condition found tbRes List
H2, Hydrogen Gas: Click to Expand ⟱
Features:
Hydrogen Gas, Powerful Antioxidant

1.Antioxidant and Nrf2/ARE Pathway: activate Nrf2, which induces antioxidant enzymes.
2.NF-κB Pathway: reported to inhibit NF-κB activation, thereby reducing inflammatory cytokine production
3.Mitochondrial Apoptosis Pathway
4.MAPK (Mitogen-Activated Protein Kinases) Pathway
5.PI3K/Akt/mTOR Pathway
6.Inflammatory Cytokine Signaling: Reducing cytokines (such as IL-6, TNF-α)
7.p53 Pathway
8.Autophagy Pathways: might regulate autophagy, (dual roles in cancer)

Example unit sometimes used in studies
Example Canadian Supplier

Hydrogen gas can be generated in small amount by hydrogenase of certain members of the human gastrointestinal tract microbiota from unabsorbed carbohydrates in the intestine through degradation and metabolism, which then is partially diffused into blood flow and released and detected in exhaled breath, indicating its potential to serve as a biomarker.

Many studies have shown that H2 therapy can reduce oxidative stress. This, however, contradicts radiation therapy and chemotherapy, in which ROS are required to induce apoptosis and combat cancer. Yet many studies show chemoprotective and radioprotective and some even show chemosentizing
Nevertheless there are some papers claiming ROS ↑ for cancer cells



chemoP, ChemoProtective: Click to Expand ⟱
Source:
Type:
Protects normal cells against the effect of Chemo.


Scientific Papers found: Click to Expand⟱
2525- H2,    Hydrogen-Rich Saline Attenuates Cardiac and Hepatic Injury in Doxorubicin Rat Model by Inhibiting Inflammation and Apoptosis
- in-vivo, NA, NA
OS↓, intraperitoneal injection of hydrogen-rich saline (H2 saline) ameliorated the mortality, cardiac dysfunction, and histopathological changes caused by DOX in rats
cardioP↑,
*AST↓, serum brain natriuretic peptide (BNP), aspartate transaminase (AST), alanine transaminase (ALT), albumin (ALB), tissue reactive oxygen species (ROS), and malondialdehyde (MDA) levels were also attenuated after H2 saline treatment.
ALAT↓,
*ROS↓,
*MDA↓,
*hepatoP↑, H2 saline treatment could inhibit cardiac and hepatic inflammation
*Inflam↓,
chemoP↑, protective effect of H2 saline on DOX-induced cardiotoxicity and hepatotoxicity in rats by inhibiting inflammation and apoptosis.

2522- H2,    A Systematic Review of Molecular Hydrogen Therapy in Cancer Management
- Review, Var, NA
chemoP↑, H2 plays a promising therapeutic role as an independent therapy as well as an adjuvant in combination therapy, resulting in an overall improvement in survivability, quality of life, blood parameters, and tumour reduction.
OS↑,
QoL↑,
TumVol↑,
ROS↑, Hydrogen, the lightest element on the earth, is an effective antioxidant that has been shown to selectively reduce harmful reactive oxygen species (ROS) in tissues
AntiTum↑, Although H2 has demonstrated significant anti-tumoural effects, the underlying mechanisms have not yet been elucidated.
other↝, Many studies have shown that H2 therapy can reduce oxidative stress. This, however, contradicts radiation therapy and chemotherapy, in which ROS are required to induce apoptosis and combat cancer.

2521- H2,    Oxyhydrogen Gas: A Promising Therapeutic Approach for Lung, Breast and Colorectal Cancer
- Review, CRC, NA - Review, Lung, NA - Review, BC, NA
Inflam↑, Oxyhydrogen gas, a mixture of 66% molecular hydrogen (H2) and 33% molecular oxygen (O2) has shown exceptional promise as a novel therapeutic agent due to its ability to modulate oxidative stress, inflammation, and apoptosis.
ROS↓, neutralises reactive oxygen and nitrogen species
ChemoSen↑, enhancing existing treatments and reducing harmful oxidative states in cancer cells. boosting the effectiveness of conventional therapies
p‑PI3K↓, inhibiting the PI3K/Akt phosphorylation cascade.
p‑Akt↓,
QoL↑, Similar results have been observed in breast cancer, where patients reported improved quality of life.
GutMicro↑, improves intestinal microflora dysbiosis.
chemoP↑, reduced oxidative stress and mitigated tissue damage, suggesting its potential as a cytoprotective agent in cancer patients undergoing radiation therapy or chemotherapy
radioP↑,
*NRF2↑, documented role in activating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway.
*Catalase↑, consequently, hydrogen can enhance the expression of endogenous antioxidant enzymes, including catalase (CAT), glutathione peroxidase (GPx), haem oxygenase (e.g., HO-1), and superoxide dismutase (SOD) [45]
*GPx↑,
*HO-1↑,
*SOD↑,
*TNF-α↓, reducing the expression of proinflammatory mediators such as chemokines (e.g., CXCL15), cytokines (e.g., TNF-α), interleukins (e.g., IL-4, IL-6)
*IL4↓,
*IL6↓,
ChemoSen↑, further research demonstrates that oxyhydrogen gas enhanced the sensitivity of lung cancer cells to chemotherapy drugs, suggesting its potential as an adjuvant therapy
Appetite↑, inhaled oxyhydrogen gas over a minimum of 3 months. The results indicated substantial improvements in appetite, cognition, fatigue, pain, and sleeplessness
cognitive↑,
Pain↓,
Sleep↑,
other?, It is recommended that hydrogen should not exceed 4.6% in air or 4.1% by volume in pure oxygen gas (explosion risk)

