| Features: micronutrient |
| Naturally occurring element. Selenium is incorporated into selenoproteins, such as glutathione peroxidases (GPxs) and thioredoxin reductases (TrxRs), which play critical roles in protecting cells from oxidative damage. Involved in GPx, TrxR, ans Selenoprotien P which protect normal cells from oxidative stress. Important in Thyroid hormone metabolism, immune system regulation, reproductive health, and Brain and heart protection. -recommended daily allowance (RDA) for selenium is about 55 µg/day for adults. (upper tolerance 400ug/day) -One Brazil nut may contain 50-300ug/nut Sodium selenite (Na₂SeO₃) is a selenium compound with well-documented anticancer and chemopreventive properties -Oxidation state: +4 (selenite form of selenium) -Type: Inorganic selenium compound (water-soluble) -Sodium selenite generates reactive oxygen species (ROS) selectively in tumor cells. -Induces cytochrome c release, caspase-3 activation, and DNA fragmentation. -Reduces VEGF expression and endothelial cell migration. -Blocks cell division at G2/M phase -Suppresses MMP-2 and MMP-9 activity -Activates p53 -Inhibits NF-κB -PI3K/Akt/mTOR Suppression -Inactivation of Thioredoxin/Glutathione systems -NRF2 inhibition in cancer cell might be connected with O2 level Narrow therapeutic window: -Low micromolar (≤5 µM) → anticancer -High (>10 µM) → toxic to normal cells Some Selenium Supplements use Sodium Selenite as the active ingredient. - NOW Foods Selenium, Nature's Bounty Selenium, etc Other common form is Selenomethionine, as it is better absorbed (found in brazil nuts), but might be less effective? Sodium selenite might protect against toxicity of AgNPs. also here In the chemical synthesis of selenium nanoparticles, a precursor such as sodium selenite (Na₂SeO₃) is dissolved in water to form a homogenous solution. A reducing agent, like ascorbic acid or sodium borohydride (NaBH₄), is then added to the solution. The reducing agent donates electrons to the selenium ions (SeO32−SeO32), reducing them to elemental selenium (Se0Se^0). This reduction process leads to the nucleation of selenium atoms, which subsequently grow into nanoparticles through controlled aggregation. Se NPs might be hepatoprotective. (chemoprotective) (radioprotective) (radiosensitizer) Selenium nanoparticles (SeNPs) are a biocompatible, less-toxic, and more controllable form of selenium compared to inorganic salts (like sodium selenite). Major SeNPs hepatoprotective mechanisms Mechanism Description Key markers affected 1. Antioxidant activity SeNPs boost antioxidant enzyme ↓ ROS, ↓ MDA, ↑ GSH, ↑ GPx systems (GPx, SOD, CAT) and scavenge ROS directly. 2. Anti-inflammatory effect Downregulate NF-κB, TNF-α, ↓ TNF-α, ↓ IL-1β, ↓ IL-6 IL-6, and COX-2 pathways. 3. Anti-apoptotic action Balance between Bcl-2/Bax and reduce ↑ Bcl-2, ↓ Bax, ↓ Caspase-3 caspase-3 activation in hepatocytes. 4. Metal/toxin chelation SeNPs can bind or transform toxic ↓ liver metal accumulation metals (Cd²⁺, Hg²⁺, As³⁺) into less harmful complexes. 5. Mitochondrial protection Maintain membrane potential, Preserved ΔΨm, ↑ ATP prevent mitochondrial ROS burst, and ATP loss. 6. Regeneration support Stimulate hepatocyte proliferation ↑ PCNA, improved histology and repair via redox signaling and selenoproteins. Comparison: SeNPs vs. Sodium Selenite Property SeNPs Sodium Selenite Toxicity Low Moderate–high Bioavailability Controlled, often slow- Rapid, less controllable release ROS balance Adaptive, mild antioxidant Can flip to pro-oxidant easily Safety margin Wide Narrow Hepatoprotection Strong, sustained Protective at low dose, toxic at high doseForm of SeNPs matter: 1. Core composition / capping agent: SeNPs can be stabilized with polysaccharides, proteins, or small molecules. Some stabilizers may interact with cellular redox systems differently—e.g., a protein-capped SeNP may have slower release and less ROS generation, whereas a bare SeNP might induce stronger ROS in cancer cells. 2. Particle size: Smaller SeNPs (<50 nm) tend to generate more ROS and may enhance anticancer activity, but could theoretically interfere with ROS-dependent chemo if administered simultaneously. Larger SeNPs are slower-acting and may be safer alongside chemo. 