condition found tbRes List
PL, Piperlongumine: Click to Expand ⟱
Features:
Piperlongumine (also called Piplartine), an alkaloid from long pepper fruit
-Piperlongumine is a bioactive alkaloid derived from the long pepper (Piper longum)
– Piperlongumine has been shown to selectively increase ROS levels in cancer cells.
-NLRP3 inhibitor?
-TrxR inhibitor (major antioxidant system) to increase ROS in cancer cells
-ic50 cancer cells maybe 2-10uM, normal cells maybe exceeding 20uM.

Available from mcsformulas.com
-(Long Pepper, 500mg/Capsule)- 1 capsule 3 times daily with food
-Piperlongumine Pro Liposomal, 40 mg-take 1 capsule daily with plenty of water, after a meal

-Note half-life 30–60 minutes
BioAv poor aqueous solubility and bioavailability
Pathways:
- induce ROS production in cancer cells likely at any dose. Effect on normal cells is inconclusive.
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP, Prx,
- Lowers some AntiOxidant markers/ defense in Cancer Cells: but mostly raises NRF2 (raises antiO defense), TrxR↓(*important), GSH↓ Catalase↓ HO1↓ GPx↓
- Very little indication of raising AntiOxidant defense in Normal Cells: GSH↑,
- lowers Inflammation : NF-kB↓, COX2↓, conversely p38↑, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMP2↓, MMP9↓, VEGF↓, NF-κB↓, CXCR4↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓(few reports), DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓,
- small indication of inhibiting glycolysis : HIF-1α↓, cMyc↓, LDH↓, HK2↓,
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, β-catenin↓, ERK↓, JNK,
- Synergies: chemo-sensitization, RadioSensitizer, Others(review target notes), Neuroprotective, Cognitive, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


PARP, poly ADP-ribose polymerase (PARP) cleavage: Click to Expand ⟱
Source:
Type:
Poly (ADP-ribose) polymerase (PARP) cleavage is a hallmark of caspase activation. PARP (Poly (ADP-ribose) polymerase) is a family of proteins involved in a variety of cellular processes, including DNA repair, genomic stability, and programmed cell death. PARP enzymes play a crucial role in repairing single-strand breaks in DNA.
PARP has gained significant attention, particularly in the treatment of certain types of tumors, such as those with BRCA1 or BRCA2 mutations. These mutations impair the cell's ability to repair double-strand breaks in DNA through homologous recombination. Cancer cells with these mutations can become reliant on PARP for survival, making them particularly sensitive to PARP inhibitors.
PARP inhibitors, such as olaparib, rucaparib, and niraparib, have been developed as targeted therapies for cancers associated with BRCA mutations.

PARP Family:
The poly (ADP-ribose) polymerases (PARPs) are a family of enzymes involved in a number of cellular processes, including DNA repair, genomic stability, and programmed cell death.
PARP1 is the predominant family member responsible for detecting DNA strand breaks and initiating repair processes, especially through base excision repair (BER).

PARP1 Overexpression:
In several cancer types—including breast, ovarian, prostate, and lung cancers—elevated PARP1 expression and/or activity has been reported.
High PARP1 expression in certain cancers has been associated with aggressive tumor behavior and resistance to therapies (especially those that induce DNA damage).
Increased PARP1 activity may correlate with poorer overall survival in tumors that rely on DNA repair for survival.


Scientific Papers found: Click to Expand⟱
2955- PL,    Heme Oxygenase-1 Determines the Differential Response of Breast Cancer and Normal Cells to Piperlongumine
- in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10
ROS?, Piperlongumine, a natural alkaloid isolated from the long pepper, selectively increases reactive oxygen species production and apoptotic cell death in cancer cells but not in normal cells.
*ROS∅,
other⇅, opposing effect of piperlongumine appears to be mediated by heme oxygenase-1 (HO-1)
HO-1↑, Piperlongumine upregulated HO-1 expression through the activation of nuclear factor-erythroid-2-related factor-2 (Nrf2) signaling in both MCF-7 and MCF-10A cells.
*HO-1↑,
NRF2↑, piperlongumine-induced Nrf2 activation, HO-1 expression and cancer cell apoptosis are not dependent on the generation of reactive oxygen species.
Keap1↓, appears to inactivate Kelch-like ECH-associated protein-1 (Keap1)
cl‑PARP↑, Following piperlongumine treatment, cleaved PARP levels increased in time- (Fig. 1D) and dose-dependent
selectivity↑, These data clearly show that piperlongumine has a cancer cell-selective killing effect
GSH↓, piperlongumine can selectively decrease the level of reduced GSH and increase the level of oxidized GSSG, leading to ROS accumulation and subsequent apoptosis in cancer cells
GSSG↑, we observed piperlongumine-mediated depletion of GSH, a reduction in the GSH/GSSG ratio and accumulation of intracellular ROS in MCF-7 cells but not in MCF-10A cells

2956- PL,    Piperlongumine rapidly induces the death of human pancreatic cancer cells mainly through the induction of ferroptosis
- in-vitro, PC, NA
ROS↑, Piperlongumine (PL) is a natural product with cytotoxic properties restricted to cancer cells by significantly increasing intracellular reactive oxygen species (ROS) levels.
Ferroptosis↓, at least in part, the induction of ferroptosis,. requires the accumulation of ROS in an iron-dependent manner
GSH↓, Since we actually found that PL markedly depleted GSH (Fig. 1H), these results suggest that PL may inhibit GPX activity.
GPx↓,
cl‑PARP∅, PL did not induce the expression of typical apoptotic markers, such as cleaved PARP and cleaved caspase-3
cl‑Casp3∅,
eff↑, PL (15 uM) plus CN-A resulted in a further increase in the population of ROS-positive cells
eff↑, SSZ enhances the PL-induced ferroptotic death of pancreatic cancer cells.

1941- PL,    Piperlongumine selectively kills cancer cells and increases cisplatin antitumor activity in head and neck cancer
- in-vitro, HNSCC, NA
selectivity↑, Piperlongumine killed HNC cells regardless of p53 mutational status but spared normal cells.
eff↑, Piperlongumine increased cisplatin-induced cytotoxicity in HNC cells in a synergistic manner in vitro and in vivo.
ROS↑, Piperlongumine selectively increases ROS accumulation in HNC cells
toxicity↑, PL markedly induced death in cancer cells, while the viability of normal cells was affected only minimally at the highest concentration (15 μM) tested
GSH↓, PL decreased GSH levels and increased GSSG levels in HNC cells (Figure 2 and Supplementary Figure S1); however, PL did not increase GSSG levels in normal HOK-1 cells
GSSG↑,
*GSSG∅, however, PL did not increase GSSG levels in normal HOK-1 cells
cl‑PARP↑, PL increased the levels of PARP and PUMA proteins regardless of p53 status
PUMA↑,
GSTP1/GSTπ↓, PL regulates ROS by targeting GSTP1, a direct negative regulator of JNK [22, 23], and thereby increases JNK phosphorylation
ChemoSen↑, Piperlongumine increases the cytotoxicity of cisplatin in HNC cells in vitro and in vivo

1947- PL,    Piperlongumine as a direct TrxR1 inhibitor with suppressive activity against gastric cancer
- in-vitro, GC, SGC-7901 - in-vitro, GC, NA
TrxR1↓, In vivo, PL treatment markedly reduces the TrxR1 activity and tumor cell burden
ROS↑, PL may interact with the thioredoxin reductase 1 (TrxR1), an important selenocysteine (Sec)-containing antioxidant enzyme, to induce reactive oxygen species (ROS)-mediated apoptosis in human gastric cancer cells
ER Stress↑, PL induces a lethal endoplasmic reticulum stress and mitochondrial dysfunction in human gastric cancer cells
mtDam↑,
selectivity↑, known to selectively kill tumor cells while sparing their normal counterparts. PL treatment did not cause a significant increase in ROS levels in normal GES-1 cells
NO↑, we found that nitric oxide was also induced by PL in gastric cancer cells
TumCCA↑, PL treatment significantly induced G2/M cell cycle arrest in human gastric cancer SGC-7901, BGC-823 and KATO III cells.
mt-ROS↑, mitochondrial ROS, were involved in the PL-induced cell death in gastric cancer cells.
Casp9↑, Notably, caspase-9 activity was significantly elevated after PL treatment in SGC-7901 cells
Bcl-2↓, PL treatment dose-dependently decreased the expression of antiapoptotic proteins Bcl-2 and Bcl-xL, but induced the cleavage of poly (ADP-ribose) polymerase (PARP)
Bcl-xL↓,
cl‑PARP↑,
eff↓, Pre-incubation with GSH attenuated these effects confirming their linkage to PL-induced oxidative stress
lipid-P↑, PL dose-dependently increased the level of lipid peroxidation product (MDA), a marker of ROS, in tumor tissues

2944- PL,    Piperlongumine, a Potent Anticancer Phytotherapeutic, Induces Cell Cycle Arrest and Apoptosis In Vitro and In Vivo through the ROS/Akt Pathway in Human Thyroid Cancer Cells
- in-vitro, Thyroid, IHH4 - in-vitro, Thyroid, 8505C - in-vivo, NA, NA
ROS↑, it is selectively toxic to cancer cells by generating reactive oxygen species (ROS)
selectivity↑,
tumCV↓, Cell viability, colony formation, cell cycle, apoptosis, and cellular ROS induction.
TumCCA↑,
Apoptosis↑,
ERK↑, activation of Erk and the suppression of the Akt/mTOR pathways through ROS induction were seen in cells treated with PL
Akt↓,
mTOR↓,
neuroP↑, neuroprotective, and anticancer properties
Bcl-2↓, induces the downregulation of Bcl2 expression and the activation of caspase-3, poly (ADP-ribose) polymerase (PARP), and JNK
Casp3↑,
PARP↑,
JNK↑,
*toxicity↓, several whole-animal models, and it is highly safe when used in vivo
eff↓, Pre-treatment with N-acetylcysteine (NAC; a selective ROS scavenger) significantly reduced PL-mediated ROS activation
TumW↓, tumor weight in the PL (10 mg/kg) treatment group significantly decreased when compared with that in the control group

2946- PL,    Piperlongumine, a potent anticancer phytotherapeutic: Perspectives on contemporary status and future possibilities as an anticancer agent
- Review, Var, NA
ROS↑, piperlongumine inhibits cancer growth by resulting in the accumulation of intracellular reactive oxygen species, decreasing glutathione and chromosomal damage, or modulating key regulatory proteins, including PI3K, AKT, mTOR, NF-kβ, STATs, and cycD
GSH↓, reduced glutathione (GSH) levels in mouse colon cancer cells
DNAdam↑,
ChemoSen↑, combined treatment with piperlongumine potentiates the anticancer activity of conventional chemotherapeutics and overcomes resistance to chemo- and radio- therapy
RadioS↑, piperlongumine treatment enhances ROS production via decreasing GSH levels and causing thioredoxin reductase inhibition
BioEnh↑, Moreover, the bioavailability is significantly improved after oral administration of piperlongumine
selectivity↑, It shows selectivity toward human cancer cells over normal cells and has minimal side effects
BioAv↓, ts low aqueous solubility affects its anti-cancer activity by limiting its bioavailability during oral administration
eff↑, encapsulation of piperlongumine in another biocompatible natural polymer, chitosan, has been found to result in pH-dependent piperlongumine release and to enhance cytotoxicity via efficient intracellular ROS accumulation against human gastric carcin
p‑Akt↓, Fig 2
mTOR↓,
GSK‐3β↓,
β-catenin/ZEB1↓,
HK2↓, iperlongumine treatment decreases cell proliferation, single-cell colony-formation ability, and HK2-mediated glycolysis in NSCLC cells via inhibiting the interaction between HK2 and voltage-dependent anion channel 1 (VDAC1)
Glycolysis↓,
Cyt‑c↑,
Casp9↑,
Casp3↑,
Casp7↑,
cl‑PARP↑,
TrxR↓, piperlongumine (4 or 12 mg/kg/day for 15 days) administration significantly inhibits increase in tumor weight and volume with less TrxR1 activity in SGC-7901 cell
ER Stress↑,
ATF4↝,
CHOP↑, activating the downstream ER-MAPK-C/EBP homologous protein (CHOP) signaling pathway
Prx4↑, piperlongumine kills high-grade glioma cells via oxidative inactivation of PRDX4 mediated ROS induction, thereby inducing intracellular ER stress
NF-kB↓, piperlongumine treatment (2.5–5 mg/ kg body weight) decreases the growth of lung tumors via inhibition of NF-κB
cycD1↓, decreases expression of cyclin D1, cyclin- dependent kinase (CDK)-4, CDK-6, p- retinoblastoma (p-Rb)
CDK4↓,
CDK6↓,
p‑RB1↓,
RAS↓, piperlongumine downregulates the expression of Ras protein
cMyc↓, inhibiting the activity of other related proteins, such as Akt/NF-κB, c-Myc, and cyclin D1 in DMH + DSS induced colon tumor cells
TumCCA↑, by arresting colon tumor cells in the G2/M phase of the cell cycle
selectivity↑, hows more selective cytotoxicity against human breast cancer MCF-7 cells than human breast epithelial MCF-10A cells
STAT3↓, thus inducing inhibition of the STAT3 signaling pathway in multiple myeloma cells
NRF2↑, Nrf2) activation has been found to mediate the upregulation of heme oxygenase-1 (HO-1) in piperlongumine treated MCF-7 and MCF-10A cells
HO-1↑,
PTEN↑, stimulates ROS accumulation; p53, p27, and PTEN overexpression
P-gp↓, P-gp, MDR1, MRP1, survivin, p-Akt, NF-κB, and Twist downregulation;
MDR1↓,
MRP1↓,
survivin↓,
Twist↓,
AP-1↓, iperlongumine significantly suppresses the expression of transcription factors, such as AP-1, MYC, NF-κB, SP1, STAT1, STAT3, STAT6, and YY1.
Sp1/3/4↓,
STAT1↓,
STAT6↓,
SOX4↑, increased expression of p21, SOX4, and XBP in B-ALL cells
XBP-1↑,
P21↑,
eff↑, combined use of piperlongumine with cisplatin enhances the sensitivity toward cisplatin by inhibiting Akt phosphorylation
Inflam↓, inflammation (COX-2, IL6); invasion and metastasis, such as ICAM-1, MMP-9, CXCR-4, VEGF;
COX2↓,
IL6↓,
MMP9↓,
TumMeta↓,
TumCI↓,
ICAM-1↓,
CXCR4↓,
VEGF↓,
angioG↓,
Half-Life↝, The analysis of the plasma of piperlongumine treated mice (50 mg/kg) after intraperitoneal administration, 1511.9 ng/ml, 418.2 ng/ml, and 41.9 ng/ml concentrations ofplasma piperlongumine were found at 30 minutes, 3 hours, and 24 hours, respecti
BioAv↑, Moreover, the bioavailability is significantly improved after oral administration of piperlongumine


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 6

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   p‑Akt↓,1,   angioG↓,1,   AP-1↓,1,   Apoptosis↑,1,   ATF4↝,1,   Bcl-2↓,2,   Bcl-xL↓,1,   BioAv↓,1,   BioAv↑,1,   BioEnh↑,1,   Casp3↑,2,   cl‑Casp3∅,1,   Casp7↑,1,   Casp9↑,2,   CDK4↓,1,   CDK6↓,1,   ChemoSen↑,2,   CHOP↑,1,   cMyc↓,1,   COX2↓,1,   CXCR4↓,1,   cycD1↓,1,   Cyt‑c↑,1,   DNAdam↑,1,   eff↓,2,   eff↑,5,   ER Stress↑,2,   ERK↑,1,   Ferroptosis↓,1,   Glycolysis↓,1,   GPx↓,1,   GSH↓,4,   GSK‐3β↓,1,   GSSG↑,2,   GSTP1/GSTπ↓,1,   Half-Life↝,1,   HK2↓,1,   HO-1↑,2,   ICAM-1↓,1,   IL6↓,1,   Inflam↓,1,   JNK↑,1,   Keap1↓,1,   lipid-P↑,1,   MDR1↓,1,   MMP9↓,1,   MRP1↓,1,   mtDam↑,1,   mTOR↓,2,   neuroP↑,1,   NF-kB↓,1,   NO↑,1,   NRF2↑,2,   other⇅,1,   P-gp↓,1,   P21↑,1,   PARP↑,1,   cl‑PARP↑,4,   cl‑PARP∅,1,   Prx4↑,1,   PTEN↑,1,   PUMA↑,1,   RadioS↑,1,   RAS↓,1,   p‑RB1↓,1,   ROS?,1,   ROS↑,5,   mt-ROS↑,1,   selectivity↑,6,   SOX4↑,1,   Sp1/3/4↓,1,   STAT1↓,1,   STAT3↓,1,   STAT6↓,1,   survivin↓,1,   toxicity↑,1,   TrxR↓,1,   TrxR1↓,1,   TumCCA↑,3,   TumCI↓,1,   tumCV↓,1,   TumMeta↓,1,   TumW↓,1,   Twist↓,1,   VEGF↓,1,   XBP-1↑,1,   β-catenin/ZEB1↓,1,  
Total Targets: 88

Results for Effect on Normal Cells:
GSSG∅,1,   HO-1↑,1,   ROS∅,1,   toxicity↓,1,  
Total Targets: 4

Scientific Paper Hit Count for: PARP, poly ADP-ribose polymerase (PARP) cleavage
6 Piperlongumine
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:134  Target#:239  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page