2519- H2,    Hydrogen: an advanced and safest gas option for cancer treatment
- Review, Var, NA
antiOx↑, H2 has remarkable antioxidant and neuroprotective effects and other advantages
neuroP↓,
BBB↑, swift penetration ability to cross the blood–brain barrier
toxicity∅, H2 inhalation therapy has also been proposed in several countries as the safest mode of H2 administration
TumCP↓, A HeLa xenograft mouse model showed that H2 inhalation may increase the apoptosis rate, proliferation, and oxidative stress in HeLa cells
Apoptosis↓,
ROS↑,
Hif1a↓, H2 may affect tumor growth by regulating the expression of overexpressed subunits of transcription factors, such as hypoxia-inducible factor 1α and the nuclear factor-κB p65 subunit
NF-kB↓,
P53?, Hydrogen also increases the expression level of p53 tumor suppressor proteins.
OS↑, This study revealed that hydrogen gas inhalation 3 h/d can improve the prognosis and overall survival of stage IV colorectal carcinoma patients by decreasing the number of programmed cell death 1/CD8+ T cells
chemoP↑, H 2 anticancer therapy can minimize the debilitating side effects of conventional anticancer therapies by improving survival, quality of life, and blood parameters.

2516- H2,    Hydrogen Gas in Cancer Treatment
- Review, Var, NA
*Half-Life↓, Except the thigh muscle required a longer time to saturate, the other organs need 5–10 min to reach Cmax (maximum hydrogen concentration).
*ROS↓, regulate several key players in cancer, including ROS, and certain antioxidant enzymes
*selectivity↑, hydrogen gas could selectively scavenge the most cytotoxic ROS, •OH, as tested in an acute rat model of cerebral ischemia and reperfusion
*SOD↑, the expression of superoxide dismutase (SOD) (48), heme oxyganase-1 (HO-1) (49), as well as nuclear factor erythroid 2-related factor 2 (Nrf2) (50), increased significantly, strengthening its potential in eliminating ROS.
*HO-1↑,
*NRF2↑,
*chemoP↑, reduce the adverse effects in cancer treatment while at the same time doesn't abrogate the cytotoxicity of other therapy, such as radiotherapy and chemotherapy
*radioP↑,
ROS↑, Interestingly, due the over-produced ROS in cancer cells (38), the administration of hydrogen gas may lower the ROS level at the beginning, but it provokes much more ROS production as a result of compensation effect, leading to the killing of cancer
*Inflam↓, By regulating inflammation, hydrogen gas can prevent tumor formation, progression, as well as reduce the side effects caused by chemotherapy/radiotherapy
eff↑, More importantly, hydrogen-rich water didn't impair the overall anti-tumor effects of gefitinib both in vitro and in vivo, while in contrast, it antagonized the weight loss induced by gefitinib and naphthalene, and enhanced the overall survival rate
*TNF-α↓, hydrogen-rich saline treatment exerted its protective effects via inhibiting the inflammatory TNF-α/IL-6 pathway, increasing the cleaved C8 expression and Bcl-2/Bax ratio, and attenuating cell apoptosis in both heart and liver tissue
*IL6↓,
*cl‑Casp8↑,
*Bax:Bcl2↓,
*Apoptosis↓,
*cardioP↑,
*hepatoP↑,
*RenoP↑, Hydrogen-rich water also showed renal protective effect against cisplatin-induced nephrotoxicity in rats.
*chemoP↑, nother study showed that both inhaling hydrogen gas (1% hydrogen in air) and drinking hydrogen-rich water (0.8 mM hydrogen in water) could reverse the mortality, and body-weight loss caused by cisplatin via its anti-oxidant property
eff↝, More importantly, hydrogen didn't impair the anti-tumor activity of cisplatin against cancer cell lines in vitro and in tumor-bearing mice
chemoP↑, hydrogen-rich water combinational treatment group exhibited no differences in liver function during the treatment, probably due to its antioxidant activity, indicating it a promising protective agent to alleviate the mFOLFOX6-related liver injury
radioP↑, consumption of hydrogen-rich water reduced the radiation-induced oxidative stress while at the same time didn't compromise anti-tumor effect of radiotherapy
eff↑, Hydrogen Gas Acts Synergistically With Thermal Therapy
TumCG↓, in vivo study showed that under hydrogen gas treatment, tumor growth was significantly inhibited, as well as the expression of Ki-67, VEGF and SMC3
Ki-67↓,
VEGF↓,
selectivity↑, H2-silica could concentration-dependently inhibit the cell viability of human esophageal squamous cell carcinoma (KYSE-70) cells, while it need higher dose to suppress normal human esophageal epithelial cells (HEEpiCs), indicating its selective profi

