condition found tbRes List
PL, Piperlongumine: Click to Expand ⟱
Features:
Piperlongumine (also called Piplartine), an alkaloid from long pepper fruit
-Piperlongumine is a bioactive alkaloid derived from the long pepper (Piper longum)
– Piperlongumine has been shown to selectively increase ROS levels in cancer cells.
-NLRP3 inhibitor?
-TrxR inhibitor (major antioxidant system) to increase ROS in cancer cells
-ic50 cancer cells maybe 2-10uM, normal cells maybe exceeding 20uM.

Available from mcsformulas.com
-(Long Pepper, 500mg/Capsule)- 1 capsule 3 times daily with food
-Piperlongumine Pro Liposomal, 40 mg-take 1 capsule daily with plenty of water, after a meal

-Note half-life 30–60 minutes
BioAv poor aqueous solubility and bioavailability
Pathways:
- induce ROS production in cancer cells likely at any dose. Effect on normal cells is inconclusive.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, Prx,
- Lowers some AntiOxidant markers/ defense in Cancer Cells: but mostly raises NRF2 (raises antiO defense), TrxR↓(*important), GSH↓ Catalase↓ HO1↓ GPx↓
- Very little indication of raising AntiOxidant defense in Normal Cells: GSH↑,
- lowers Inflammation : NF-kB↓, COX2↓, conversely p38↑, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMP2↓, MMP9↓, VEGF↓, NF-κB↓, CXCR4↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓(few reports), DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓,
- small indication of inhibiting glycolysis : HIF-1α↓, cMyc↓, LDH↓, HK2↓,
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, β-catenin↓, ERK↓, JNK,
- Synergies: chemo-sensitization, RadioSensitizer, Others(review target notes), Neuroprotective, Cognitive, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


JNK, c-Jun N-terminal kinase (JNK): Click to Expand ⟱
Source:
Type:
JNK acts synergistically with NF-κB, JAK/STAT, and other signaling molecules to exert a survival function. Janus signaling promotes cancer cell survival.
JNK, or c-Jun N-terminal kinase, is a member of the mitogen-activated protein kinase (MAPK) family. It plays a crucial role in various cellular processes, including cell proliferation, differentiation, and apoptosis (programmed cell death). JNK is activated in response to various stress signals, such as UV radiation, oxidative stress, and inflammatory cytokines.
JNK activation can promote apoptosis in cancer cells, acting as a tumor suppressor. However, in other contexts, it can promote cell survival and proliferation, contributing to tumor progression.

JNK is often unregulated in cancers, leading to increased cancer cell proliferation, survival, and resistance to apoptosis. This activation is typically associated with poor prognosis and aggressive tumor behavior.


Scientific Papers found: Click to Expand⟱
2950- PL,    Overview of piperlongumine analogues and their therapeutic potential
- Review, Var, NA
AntiAg↑, PL has been shown to exert in vitro antiplatelet aggregation effect induced by agonists such as collagen, adenosine 50-diphosphate (ADP), arachidonic acid (AA) and thrombin.
neuroP↑, Neuroprotective activity of PL and its derivatives
Inflam↓, Anti-inflammatory activity of PL and its derivatives
NO↓, production of NO and PGE2 was significantly inhibited after the treatment of PL.
PGE2↓,
MMP3↓, PL also significantly suppressed the production of MMP-3 and MMP-13
MMP13↓,
TumCMig↓, PL inhibited the proliferation, induced the apoptosis and reduced the migration and invasion of RA FLS by activating the p38, JNK, NF-kB and STAT3 pathways
TumCI↓,
p38↑,
JNK↑,
NF-kB↑,
ROS↑, PL has been reported to selectively induce apoptotic by ROS accumulation in cancer cells via different molecular mechanisms.
Foxm1↓, PL inhibited proteasome including suppression of FOXM1
TrxR1↓, induction of ROS by directly inhibiting thioredoxin reductase 1 (TrxR1) activity
GSH↓, Wang et al. demonstrated that PL could inhibit both glutathione and thioredoxin and thus induce ROS elevation,
Trx↓,
cMyc↓, downregulation of c-Myc and LMP1 and the Caspase-3-dependent apoptosis of Burkitt lymphoma cells in vitro.
Casp3↑,
Bcl-2↓, PL could downregulate Bcl-2 and Mcl-1 and decrease the expression of STAT-3
Mcl-1↓,
STAT3↓, Bharadwaj et al. identified PL as a direct STAT3 inhibitor
AR↓, Golovine et al. demonstrated for the first time that PL rapidly reduced the androgen receptor protein level of prostate cancer cells
DNAdam↑, inducing DNA damage,

