamma-irradiated human vascular endothelial cells via downregulation of the JNK signaling pathway
- in-vitro, Nor, HUVECs
*ICAM-1↓, Allicin significantly inhibited gamma IR-induced surface expression of ICAM-1 and ICAM mRNA in a dose-dependent manner.
*AP-1↓, pretreatment with allicin resulted in the decrease of AP-1 activation and phosphorylation of the c-Jun NH2-terminal kinase (JNK) induced by gamma IR.
*p‑cJun↓,
*radioP↑, may be considered in therapeutic strategies for the management of patients treated with radiation therapy
JNK↓, downregulates gamma IR-induced ICAM-1 expression via inhibition of both AP-1 activation and the JNK pathway

248- AL,    Allicin inhibits cell growth and induces apoptosis in U87MG human glioblastoma cells through an ERK-dependent pathway
- in-vitro, GBM, U87MG
Bcl-2↓,
BAX↑,
MAPK↑,
ERK↑,
ROS↑, antioxidant prevented inhibitory effect
p38↑,
JNK↑,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 5

Results for Effect on Cancer/Diseased Cells:
AntiCan↑,1,   BAX↑,2,   Bcl-2↓,1,   BioAv↝,1,   Ca+2↑,1,   Casp3↑,1,   Casp8↑,1,   Casp9↑,1,   CDK1↓,1,   CDK2↓,1,   CDK4↓,1,   CDK6↑,1,   cognitive↑,1,   cycD1↓,1,   cycE↓,1,   Cyt‑c↑,1,   DNAdam↑,1,   Dose↝,1,   ER Stress↑,1,   ERK↑,1,   Fas↑,1,   Inflam↓,1,   JNK↓,1,   JNK↑,3,   MALAT1↓,1,   MAPK↑,3,   MMP↓,1,   other↑,1,   P21↑,1,   p38↑,2,   PARP↑,1,   ROS↑,3,   Telomerase↓,1,   TGF-β↓,1,   TumAuto↑,1,   TumCCA↑,1,   Wnt↓,1,   β-catenin/ZEB1↓,1,  
Total Targets: 38

Results for Effect on Normal Cells:
AntiAg↑,1,   AntiCan↑,1,   antiOx↑,1,   AP-1↓,1,   BP↓,1,   cardioP↑,1,   Catalase↑,1,   p‑cJun↓,1,   GSH↑,1,   H2S↑,1,   ICAM-1↓,1,   Insulin↑,1,   JNK↓,1,   neuroP↑,1,   NF-kB↓,1,   NOX↓,1,   radioP↑,1,   ROS↓,1,   TLR4↓,1,  
Total Targets: 19

Scientific Paper Hit Count for: JNK, c-Jun N-terminal kinase (JNK)
5 Allicin (mainly Garlic)
1 Radiotherapy/Radiation
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:27  Target#:168  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page