2508- H2,    Molecular hydrogen is a promising therapeutic agent for pulmonary disease
- Review, Var, NA - Review, Sepsis, NA
*ROS↓, inhalation of 2% molecular hydrogen results in the selective scavenging of hydroxyl free radical (·OH) and peroxynitrite anion (ONOO-), significantly improving oxidative stress injury caused by cerebral ischemia/reperfusion (I/R)
eff↝, Molecular hydrogen can exert biological effects on almost all organs, including the brain, heart, lung, liver, and pancreas.
*Inflam?, including roles in the regulation of oxidative stress and anti-inflammatory and anti-apoptotic effects
*NRF2↑, By stimulating nuclear factor erythroid 2-related factor 2 (Nrf2), which regulates the basal and induces expression of many antioxidant enzymes
*HO-1↑, hydrogen can increase the expression of heme oxygenase-1 (HO-1)
*SOD↑, increases the activity of the antioxidant enzymes SOD, CAT, and myeloperoxidase (MPO)
*Catalase↑,
*MPO↑,
*ASK1↓, Molecular hydrogen can block the apoptosis signal-regulating kinase 1 (ASK1) signaling pathway
*NADPH↓, thereby inhibiting nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and decreasing free radical production
*Sepsis↓, Emerging evidence suggests that hydrogen can prevent sepsis, providing a novel treatment strategy for sepsis-induced ALI.
*HMGB1↓, Hydrogen attenuates tissue injury and dysfunction by inhibiting HMGB-1.
ROS↑, it has been shown that hydrogen pretreatment enhances ROS and the expression of pyroptosis-related proteins, stimulates NLRP3 inflammasome/gasdermin D (GSDMD) activation, and inhibits endometrial cancer
NLRP3↑,
GSDMD↑,
chemoP↑, Hydrogen can alleviate the side effects of conventional anti-cancer therapies, such as chemotherapy and radiotherapy, and improve quality of life
eff↑, It significantly improves the physical status of patients, reduces fatigue, insomnia, anorexia, and pain, and decreases elevated tumor markers.


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 6

Results for Effect on Cancer/Diseased Cells:
p‑Akt↓,1,   ALAT↓,1,   antiOx↑,1,   AntiTum↑,1,   Apoptosis↓,1,   Appetite↑,1,   BBB↑,1,   cardioP↑,1,   chemoP↑,6,   ChemoSen↑,2,   cognitive↑,1,   eff↑,3,   eff↝,2,   GSDMD↑,1,   GutMicro↑,1,   Hif1a↓,1,   Inflam↑,1,   Ki-67↓,1,   neuroP↓,1,   NF-kB↓,1,   NLRP3↑,1,   OS↓,1,   OS↑,2,   other?,1,   other↝,1,   P53?,1,   Pain↓,1,   p‑PI3K↓,1,   QoL↑,2,   radioP↑,2,   ROS↓,1,   ROS↑,4,   selectivity↑,1,   Sleep↑,1,   toxicity∅,1,   TumCG↓,1,   TumCP↓,1,   TumVol↑,1,   VEGF↓,1,  
Total Targets: 39

Results for Effect on Normal Cells:
Apoptosis↓,1,   ASK1↓,1,   AST↓,1,   Bax:Bcl2↓,1,   cardioP↑,1,   cl‑Casp8↑,1,   Catalase↑,2,   chemoP↑,2,   GPx↑,1,   Half-Life↓,1,   hepatoP↑,2,   HMGB1↓,1,   HO-1↑,3,   IL4↓,1,   IL6↓,2,   Inflam?,1,   Inflam↓,2,   MDA↓,1,   MPO↑,1,   NADPH↓,1,   NRF2↑,3,   radioP↑,1,   RenoP↑,1,   ROS↓,3,   selectivity↑,1,   Sepsis↓,1,   SOD↑,3,   TNF-α↓,2,  
Total Targets: 28

Scientific Paper Hit Count for: chemoP, ChemoProtective
6 Hydrogen Gas
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:295  Target#:1171  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page