condition found tbRes List
PL, Piperlongumine: Click to Expand ⟱
Features:
Piperlongumine (also called Piplartine), an alkaloid from long pepper fruit
-Piperlongumine is a bioactive alkaloid derived from the long pepper (Piper longum)
– Piperlongumine has been shown to selectively increase ROS levels in cancer cells.
-NLRP3 inhibitor?
-TrxR inhibitor (major antioxidant system) to increase ROS in cancer cells
-ic50 cancer cells maybe 2-10uM, normal cells maybe exceeding 20uM.

Available from mcsformulas.com
-(Long Pepper, 500mg/Capsule)- 1 capsule 3 times daily with food
-Piperlongumine Pro Liposomal, 40 mg-take 1 capsule daily with plenty of water, after a meal

-Note half-life 30–60 minutes
BioAv poor aqueous solubility and bioavailability
Pathways:
- induce ROS production in cancer cells likely at any dose. Effect on normal cells is inconclusive.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, Prx,
- Lowers some AntiOxidant markers/ defense in Cancer Cells: but mostly raises NRF2 (raises antiO defense), TrxR↓(*important), GSH↓ Catalase↓ HO1↓ GPx↓
- Very little indication of raising AntiOxidant defense in Normal Cells: GSH↑,
- lowers Inflammation : NF-kB↓, COX2↓, conversely p38↑, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT, MMP2↓, MMP9↓, VEGF↓, NF-κB↓, CXCR4↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓(few reports), DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT,
- small indication of inhibiting glycolysis : HIF-1α↓, cMyc↓, LDH↓, HK2↓,
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, β-catenin↓, ERK↓, JNK,
- Synergies: chemo-sensitization, RadioSensitizer, Others(review target notes), Neuroprotective, Cognitive, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


EMT, Epithelial-Mesenchymal Transition: Click to Expand ⟱
Source:
Type:
Biological process in which epithelial cells lose their cell polarity and cell-cell adhesion properties and gain mesenchymal traits, such as increased motility and invasiveness. This process is pivotal during embryogenesis and wound healing. Hh signaling pathway is able to regulate the EMT. Snail, E-cadherin and N-cadherin, key components of EMT; EMT-related factors, E-cadherin, N-cadherin, vimentin; The hallmark of EMT is the upregulation of N-cadherin followed by the downregulation of E-cadherin.
EMT is regulated by various signaling pathways, including TGF-β, Wnt, Notch, and Hedgehog pathways. Transcription factors such as Snail, Slug, Twist, and ZEB play critical roles in repressing epithelial markers (like E-cadherin) and promoting mesenchymal markers (like N-cadherin and vimentin).
EMT is associated with increased tumor aggressiveness, enhanced migratory and invasive capabilities, and resistance to apoptosis.


Scientific Papers found: Click to Expand⟱
2952- PL,    Piperlongumine suppresses bladder cancer invasion via inhibiting epithelial mesenchymal transition and F-actin reorganization
- in-vitro, Bladder, T24 - in-vivo, Bladder, NA
TumCP↓, PL significantly suppressed bladder cancer cell proliferation, the transition of G2/M phase to next phase, migration/invasion in vitro and bladder cancer growth/development in vivo
TumCCA↑,
TumCMig↓,
TumCI↓,
ROS↑, PL markedly elevated reactive oxygen species (ROS)
Slug↓, PL inhibited epithelial mesenchymal transition with profoundly decreased level of Slug, β-catenin, ZEB1 and N-Cadherin.
β-catenin/ZEB1↓,
Zeb1↓,
N-cadherin↓,
F-actin↓, decreased F-actin intensity in bladder cancer cells
GSH↓, Consistently, intracellular glutathione (GSH) levels were significantly reduced in T24 cells at 3 h of PL treatment
EMT↓, PL inhibited epithelial mesenchymal transition
CLDN1↓, The decline of Claudin-1 and ZO-1 upon PL treatment
ZO-1↓,