3. Surface charge / coating: Positively charged or functionalized SeNPs can preferentially enter tumor cells, whereas neutral or negatively charged forms may distribute more evenly. This affects both selective cytotoxicity and interaction with normal cells. "30 mg of Na2SeO3.5H2O was added to 90 mL of Milli-Q water. Ascorbic acid (10 mL, 56.7 mM) was added dropwise to sodium selenite solution with vigorous stirring. 10 µL of polysorbate were added after each 2 ml of ascorbic acid. Selenium nanoparticles were formed after the addition of ascorbic acid. This can be visualized by a color change of the reactant solution from clear white to clear red. All solutions were made in a sterile environment by using a sterile cabinet and double distilled water." |
| Source: HalifaxProj (inhibit) |
| Type: |
| Reactive oxygen species (ROS) are highly reactive molecules that contain oxygen and can lead to oxidative stress in cells. They play a dual role in cancer biology, acting as both promoters and suppressors of cancer. ROS can cause oxidative damage to DNA, leading to mutations that may contribute to cancer initiation and progression. So normally you want to inhibit ROS to prevent cell mutations. However excessive ROS can induce apoptosis (programmed cell death) in cancer cells, potentially limiting tumor growth. Chemotherapy typically raises ROS. -mitochondria is the main source of reactive oxygen species (ROS) (and the ETC is heavily related) "Reactive oxygen species (ROS) are two electron reduction products of oxygen, including superoxide anion, hydrogen peroxide, hydroxyl radical, lipid peroxides, protein peroxides and peroxides formed in nucleic acids 1. They are maintained in a dynamic balance by a series of reduction-oxidation (redox) reactions in biological systems and act as signaling molecules to drive cellular regulatory pathways." "During different stages of cancer formation, abnormal ROS levels play paradoxical roles in cell growth and death 8. A physiological concentration of ROS that maintained in equilibrium is necessary for normal cell survival. Ectopic ROS accumulation promotes cell proliferation and consequently induces malignant transformation of normal cells by initiating pathological conversion of physiological signaling networks. Excessive ROS levels lead to cell death by damaging cellular components, including proteins, lipid bilayers, and chromosomes. Therefore, both scavenging abnormally elevated ROS to prevent early neoplasia and facilitating ROS production to specifically kill cancer cells are promising anticancer therapeutic strategies, in spite of their contradictoriness and complexity." "ROS are the collection of derivatives of molecular oxygen that occur in biology, which can be categorized into two types, free radicals and non-radical species. The non-radical species are hydrogen peroxide (H 2O 2 ), organic hydroperoxides (ROOH), singlet molecular oxygen ( 1 O 2 ), electronically excited carbonyl, ozone (O3 ), hypochlorous acid (HOCl, and hypobromous acid HOBr). Free radical species are super-oxide anion radical (O 2•−), hydroxyl radical (•OH), peroxyl radical (ROO•) and alkoxyl radical (RO•) [130]. Any imbalance of ROS can lead to adverse effects. H2 O 2 and O 2 •− are the main redox signalling agents. The cellular concentration of H2 O 2 is about 10−8 M, which is almost a thousand times more than that of O2 •−". "Radicals are molecules with an odd number of electrons in the outer shell [393,394]. A pair of radicals can be formed by breaking a chemical bond or electron transfer between two molecules." Recent investigations have documented that polyphenols with good antioxidant activity may exhibit pro-oxidant activity in the presence of copper ions, which can induce apoptosis in various cancer cell lines but not in normal cells. "We have shown that such cell growth inhibition by polyphenols in cancer cells is reversed by copper-specific sequestering agent neocuproine to a significant extent whereas iron and zinc chelators are relatively ineffective, thus confirming the role of endogenous copper in the cytotoxic action of polyphenols against cancer cells. Therefore, this mechanism of mobilization of endogenous copper." > Ions could be one of the important mechanisms for the cytotoxic action of plant polyphenols against cancer cells and is possibly a common mechanism for all plant polyphenols. In fact, similar results obtained with four