Database Query Results : Selenium, , chemoP

Se, Selenium: Click to Expand ⟱
Features: micronutrient
Naturally occurring element. Selenium is incorporated into selenoproteins, such as glutathione peroxidases (GPxs) and thioredoxin reductases (TrxRs), which play critical roles in protecting cells from oxidative damage.
Involved in GPx, TrxR, ans Selenoprotien P which protect normal cells from oxidative stress.
Important in Thyroid hormone metabolism, immune system regulation, reproductive health, and Brain and heart protection.

-recommended daily allowance (RDA) for selenium is about 55 µg/day for adults. (upper tolerance 400ug/day)
-One Brazil nut may contain 50-300ug/nut

Sodium selenite (Na₂SeO₃) is a selenium compound with well-documented anticancer and chemopreventive properties
-Oxidation state: +4 (selenite form of selenium)
-Type: Inorganic selenium compound (water-soluble)

-Sodium selenite generates reactive oxygen species (ROS) selectively in tumor cells.
-Induces cytochrome c release, caspase-3 activation, and DNA fragmentation.
-Reduces VEGF expression and endothelial cell migration.
-Blocks cell division at G2/M phase
-Suppresses MMP-2 and MMP-9 activity
-Activates p53
-Inhibits NF-κB
-PI3K/Akt/mTOR Suppression
-Inactivation of Thioredoxin/Glutathione systems

Narrow therapeutic window:
-Low micromolar (≤5 µM) → anticancer
-High (>10 µM) → toxic to normal cells

Some Selenium Supplements use Sodium Selenite as the active ingredient.
- NOW Foods Selenium, Nature's Bounty Selenium, etc

Other common form is Selenomethionine, as it is better absorbed (found in brazil nuts), but might be less effective?

Sodium selenite might protect against toxicity of AgNPs.

In the chemical synthesis of selenium nanoparticles, a precursor such as sodium selenite (Na₂SeO₃) is dissolved in water to form a homogenous solution. A reducing agent, like ascorbic acid or sodium borohydride (NaBH₄), is then added to the solution. The reducing agent donates electrons to the selenium ions (SeO32−SeO32), reducing them to elemental selenium (Se0Se^0). This reduction process leads to the nucleation of selenium atoms, which subsequently grow into nanoparticles through controlled aggregation.

Se NPs might be hepatoprotective.

Selenium nanoparticles (SeNPs) are a biocompatible, less-toxic, 
and more controllable form of selenium compared to inorganic salts (like sodium selenite).
Major SeNPs hepatoprotective mechanisms
Mechanism	              Description	                       Key markers affected
1. Antioxidant activity	      SeNPs boost antioxidant enzyme          ↓ ROS, ↓ MDA, ↑ GSH, ↑ GPx
                              systems (GPx, SOD, CAT) and scavenge 
                              ROS directly.	
2. Anti-inflammatory effect   Downregulate NF-κB, TNF-α,              ↓ TNF-α, ↓ IL-1β, ↓ IL-6
                              IL-6, and COX-2 pathways.	
3. Anti-apoptotic action      Balance between Bcl-2/Bax and reduce    ↑ Bcl-2, ↓ Bax, ↓ Caspase-3
                              caspase-3 activation in hepatocytes.	
4. Metal/toxin chelation      SeNPs can bind or transform toxic       ↓ liver metal accumulation
                              metals (Cd²⁺, Hg²⁺, As³⁺) 
                              into less harmful complexes.	
5. Mitochondrial protection   Maintain membrane potential,            Preserved ΔΨm, ↑ ATP
                              prevent mitochondrial ROS burst, 
                              and ATP loss.	
6. Regeneration support	      Stimulate hepatocyte proliferation      ↑ PCNA, improved histology
                              and repair via redox signaling 
                              and selenoproteins.