2973- PL,    The Natural Alkaloid Piperlongumine Inhibits Metastatic Activity and Epithelial-to-Mesenchymal Transition of Triple-Negative Mammary Carcinoma Cells
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, 4T1
MMP2↓, Piperlongumine-treated MDA-MB-231 cells showed reduced motility/invasiveness, decreased MMP2 and MMP9 expression,
MMP9↓,
IL6↓, increased miR-200c expression, reduced IL-6 synthesis, decreased expression of ZEB1 and Slug, increased E-cadherin expression, and epithelial-like morphology.
E-cadherin↑,
ROS↑, ROS accumulated in piperlongumine-treated cells,
EMT↓, Piperlongumine Suppresses EMT
Zeb1↓, EMT-promoting ZEB1 and Slug transcription factors was significantly downregulated
Slug↓,
TumMeta↓, sub-cytotoxic dose of piperlongumine prevented metastasis in a mouse model of TNBC
selectivity↑, capacity to induce apoptosis in cancer cells while sparing normal cells
NA↑, Low dose piperlongumine also suppressed the expression of MMP2 and MMP9,
GSH↓, The resulting depletion of ROS-scavenging GSH would be expected to cause oxidative stress due to the accumulation of intracellular ROS

2948- PL,    The promising potential of piperlongumine as an emerging therapeutics for cancer
- Review, Var, NA
tumCV↓, inhibit different hallmarks of cancer such as cell survival, proliferation, invasion, angiogenesis, epithelial-mesenchymal-transition, metastases,
TumCP↓,
TumCI↓,
angioG↓,
EMT↓,
TumMeta↓,
*hepatoP↑, A study demonstrated the hepatoprotective effects of P. longum via decreasing the rate of lipid peroxidation and increasing glutathione (GSH) levels
*lipid-P↓,
*GSH↑,
cardioP↑, cardioprotective effect
CycB↓, downregulated the mRNA expression of the cell cycle regulatory genes such as cyclin B1, cyclin D1, cyclin-dependent kinases (CDK)-1, CDK4, CDK6, and proliferating cell nuclear antigen (PCNA)
cycD1↓,
CDK2↓,
CDK1↓,
CDK4↓,
CDK6↓,
PCNA↓,
Akt↓, suppression of the Akt/mTOR pathway by PL was also associated with the partial inhibition of glycolysis
mTOR↓,
Glycolysis↓,
NF-kB↓, Suppression of the NF-κB signaling pathway and its related genes by PL was reported in different cancers
IKKα↓, inactivation of the inhibitor of NF-κB kinase subunit beta (IKKβ)
JAK1↓, PL efficiently inhibited cell proliferation, invasion, and migration by blocking the JAK1,2/STAT3 signaling pathway
JAK2↓,
STAT3↓,
ERK↓, PL also negatively regulates ERK1/2 signaling pathways, thereby suppressing the level of c-Fos in CRC cells
cFos↓,
Slug↓, PL was found to downregulate slug and upregulate E-cadherin and inhibited epithelial-mesenchymal transition (EMT) in breast cancer cells
E-cadherin↑,
TOP2↓, ↓topoisomerase II, ↑p53, ↑p21, ↓Bcl-2, ↑Bax, ↑Cyt C, ↑caspase-3, ↑caspase-7, ↑caspase-8
P53↑,
P21↑,
Bcl-2↓,
BAX↑,
Casp3↑,
Casp7↑,
Casp8↑,
p‑HER2/EBBR2↓, ↓p-HER1, ↓p-HER2, ↓p-HER3
HO-1↑, ↑Apoptosis, ↑HO-1, ↑Nrf2
NRF2↑,
BIM↑, ↑BIM, ↑cleaved caspase-9 and caspase-3, ↓p-FOXO3A, ↓p-Akt
p‑FOXO3↓,
NA↓,
Sp1/3/4↓, ↑apoptosis, ↑ROS, ↓Sp1, ↓Sp3, ↓Sp4, ↓cMyc, ↓EGFR, ↓survivin, ↓cMET
cMyc↓,
EGFR↓,
survivin↓,
cMET↓,
NQO1↑, G2/M phase arrest, ↑apoptosis, ↑ROS, ↓p-Akt, ↑Bad, ↓Bcl-2, ↑NQO1, ↑HO-1, ↑SOD2, ↑p21, ↑p-ERK, ↑p-JNK,
SOD2↑,
TrxR↓, G2/M cell cycle arrest, ↑apoptosis, ↑ROS, ↓GSH, ↓TrxR
MDM2↓, ↑ROS, ↓MDM-2, ↓cyclin B1, ↓Cdc2, G2/M phase arrest, ↑p-eIF2α, ↑ATF4, KATO III ↑CHOP, ↑apoptosis
p‑eIF2α↑,
ATF4↑,
CHOP↑,
MDA↑, ↑ROS, ↓TrxR1, ↑cleaved caspase-3, ↑CHOP, ↑MDA
Ki-67↓, ↓Ki-67, ↓MMP-9, ↓Twist,
MMP9↓,
Twist↓,
SOX2↓, ↓SOX2, ↓NANOG, ↓Oct-4, ↑E-cadherin, ↑CK18, ↓N-cadherin, ↓vimentin, ↓snail, ↓slug
Nanog↓,
OCT4↓,
N-cadherin↓,
Vim↓,
Snail↓,
TumW↓, ↓Tumor weight, ↓tumor growth
TumCG↓,
HK2↓, ↓HK2
RB1↓, ↓Rb
IL6↓, ↓IL-6, ↓IL-8,
IL8↓,
SOD1↑, ↑SOD1
RadioS↑, ombination with PL, very low intensity of radiation is found to be effective in cancer cells
ChemoSen↑, PL as a chemosensitizer which sensitized the cancer cells towards the commercially available chemotherapeutics
toxicity↓, PL does not have any adverse effect on the normal functioning of the liver and kidney.
Sp1/3/4↓, In vitro SKBR3 ↓Sp1, ↓Sp3, ↓Sp4
GSH↓, In vitro MCF-7 ↓CDK1, G2/M phase arrest ↓CDK4, ↓CDK6, ↓PCNA, ↓p-CDK1, ↑cyclin B1, ↑ROS, ↓GSH, ↓p-IκBα,
SOD↑, In vitro PANC-1, MIA PaCa-2 ↑ROS, ↑SOD1, ↑GSTP1, ↑HO-1


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 3

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   angioG↓,1,   ATF4↑,1,   BAX↑,1,   Bcl-2↓,1,   BIM↑,1,   cardioP↑,1,   Casp3↑,1,   Casp7↑,1,   Casp8↑,1,   CDK1↓,1,   CDK2↓,1,   CDK4↓,1,   CDK6↓,1,   cFos↓,1,   ChemoSen↑,1,   CHOP↑,1,   CLDN1↓,1,   cMET↓,1,   cMyc↓,1,   CycB↓,1,   cycD1↓,1,   E-cadherin↑,2,   EGFR↓,1,   p‑eIF2α↑,1,   EMT↓,3,   ERK↓,1,   F-actin↓,1,   p‑FOXO3↓,1,   Glycolysis↓,1,   GSH↓,3,   p‑HER2/EBBR2↓,1,   HK2↓,1,   HO-1↑,1,   IKKα↓,1,   IL6↓,2,   IL8↓,1,   JAK1↓,1,   JAK2↓,1,   Ki-67↓,1,   MDA↑,1,   MDM2↓,1,   MMP2↓,1,   MMP9↓,2,   mTOR↓,1,   N-cadherin↓,2,   NA↓,1,   NA↑,1,   Nanog↓,1,   NF-kB↓,1,   NQO1↑,1,   NRF2↑,1,   OCT4↓,1,   P21↑,1,   P53↑,1,   PCNA↓,1,   RadioS↑,1,   RB1↓,1,   ROS↑,2,   selectivity↑,1,   Slug↓,3,   Snail↓,1,   SOD↑,1,   SOD1↑,1,   SOD2↑,1,   SOX2↓,1,   Sp1/3/4↓,2,   STAT3↓,1,   survivin↓,1,   TOP2↓,1,   toxicity↓,1,   TrxR↓,1,   TumCCA↑,1,   TumCG↓,1,   TumCI↓,2,   TumCMig↓,1,   TumCP↓,2,   tumCV↓,1,   TumMeta↓,2,   TumW↓,1,   Twist↓,1,   Vim↓,1,   Zeb1↓,2,   ZO-1↓,1,   β-catenin/ZEB1↓,1,  
Total Targets: 85

Results for Effect on Normal Cells:
GSH↑,1,   hepatoP↑,1,   lipid-P↓,1,  
Total Targets: 3

Scientific Paper Hit Count for: EMT, Epithelial-Mesenchymal Transition
3 Piperlongumine
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:134  Target#:96  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page