different polyphenolic compounds in this study, namely apigenin, luteolin, EGCG, and resveratrol, strengthen this idea. Interestingly, the normal breast epithelial MCF10A cells have earlier been shown to possess no detectable copper as opposed to breast cancer cells [24], which may explain their resistance to polyphenols apigenin- and luteolin-induced growth inhibition as observed here (Fig. 1). We have earlier proposed [25] that this preferential cytotoxicity of plant polyphenols toward cancer cells is explained by the observation made several years earlier, which showed that copper levels in cancer cells are significantly elevated in various malignancies. Thus, because of higher intracellular copper levels in cancer cells, it may be predicted that the cytotoxic concentrations of polyphenols required would be lower in these cells as compared to normal cells." Majority of ROS are produced as a by-product of oxidative phosphorylation, high levels of ROS are detected in almost all cancers. -It is well established that during ER stress, cytosolic calcium released from the ER is taken up by the mitochondrion to stimulate ROS overgeneration and the release of cytochrome c, both of which lead to apoptosis. Note: Products that may raise ROS can be found using this database, by: Filtering on the target of ROS, and selecting the Effect Direction of ↑ Targets to raise ROS (to kill cancer cells): • NADPH oxidases (NOX): NOX enzymes are involved in the production of ROS. -Targeting NOX enzymes can increase ROS levels and induce cancer cell death. -eNOX2 inhibition leads to a high NADH/NAD⁺ ratio which can lead to increased ROS • Mitochondrial complex I: Inhibiting can increase ROS production • P53: Activating p53 can increase ROS levels(by inducing the expression of pro-oxidant genes) • Nrf2 inhibition: regulates the expression of antioxidant genes. Inhibiting Nrf2 can increase ROS levels • Glutathione (GSH): an antioxidant. Depleting GSH can increase ROS levels • Catalase: Catalase converts H2O2 into H2O+O. Inhibiting catalase can increase ROS levels • SOD1: converts superoxide into hydrogen peroxide. Inhibiting SOD1 can increase ROS levels • PI3K/AKT pathway: regulates cell survival and metabolism. Inhibiting can increase ROS levels • HIF-1α inhibition: regulates genes involved in metabolism and angiogenesis. Inhibiting HIF-1α can increase ROS • Glycolysis: Inhibiting glycolysis can increase ROS levels • Fatty acid oxidation: Cancer cells often rely on fatty acid oxidation for energy production. -Inhibiting fatty acid oxidation can increase ROS levels • ER stress: Endoplasmic reticulum (ER) stress can increase ROS levels • Autophagy: process by which cells recycle damaged organelles and proteins. -Inhibiting autophagy can increase ROS levels and induce cancer cell death. • KEAP1/Nrf2 pathway: regulates the expression of antioxidant genes. -Inhibiting KEAP1 or activating Nrf2 can increase ROS levels and induce cancer cell death. • DJ-1: regulates the expression of antioxidant genes. Inhibiting DJ-1 can increase ROS levels • PARK2: regulates the expression of antioxidant genes. Inhibiting PARK2 can increase ROS levels • SIRT1 inhibition:regulates the expression of antioxidant genes. Inhibiting SIRT1 can increase ROS levels • AMPK activation: regulates energy metabolism and can increase ROS levels when activated. • mTOR inhibition: regulates cell growth and metabolism. Inhibiting mTOR can increase ROS levels • HSP90 inhibition: regulates protein folding and can increase ROS levels when inhibited. • Proteasome: degrades damaged proteins. Inhibiting the proteasome can increase ROS levels • Lipid peroxidation: a process by which lipids are oxidized, leading to the production of ROS. -Increasing lipid peroxidation can increase ROS levels • Ferroptosis: form of cell death that is regulated by iron and lipid peroxidation. -Increasing ferroptosis can increase ROS levels • Mitochondrial permeability transition pore (mPTP): regulates mitochondrial permeability. -Opening the mPTP can increase ROS levels • BCL-2 family proteins: regulate apoptosis and can increase ROS levels when inhibited. • Caspase-independent cell death: a form of cell death that is regulated by ROS. -Increasing caspase-independent cell death can increase ROS levels • DNA damage response: regulates the repair of DNA