1940- PL,    Piperlongumine Inhibits Migration of Glioblastoma Cells via Activation of ROS-Dependent p38 and JNK Signaling Pathways
- in-vitro, GBM, LN229 - in-vitro, GBM, U87MG
ROS↑, demonstrated that PL induced ROS accumulation in scratched LN229 cells.
GSH↓, reduced glutathione
p38↑, activated p38 and JNK, increased IκBα
JNK↑,
IKKα↑,
NF-kB↓, suppressed NFκB in LN229 cells after scratching
eff↓, All the biological effects of PL in scratched LN229 cells were completely abolished by the antioxidant N-acetyl-L-cysteine (NAC).

2944- PL,    Piperlongumine, a Potent Anticancer Phytotherapeutic, Induces Cell Cycle Arrest and Apoptosis In Vitro and In Vivo through the ROS/Akt Pathway in Human Thyroid Cancer Cells
- in-vitro, Thyroid, IHH4 - in-vitro, Thyroid, 8505C - in-vivo, NA, NA
ROS↑, it is selectively toxic to cancer cells by generating reactive oxygen species (ROS)
selectivity↑,
tumCV↓, Cell viability, colony formation, cell cycle, apoptosis, and cellular ROS induction.
TumCCA↑,
Apoptosis↑,
ERK↑, activation of Erk and the suppression of the Akt/mTOR pathways through ROS induction were seen in cells treated with PL
Akt↓,
mTOR↓,
neuroP↑, neuroprotective, and anticancer properties
Bcl-2↓, induces the downregulation of Bcl2 expression and the activation of caspase-3, poly (ADP-ribose) polymerase (PARP), and JNK
Casp3↑,
PARP↑,
JNK↑,
*toxicity↓, several whole-animal models, and it is highly safe when used in vivo
eff↓, Pre-treatment with N-acetylcysteine (NAC; a selective ROS scavenger) significantly reduced PL-mediated ROS activation
TumW↓, tumor weight in the PL (10 mg/kg) treatment group significantly decreased when compared with that in the control group

2949- PL,    Piperlongumine selectively kills glioblastoma multiforme cells via reactive oxygen species accumulation dependent JNK and p38 activation
- in-vitro, GBM, LN229 - in-vitro, GBM, U87MG
selectivity↑, Piperlongumine (PL) selectively kills GBM cells but not normal astrocytes.
ROS↑, PL kills GBM cells via ROS accumulation
JNK↑, JNK and p38 activation contributes to PL’s cytotoxicity in GBM cells.
p38↑,
GSH↓, PL elevated ROS prominently and reduced glutathione levels in LN229 and U87 cells.
eff↓, Antioxidant N-acetyl-l-cysteine (NAC) completely reversed PL-induced ROS accumulation and prevented cell death in LN229 and U87 cells.


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 4

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   AntiAg↑,1,   Apoptosis↑,1,   AR↓,1,   Bcl-2↓,2,   Casp3↑,2,   cMyc↓,1,   DNAdam↑,1,   eff↓,3,   ERK↑,1,   Foxm1↓,1,   GSH↓,3,   IKKα↑,1,   Inflam↓,1,   JNK↑,4,   Mcl-1↓,1,   MMP13↓,1,   MMP3↓,1,   mTOR↓,1,   neuroP↑,2,   NF-kB↓,1,   NF-kB↑,1,   NO↓,1,   p38↑,3,   PARP↑,1,   PGE2↓,1,   ROS↑,4,   selectivity↑,2,   STAT3↓,1,   Trx↓,1,   TrxR1↓,1,   TumCCA↑,1,   TumCI↓,1,   TumCMig↓,1,   tumCV↓,1,   TumW↓,1,  
Total Targets: 36

Results for Effect on Normal Cells:
toxicity↓,1,  
Total Targets: 1

Scientific Paper Hit Count for: JNK, c-Jun N-terminal kinase (JNK)
4 Piperlongumine
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:134  Target#:168  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page