Comparison: SeNPs vs. Sodium Selenite
Property	             SeNPs	                   Sodium Selenite
Toxicity	             Low	                   Moderate–high
Bioavailability	             Controlled, often slow-       Rapid, less controllable
                             release	
ROS balance	             Adaptive, mild antioxidant	   Can flip to pro-oxidant easily
Safety margin	             Wide	                   Narrow
Hepatoprotection	     Strong, sustained	           Protective at low dose, 
                                                           toxic at high dose


"30 mg of Na2SeO3.5H2O was added to 90 mL of Milli-Q water. Ascorbic acid (10 mL, 56.7 mM) was added dropwise to sodium selenite solution with vigorous stirring. 10 µL of polysorbate were added after each 2 ml of ascorbic acid. Selenium nanoparticles were formed after the addition of ascorbic acid. This can be visualized by a color change of the reactant solution from clear white to clear red. All solutions were made in a sterile environment by using a sterile cabinet and double distilled water."


chemoP, ChemoProtective: Click to Expand ⟱
Source:
Type:
Protects normal cells against the effect of Chemo.


Scientific Papers found: Click to Expand⟱
4457- Se,    Selenium nanoparticles: a review on synthesis and biomedical applications
- Review, Var, NA - NA, Diabetic, NA
*BioAv↑, Recently, selenium nanoparticles (SeNPs) attracted the interest of many researchers due to their biocompatibility, bioavailability, and low toxicity.
*toxicity↓,
*eff↑, synthesized SeNPs demonstrate greater compatibility with human organs and tissues
chemoP↑, They can also act as chemopreventive agents, anti-inflammatory agents, and antioxidants.
*Inflam↓,
antiOx↑,
*selenoP↑, Selenium, a part of selenoproteins and selenocompounds within the human body, plays a critical role in reproduction, DNA synthesis, thyroid hormone, metabolism, and protection from infections and oxidative damage.
*ROS↓, also figure 6
*Dose↝, The United Kingdom group of vitamins and minerals recommended the daily intake of selenium by women and men should be 60 μg and 70 μg, respectively.3 A daily intake of more than 400 μg could be toxic
AntiCan↑, Several studies have supported their anticancer,22 antioxidant,21 antimicrobial,23–25 and anti-biofilm properties
*Bacteria↓,
eff↑, Tran et al.65 reduced sodium selenite by ascorbic acid using polyvinyl alcohol (PVA) as the stabilising agent, resulting in an average particle size of 70 nm . The absorption was observed in the wavelength range 250 to 450 nm
DNAdam↑, figure 6
selectivity↑, figure 6
*eff↑, At a concentration of 2.0 mg kg−1 body weight, chitosan stabilized SeNPs resulted in improved antidiabetic activity.

4485- Se,    Selenium stimulates the antitumour immunity: Insights to future research
- Review, NA, NA
*antiOx↑, At nutritional low doses, selenium, depending on its form, may act as an antioxidant, protecting against oxidative stress, supporting cell survival and growth, thus, plays a chemo-preventive role
chemoP↑,
ROS↑, at supra-nutritional higher pharmacological doses, selenium acts as pro-oxidant inducing redox signalling and cell death
Imm↑, selenium stimulates the immune system against cancer
selenoP↑, anti-oxidant through selenoproteins
*IL2↑, consumption of Se-enriched foods (200 μg per serving for 3 days) increases the levels of interleukin IL-2, IL-4, IL-5, IL-13 and IL-22, indicating an activated Th2-type response
*IL4↑,
*TNF-α↓, taking selenised yeast (300 μg.day−1) downregulates the gene expression of tumour necrosis factor (TNF)α and transforming growth factor (TGF)β; thus, consequently inhibit the epithelial-to-mesenchymal transition (EMT) in non-malignant prostate tissue
*TGF-β↓,
*EMT↓,
Risk↓, immune-enhancing effects of Se may reduce the risk of cancer
*GPx↑, chemo-preventive effects of Se are mainly mediated by the anti-oxidant function of selenoenzymes such as GPxs and TXNRDs [68] because Se supplementation increases both GPx1 and GPx4 activity in humans
*TrxR↑,

1688- Se,    Potential Role of Selenium in the Treatment of Cancer and Viral Infections
- Review, Var, NA
IL2↑, in mice promoted T cell receptor signaling that pushed T cell differentiation toward a Th1 phenotype by increasing interleukin -2 (IL-2) and interferon gamma (INF-γ) production
INF-γ↑,
Th1 response↑, 18 human subjects treated with 200 μg selenium-enriched broccoli daily for three days showed that selenium supplementation resulted in substantially higher levels of both Th1 and Th2 cytokines secreted by peripheral blood mononuclear cells
Th2↑,
Dose↑, Wang et al. on hens supplemented selenium (5 mg/kg, 10 mg/kg, and 15 mg/kg) orally for three time periods (15, 30, and 45 days) found that excessive selenium intake leads to a substantial reduction in the amount of IFN-γ and IL-2 cytokines
AntiCan∅, after 5.5 years, the results of this study revealed no relationship between selenium supplementation and prostate cancer risk reduction in men with low selenium levels
Risk↑, instead, they discovered that taking selenium supplements raised the high-grade prostate cancer risk in men who had high selenium levels
chemoP↑, selenium provided protection of normal tissues from drug-induced toxicity
Hif1a↓, Selenium down-regulates HIFs,
VEGF↓, leading to the subsequent down-regulation in expression of several genes including those involved in angiogenesis such as vascular endothelial growth factor (VEGF)
selectivity↑, Selenium also helps with DNA repair in response to DNA-damaging agents, which improves the effectiveness of chemotherapeutic agents by protecting normal cells from their toxicity.
*GADD45A↑, selenium protected WT-MEF from DNA damage in a p53-dependent manner by increasing the expression of p53-dependent DNA repair proteins such as XPC, XPE, and Gadd45a. Thus, cells lacking p53, such as tumor cells, did not receive the same protection
NRF2↓, a defined dose and schedule of selenium down-regulates and up-regulates Nrf2 in tumor tissue and normal tissue, respectively
*NRF2↑, a defined dose and schedule of selenium up-regulates Nrf2 in normal tissue
ChemoSen↑, These differential effects were associated with selective sensitization of tumor tissues to subsequent treatment with chemotherapy. Overactivation of Nrf2 increases the expression of MRPs, consequently decreasing the effectiveness of chemotherapy .
angioG↓, The inhibition of hypoxia-induced activation of HIF-1α and VEGF by knocking down Nrf2 suppresses angiogenesis, demonstrating a crosstalk mechanism between Nrf2 and HIF-1α in angiogenesis
PrxI↓, Selenium was shown to reduce drug detoxification and increase cytotoxic effects of anti-cancer drugs in tumor cells through suppression of the Nrf2/Prx1 pathway,
ChemoSideEff↓, showed that selenium supplementation attenuated the cardiotoxic effects of doxorubicin by decreasing oxidative stress and inflammation through Nrf2 pathway activation
eff↑, combination of niacin and selenium reduced the reactive oxygen species generated by sepsis and diminished the resultant lung injury by upregulating Nrf2 signaling


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 3

Results for Effect on Cancer/Diseased Cells:
angioG↓,1,   AntiCan↑,1,   AntiCan∅,1,   antiOx↑,1,   chemoP↑,3,   ChemoSen↑,1,   ChemoSideEff↓,1,   DNAdam↑,1,   Dose↑,1,   eff↑,2,   Hif1a↓,1,   IL2↑,1,   Imm↑,1,   INF-γ↑,1,   NRF2↓,1,   PrxI↓,1,   Risk↓,1,   Risk↑,1,   ROS↑,1,   selectivity↑,2,   selenoP↑,1,   Th1 response↑,1,   Th2↑,1,   VEGF↓,1,  
Total Targets: 24

Results for Effect on Normal Cells:
antiOx↑,1,   Bacteria↓,1,   BioAv↑,1,   Dose↝,1,   eff↑,2,   EMT↓,1,   GADD45A↑,1,   GPx↑,1,   IL2↑,1,   IL4↑,1,   Inflam↓,1,   NRF2↑,1,   ROS↓,1,   selenoP↑,1,   TGF-β↓,1,   TNF-α↓,1,   toxicity↓,1,   TrxR↑,1,  
Total Targets: 18

Scientific Paper Hit Count for: chemoP, ChemoProtective
3 Selenium
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:149  Target#:1171  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page