damage. Increasing DNA damage can increase ROS • Epigenetic regulation: process by which gene expression is regulated. -Increasing epigenetic regulation can increase ROS levels -PKM2, but not PKM1, can be inhibited by direct oxidation of cysteine 358 as an adaptive response to increased intracellular reactive oxygen species (ROS) ProOxidant Strategy:(inhibit the Melavonate Pathway (likely will also inhibit GPx) -HydroxyCitrate (HCA) found as supplement online and typically used in a dose of about 1.5g/day or more -Atorvastatin typically 40-80mg/day -Dipyridamole typically 200mg 2x/day -Lycopene typically 100mg/day range Dual Role of Reactive Oxygen Species and their Application in Cancer Therapy |
| 2806- | CHr, | Se, | Selenium-containing chrysin and quercetin derivatives: attractive scaffolds for cancer therapy |
| - | in-vitro, | Var, | NA |
| 3994- | CoQ10, | Se, | Coenzyme Q10 Supplementation in Aging and Disease |
| - | Review, | AD, | NA | - | Review, | Park, | NA |
| 641- | EGCG, | Se, | Antioxidant effects of green tea |
| 4612- | Se, | Rad, | Histopathological Evaluation of Radioprotective Effects: Selenium Nanoparticles Protect Lung Tissue from Radiation Damage |
| - | in-vivo, | Nor, | NA |
| 4609- | Se, | Physiological Benefits of Novel Selenium Delivery via Nanoparticles |
| - | Review, | Var, | NA | - | Review, | IBD, | NA | - | Review, | Diabetic, | NA |
| 4613- | Se, | Rad, | Effect of Selenium and Selenoproteins on Radiation Resistance |
| - | Review, | Nor, | NA |
| 4486- | Se, | Chit, | Selenium-Modified Chitosan Induces HepG2 Cell Apoptosis and Differential Protein Analysis |
| - | in-vitro, | Liver, | HepG2 |
| 4608- | Se, | Selenium Nanoparticles for Biomedical Applications: From Development and Characterization to Therapeutics |
| - | Review, | Var, | NA | - | NA, | AD, | NA |
| 4614- | Se, | Rad, | Updates on clinical studies of selenium supplementation in radiotherapy |
| - | Review, | Nor, | NA |
| 4607- | Se, | SNP, | A Review on synthesis and their antibacterial activity of Silver and Selenium nanoparticles against biofilm forming Staphylococcus aureus |
| - | Review, | NA, | NA |
| 4605- | Se, | Selenium nanoparticles: An insight on its Pro-oxidant andantioxidant properties |
| - | Review, | NA, | NA |
| 4603- | Se, | Therapeutic applications of selenium nanoparticles |
| - | Review, | Var, | NA |
| 4602- | Se, | SNP, | GoldNP, | Advances in nephroprotection: the therapeutic role of selenium, silver, and gold nanoparticles in renal health |
| - | NA, | Nor, | NA |
| 4503- | Se, | Prophylactic supplementation with biogenic selenium nanoparticles mitigated intestinal barrier oxidative damage through suppressing epithelial-immune crosstalk with gut-on-a-chip |
| - | in-vitro, | Nor, | NA |
| 4498- | Se, | Selenium in Human Health and Gut Microflora: Bioavailability of Selenocompounds and Relationship With Diseases |
| - | Review, | Var, | NA | - | Review, | AD, | NA | - | Review, | IBD, | NA |
| 4497- | Se, | Selenium and inflammatory bowel disease |
| - | Review, | Var, | NA | - | Review, | IBD, | NA |
| 4494- | Se, | Advances in the study of selenium and human intestinal bacteria |
| - | Review, | IBD, | NA | - | Review, | Var, | NA |
| 4492- | Se, | Selenium in cancer prevention: a review of the evidence and mechanism of action |
| - | Review, | Var, | NA |
| 4491- | Se, | Chit, | VitC, | Synthesis of a Bioactive Composition of Chitosan–Selenium Nanoparticles |
| - | Study, | NA, | NA |
| 4742- | Se, | Antitumor Effects of Selenium |
| - | Review, | Var, | NA | - | Review, | Arthritis, | NA | - | Review, | Sepsis, | NA |
| 4739- | Se, | Chemo, | Rad, | Therapeutic Benefits of Selenium in Hematological Malignancies |
| - | Review, | Var, | NA |
| 4735- | Se, | Selenium triggers Nrf2-AMPK crosstalk to alleviate cadmium-induced autophagy in rabbit cerebrum |
| - | in-vivo, | Nor, | NA |
| 4731- | Se, | Dietary selenium mitigates cadmium-induced apoptosis and inflammation in chicken testicles by inhibiting oxidative stress through the activation of the Nrf2/HO-1 signaling pathway |
| - | in-vivo, | Nor, | NA |
| 4729- | Se, | Selenium regulates Nrf2 signaling to prevent hepatotoxicity induced by hexavalent chromium in broilers |
| 4723- | Se, | Selenium Induces Ferroptosis in Colorectal Cancer Cells via Direct Interaction with Nrf2 and Gpx4 |
| - | in-vitro, | CRC, | HCT116 |
| 4721- | Se, | A review on selenium nanoparticles and their biomedical applications |
| - | Review, | AD, | NA | - | Review, | Diabetic, | NA | - | Review, | Arthritis, | NA |
| - | in-vivo, | Var, | NA |
| 4718- | Se, | High-Dose Selenium Induces Ferroptotic Cell Death in Ovarian Cancer |
| - | in-vitro, | Ovarian, | NA |
| 4717- | Se, | A systematic review of Selenium as a complementary treatment in cancer patients |
| - | Review, | Var, | NA |
| 4716- | Se, | Selenium Substitution During Radiotherapy of Solid Tumours – Laboratory Data from Two Observation Studies in Gynaecological and Head and Neck Cancer Patients |
| - | in-vivo, | HNSCC, | NA |
| 4714- | Se, | Selenium in cancer management: exploring the therapeutic potential |
| - | Review, | Var, | NA |
| 4441- | Se, | The Role of Selenium Nanoparticles in the Treatment of Liver Pathologies of Various Natures |
| - | Review, | Nor, | NA |
| 4440- | Se, | SNP, | Selenium, silver, and gold nanoparticles: Emerging strategies for hepatic oxidative stress and inflammation reduction |
| - | Review, | NA, | NA |
| 4484- | Se, | Chit, | PEG, | Anti-cancer potential of selenium-chitosan-polyethylene glycol-carvacrol nanocomposites in multiple myeloma U266 cells |
| - | in-vitro, | Melanoma, | U266 |
| 4445- | Se, | DFE, | A comparative study on the hepatoprotective effect of selenium-nanoparticles and dates flesh extract on carbon tetrachloride induced liver damage in albino rats |
| - | in-vivo, | LiverDam, | NA |
| 4485- | Se, | Selenium stimulates the antitumour immunity: Insights to future research |
| - | Review, | NA, | NA |
| 4483- | Se, | Chit, | Anti-cancer potential of chitosan-starch selenium Nanocomposite: Targeting osteoblastoma and insights of molecular docking |
| - | in-vitro, | OS, | NA |
| 4480- | Se, | Chit, | Biogenic synthesized selenium nanoparticles combined chitosan nanoparticles controlled lung cancer growth via ROS generation and mitochondrial damage pathway |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Nor, | HK-2 |
| 4473- | Se, | Anti-cancerous effect and biological evaluation of green synthesized Selenium nanoparticles on MCF-7 breast cancer and HUVEC cell lines |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Nor, | HUVECs |
| 4472- | Se, | Therapeutic potential of selenium nanoparticles |
| - | Review, | Var, | NA |
| 4471- | Se, | Green synthesis of selenium nanoparticles with extract of hawthorn fruit induced HepG2 cells apoptosis |
| - | in-vitro, | Liver, | HepG2 |
| 4469- | Se, | Selenium Nanoparticles in Cancer Therapy: Unveiling Cytotoxic Mechanisms and Therapeutic Potential |
| - | Review, | Var, | NA |
| 4444- | Se, | Antioxidant and Hepatoprotective Efficiency of Selenium Nanoparticles Against Acetaminophen-Induced Hepatic Damage |
| - | in-vivo, | LiverDam, | NA |
| 4446- | Se, | Antioxidant and Hepatoprotective Effects of Moringa oleifera-mediated Selenium Nanoparticles in Diabetic Rats. |
| - | in-vivo, | Diabetic, | NA |
| 4449- | Se, | PEG-nanolized ultrasmall selenium nanoparticles overcome drug resistance in hepatocellular carcinoma HepG2 cells through induction of mitochondria dysfunction |
| - | in-vitro, | Liver, | HepG2 |
| 4450- | Se, | Functionalized selenium nanoparticles with nephroprotective activity, the important roles of ROS-mediated signaling pathways |
| - | in-vitro, | Kidney, | NA |
| 4452- | Se, | Chit, | Antioxidant capacities of the selenium nanoparticles stabilized by chitosan |
| - | in-vitro, | Nor, | 3T3 |
| 4453- | Se, | Selenium Nanoparticles: Green Synthesis and Biomedical Application |
| - | Review, | NA, | NA |
| 4457- | Se, | Selenium nanoparticles: a review on synthesis and biomedical applications |
| - | Review, | Var, | NA | - | NA, | Diabetic, | NA |
| 4752- | Se, | CUR, | Chemo, | Curcumin-Modified Selenium Nanoparticles Improve S180 Tumour Therapy in Mice by Regulating the Gut Microbiota and Chemotherapy |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | sarcoma, | S180 |
| - | vitro+vivo, | Nor, | NA |
| 4468- | VitC, | Se, | Selenium modulates cancer cell response to pharmacologic ascorbate |
| - | in-vivo, | GBM, | U87MG | - | in-vitro, | CRC, | HCT116 |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:149 Target#:275 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid