MFrot, Magnetic Field Rotating: Click to Expand ⟱
Features:
Rotary Magnetic field can be generated by a spinning magnet or magnets. Or it can be implemented with 2 or more coils, power with a phase shift between them (90 deg for 2 coil implementation) (60deg for 3 coil implementation)
Targets affected are mostly the same as for Magnet fields
Main differences
- may enhance the EPR effect allowing targeting of drugs to cancer cells
- acts as wireless stirrer, especially on magnetic particles(inducing eddy currents in water media)
- research for use in nano surgery, and mechanical destruction of cancer cells
- continue to highlight ability to raise ROS in cancer cell and lower ROS in normal cells
- RMF may be responsible for Ca2+ distribution to pass across the plasma membrane(differental affected for cancer and normal cells)

Pathways:
- induce ROS production in cancer cells, while decreasing ROS in normal cells. Ca2+ is critical and the Ca2+ balance is increased in cancer cells while decreased in normal cells (example for wound healing)
- ROS↑ related: MMP↓(ΔΨm), Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : TNF-α↓, IL-6↓,
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, RhoA↓, NF-κB↓, TGF-β↓, ERK↓
- cause Cell cycle arrest : TumCCA↑,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, ERK↓,
- Others: PI3K↓, AKT↓, Wnt↓, AMPK, ERK↓, JNK,
- Synergies: < Others(review target notes), Neuroprotective, Cognitive,

- Selectivity: Cancer Cells vs Normal Cells


Scientific Papers found: Click to Expand⟱
2262- MFrot,    Effects of 0.4 T Rotating Magnetic Field Exposure on Density, Strength, Calcium and Metabolism of Rat Thigh Bones
- in-vivo, ostP, NA
*BMD↑, *eff↓, *ALP↑, *other↑,
222- MFrot,    LF-MF inhibits iron metabolism and suppresses lung cancer through activation of P53-miR-34a-E2F1/E2F3 pathway
- in-vitro, Lung, A549
TumCG↓, OS↑, miR-34a↑, E2Fs↓, P53↑, TfR1/CD71↓, Ferritin↓,
223- MFrot,    The effect of rotating magnetic fields on the growth of Deal's guinea pig sarcoma transplanted subcutaneously in guinea pigs
- in-vivo, NA, NA
TumCG↓,
224- MFrot,    A pilot study of extremely low-frequency magnetic fields in advanced non-small cell lung cancer: Effects on survival and palliation of general symptoms
- Human, NSCLC, NA
PleEff↓, breath↑, Pain↓, Appetite↑, Strength↑, BowelM↑, OS↑,
225- MFrot,    Extremely low frequency magnetic fields regulate differentiation of regulatory T cells: Potential role for ROS-mediated inhibition on AKT
- vitro+vivo, Lung, NA
MMP2↓, MMP9↓, FOXP3↓, ROS↑, p‑Akt↓,
226- MFrot,    Involvement of midkine expression in the inhibitory effects of low-frequency magnetic fields on cancer cells
- in-vitro, NA, A549 - in-vitro, NA, LoVo
TumCP↓, eff↝,
227- MFrot,    Low Frequency Magnetic Fields Induce Autophagy-associated Cell Death in Lung Cancer through miR-486-mediated Inhibition of Akt/mTOR Signaling Pathway
- in-vivo, Lung, A549 - in-vitro, Lung, A549
TumCG↓, miR-486↑, BCAP↓, Apoptosis↑, ROS↑, TumAuto↑, LC3II↑, ATG5↑, Beclin-1↑, p62↑, TumCP↓,
228- MFrot,    Rotating magnetic field ameliorates experimental autoimmune encephalomyelitis by promoting T cell peripheral accumulation and regulating the balance of Treg and Th1/Th17
- NA, MS, NA
*CD4+↑, *MCP1↓, RANTES↓, *MIP‑1α↓, *Treg lymp↓, *IFN-γ↓, *IL17↓, *CXCc↓,
229- MFrot,    Molecular mechanism of effect of rotating constant magnetic field on organisms
- in-vivo, Nor, NA
*NO↑, *5HT↓, *eff↝, *eff↝, *β-Endo↑, *other↓,
230- MFrot,    Study on the Effect of Rotating Magnetic Field on Cellular Response of Mammalian Cells
- in-vitro, Nor, L929
*ALDH↑,
516- MFrot,  immuno,    Anti-tumor effect of innovative tumor treatment device OM-100 through enhancing anti-PD-1 immunotherapy in glioblastoma growth
- vitro+vivo, GBM, U87MG
TumCP↓, Apoptosis↑, TumCMig↓, ROS↑, PD-L1↑, TumVol↓, eff↑, *toxicity∅, eff↑, *toxicity∅, Dose↝, tumCV↓, TumCI↓,
595- MFrot,  VitC,    The Effect of Alternating Magnetic Field Exposure and Vitamin C on Cancer Cells
- in-vitro, PC, MIA PaCa-2 - in-vitro, CRC, SW-620 - in-vitro, NA, HT1080 - in-vitro, Pca, PC3 - in-vitro, OS, U2OS - in-vitro, BC, MCF-7 - in-vitro, Nor, CCD-18Co
TumCD↑, eff↑, *TumCG∅,
1737- MFrot,  Fe,    Feature Matching of Microsecond-Pulsed Magnetic Fields Combined with Fe3O4 Particles for Killing A375 Melanoma Cells
- in-vitro, MB, A375
Dose∅, tumCV↓,
2258- MFrot,    EXTH-68. ONCOMAGNETIC TREATMENT SELECTIVELY KILLS GLIOMA CANCER CELLS BY INDUCING OXIDATIVE STRESS AND DNA DAMAGE
- in-vitro, GBM, GBM - in-vitro, Nor, SVGp12
TumVol↓, OS↑, γH2AX↑, DNAdam↑, selectivity↑, ROS↑, TumCD↑, eff↑, eff↓,
2259- MFrot,    Method and apparatus for oncomagnetic treatment
- in-vitro, GBM, NA
MMP↓, Bcl-2↓, BAX↑, Bak↑, Cyt‑c↑, Casp3↑, Casp9↑, DNAdam↑, ROS↑, lactateProd↑, Apoptosis↑, MPT↑, *selectivity↑, eff↑, MMP↓, selectivity↑, TCA?, H2O2↑, eff↑, *antiOx↑, H2O2↑, eff↓, GSH/GSSG↓, *toxicity∅, OS↑,
221- MFrot,    Low Frequency Magnetic Fields Enhance Antitumor Immune Response against Mouse H22 Hepatocellular Carcinoma
- in-vivo, Liver, NA
OS↑, TumCG↓, IL6↓, GM-CSF↓, CXCc↓, Macrophages↑, DCells↑, CD4+↑, CD8+↑, IL12↑,
2311- MFrot,    Magnetic fields as a potential therapy for diabetic wounds based on animal experiments and clinical trials
- in-vivo, Nor, HaCaT
*COX2↓, *Inflam↓, *MMP9↑, *GPx↑, *Diff↑,
3488- MFrot,    Rotating magnetic field improves cognitive and memory impairments in APP/PS1 mice by activating autophagy and inhibiting the PI3K/AKT/mTOR signaling pathway
- in-vivo, AD, NA
*cognitive↑, *memory↑, *neuroP↑, *Aβ↓, *PI3K↓, *Akt↓, *mTOR↓,
3489- MFrot,    Rotating magnetic field inhibits Aβ protein aggregation and alleviates cognitive impairment in Alzheimer's disease mice.
- in-vivo, AD, NA
*Aβ↓, *motorD↑, *cognitive↑, *memory↑, *ROS↓,
3491- MFrot,    Magnetically controlled cyclic microscale deformation of in vitro cancer invasion models
- in-vitro, BC, MDA-MB-231
Ca+2↑, ATF3↑, FOSB↑,
3492- MFrot,  Chemo,    Synergistic Effect of Chemotherapy and Magnetomechanical Actuation of Fe-Cr-Nb-B Magnetic Particles on Cancer Cells
eff↑, TumCD↑,
3493- MFrot,    Mechanical nanosurgery of chemoresistant glioblastoma using magnetically controlled carbon nanotubes
- in-vivo, GBM, NA
TumCD↑, MMP↓, Cyt‑c↑, Apoptosis↑, OS↑, DNAdam↑,
3494- MFrot,    Magnetically switchable mechano-chemotherapy for enhancing the death of tumour cells by overcoming drug-resistance
- in-vitro, Var, NA
eff↑, TumCD↑,
3495- MFrot,    Synthesis of urchin-like nickel nanoparticles with enhanced rotating magnetic field-induced cell necrosis and tumor inhibition
- in-vivo, BC, NA
TumCG↓,
3496- MFrot,  GoldNP,    Enhancement of chemotherapy effects by non-lethal magneto-mechanical actuation of gold-coated magnetic nanoparticles
- in-vitro, Cerv, HeLa
eff↑, tumCV↓,
3497- MFrot,    The Effect of a Rotating Magnetic Field on the Regenerative Potential of Platelets
- Human, Nor, NA
*PDGFR-BB↑, *TGF-β↑, *IGF-1↑, *FGF↑, *angioG↑, *Inflam↓, *ROS↓,
3499- MFrot,    Rotating magnetic field delays human umbilical vein endothelial cell aging and prolongs the lifespan of Caenorhabditis elegans
- in-vitro, Nor, HUVECs
*AntiAge↑, *AMPK↑, *mPGES-1↓, *Ca+2↑, *ER Stress↑, *OS↑, *ROS↓,
3535- MFrot,    Pulsed Electromagnetic Field Stimulation in Osteogenesis and Chondrogenesis: Signaling Pathways and Therapeutic Implications
- Review, Nor, NA
*eff↑, *COL2A1↑, *SOX9↑, *Ca+2↑, *FAK↑, *F-actin↑, *Inflam↓, *other↑, *Diff↑, *BMD↑,
3567- MFrot,    The Effect of Extremely Low-Frequency Magnetic Field on Stroke Patients: A Systematic Review
- Review, Stroke, NA
*eff↑, *ROS↓, *Inflam↓, *cognitive↑, *Catalase↑, *SOD↑, *SOD1↑, *SOD2↑, *GPx1↑, *GPx4↑, *IL1β↑, *neuroP↑, *toxicity∅,
202- MFrot,    Systematic simulation of tumor cell invasion and migration in response to time-varying rotating magnetic field
- Analysis, Var, MDA-MB-231
TumCG↓, MMPs↓, ECM/TCF↓,
185- MFrot,    Case Report: End-Stage Recurrent Glioblastoma Treated With a New Noninvasive Non-Contact Oncomagnetic Device
- Human, GBM, NA
TumVol↓, Dose↝, cognitive↑,
186- MFrot,    Selective induction of rapid cytotoxic effect in glioblastoma cells by oscillating magnetic fields
- in-vitro, GBM, GBM - in-vitro, Lung, NA
mt-ROS↑, Casp3↑, selectivity↑, TumCD↑,
187- MFrot,    Method for noninvasive whole-body stimulation with spinning oscillating magnetic fields and its safety in mice
- in-vivo, GBM, NA
selectivity↑, ROS↑, *ROS∅, *toxicity∅,
188- MFrot,    Spinning magnetic field patterns that cause oncolysis by oxidative stress in glioma cells
- in-vitro, GBM, GBM115 - in-vitro, GBM, DIPG
ROS↑, SDH↓, eff↓, RPM↑, eff↓, eff↑, eff↝, eff↝, Casp3↑, eff↝, SOD↓,
189- MFrot,    Cancer treatment by magneto-mechanical effect of particles, a review
- vitro+vivo, Var, NA
CellMemb↑, lysoMP↑, ERK↑, Apoptosis↑,
190- MFrot,    The efficacy and safety of low-frequency rotating static magnetic field therapy combined with chemotherapy on advanced lung cancer patients: a randomized, double-blinded, controlled clinical trial
- Human, Lung, NA
*IP-10/CXCL-10↑, *GM-CSF↑, *TREM-1↓,
191- MFrot,    Early exposure of rotating magnetic fields promotes central nervous regeneration in planarian Girardia sinensis
- in-vivo, Nor, NA
*EGR4↑, *Netrins↑, *NSE↑, *NPY↑,
193- MFrot,    Rotating Magnetic Field Mitigates Ankylosing Spondylitis Targeting Osteocytes and Chondrocytes via Ameliorating Immune Dysfunctions
- in-vivo, Arthritis, NA
BMD↑, Cartilage↑, IL17↓, IL22↓, IL23↓, IL28↓, CD4+↓, CD8+↓, LAMB3↑, COL4↓, THBS2↓, ITGA11↓, PPARγ↑, ACAA1↓, PLIN1↓, FABP4↓, PCK1↓, UCP1↓, TNF-α↓,
195- MFrot,    Application of Rotating Magnetic Fields Increase the Activity of Antimicrobials Against Wound Biofilm Pathogens
- Human, Wounds, NA

198- MFrot,    Biological effects of rotating magnetic field: A review from 1969 to 2021
- Review, Var, NA
AntiCan↑, breath↑, Pain↓, Appetite↑, Strength↑, BowelM↑, TumMeta↓, TumCCA↑,
199- MFrot,    Modulation of Cellular Response to Different Parameters of the Rotating Magnetic Field (RMF)—An In Vitro Wound Healing Study
- in-vivo, Wounds, L929 - NA, NA, HaCaT
*ROS↑, *Ca+2↓, *other↝, *other↝, *other↝, *other↝, *other↝, *other?,
200- MFrot,    Moderate intensity low frequency rotating magnetic field inhibits breast cancer growth in mice
- in-vivo, BC, MDA-MB-231 - in-vivo, BC, MCF-7
ALAT↓, TumVol↓,
201- MFrot,    Gradient Rotating Magnetic Fields Impairing F-Actin-Related Gene CCDC150 to Inhibit Triple-Negative Breast Cancer Metastasis by Inactivating TGF-β1/SMAD3 Signaling Pathway
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, BT549 - in-vitro, BC, MDA-MB-468
CCDC150↓, TGF-β↓, SMAD3↓,
184- MFrot,    Rotating Magnetic Fields Inhibit Mitochondrial Respiration, Promote Oxidative Stress and Produce Loss of Mitochondrial Integrity in Cancer Cells
- in-vitro, GBM, GBM
ROS↑, mitResp↓, mtDam↑, Dose↝, MMP?, OCR↓, mt-H2O2↑, eff↓, SDH↓, Thiols↓, GSH↓, TumCD↑, Casp3↑, Casp7↑, MPT↑, Cyt‑c↑, selectivity↑, GSH/GSSG↓,
203- MFrot,    Rotating Magnetic Field Induced Oscillation of Magnetic Particles for in vivo Mechanical Destruction of Malignant Glioma
- vitro+vivo, GBM, U87MG
lysoMP↓, TumVol↓, eff↑, Apoptosis↑, Ca+2↑,
204- MFrot,    Rotating magnetic field improved cognitive and memory impairments in a sporadic ad model of mice by regulating microglial polarization
- in-vivo, AD, NA
*NF-kB↓, *MAPK↓, *TLR4↓, *memory↑, *cognitive↑, *TGF-β1↑, *ARG↑, *IL4↑, *IL10↑, *IL6↓, *IL1↓, *TNF-α↓, *iNOS↓, *ROS↓, *NO↓, *MyD88↓, *p‑IKKα↓, *p‑IκB↓, *p‑p65↓, *p‑JNK↓, *p‑p38↓, *ERK↓, *neuroP↑,
205- MFrot,    Intermittent F-actin Perturbations by Magnetic Fields Inhibit Breast Cancer Metastasis
- vitro+vivo, BC, MDA-MB-231
OS↑, F-actin↓, TumCI↓, TumCMig↓, Rho↓, selectivity↑,
209- MFrot,    The effect of a rotating magnetic field on the antioxidant system in healthy volunteers - preliminary study
- Human, NA, NA
*SOD↑, *Catalase↑, *ROMO1↑, *MDA↓, *TAC↑, *ROS↓,
212- MFrot,    Rotating magnetic field inhibits Aβ protein aggregation and alleviates cognitive impairment in Alzheimer’s disease mice
- in-vivo, AD, SH-SY5Y
*β-Amyloid↓, *cognitive↑, *motorD↑, *ROS↓, *memory↑,
213- MFrot,    Rotating Magnetic Field-Assisted Reactor Enhances Mechanisms of Phage Adsorption on Bacterial Cell Surface
- in-vitro, NA, NA
CellMemb↑,
214- MFrot,    Modification of bacterial cellulose through exposure to the rotating magnetic field
- in-vitro, Nor, NA
CellMemb↑, GlucoseCon↓,
215- MFrot,    Magneto-mechanical destruction of cancer-associated fibroblasts using ultra-small iron oxide nanoparticles and low frequency rotating magnetic fields
- in-vitro, PC, CAF
TumVol↓, lysoMP↑, CAFs/TAFs↓, eff↑,
216- MFrot,    Elongated Nanoparticle Aggregates in Cancer Cells for Mechanical Destruction with Low Frequency Rotating Magnetic Field
- in-vitro, GBM, U87MG
lysoMP↓, CellMemb↑,
217- MFrot,    Effect of low-frequency rotary magnetic fields on advanced gastric cancer
- in-vivo, GC, HL-60 - in-vivo, GC, SK-HEP-1
OS↑, Pain↓, ChemoSideEff↓, Weight↑, Strength↑, Sleep↑,
218- MFrot,    Extremely low frequency magnetic fields inhibit adipogenesis of human mesenchymal stem cells
- in-vitro, Nor, NA
*PPARγ↓, *p‑JNK↑, *Wnt↑, *ALP∅, *COL1∅, *RUNX2∅, *OCN∅, *FABP4↓, *p‑JNK↑, *Diff↓,
219- MFrot,    The expression and intranuclear distribution of nucleolin in HL-60 and K-562 cells after repeated, short-term exposition to rotating magnetic fields
- in-vitro, AML, HL-60 - in-vitro, AML, K562
nucleolin↑,
220- MFrot,    Effect of low frequency magnetic fields on melanoma: tumor inhibition and immune modulation
- in-vitro, Melanoma, B16-F10
OS↑, DCells↑, T-Cell↑, Apoptosis↑, IL1↑, IFN-γ↓, IL10↑, TumCG↓, ROS↑,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 57

Results for Effect on Cancer/Diseased Cells:
ACAA1↓,1,   p‑Akt↓,1,   ALAT↓,1,   AntiCan↑,1,   Apoptosis↑,7,   Appetite↑,2,   ATF3↑,1,   ATG5↑,1,   Bak↑,1,   BAX↑,1,   BCAP↓,1,   Bcl-2↓,1,   Beclin-1↑,1,   BMD↑,1,   BowelM↑,2,   breath↑,2,   Ca+2↑,2,   CAFs/TAFs↓,1,   Cartilage↑,1,   Casp3↑,4,   Casp7↑,1,   Casp9↑,1,   CCDC150↓,1,   CD4+↓,1,   CD4+↑,1,   CD8+↓,1,   CD8+↑,1,   CellMemb↑,4,   ChemoSideEff↓,1,   cognitive↑,1,   COL4↓,1,   CXCc↓,1,   Cyt‑c↑,3,   DCells↑,2,   DNAdam↑,3,   Dose↝,3,   Dose∅,1,   E2Fs↓,1,   ECM/TCF↓,1,   eff↓,5,   eff↑,12,   eff↝,4,   ERK↑,1,   F-actin↓,1,   FABP4↓,1,   Ferritin↓,1,   FOSB↑,1,   FOXP3↓,1,   GlucoseCon↓,1,   GM-CSF↓,1,   GSH↓,1,   GSH/GSSG↓,2,   H2O2↑,2,   mt-H2O2↑,1,   IFN-γ↓,1,   IL1↑,1,   IL10↑,1,   IL12↑,1,   IL17↓,1,   IL22↓,1,   IL23↓,1,   IL28↓,1,   IL6↓,1,   ITGA11↓,1,   lactateProd↑,1,   LAMB3↑,1,   LC3II↑,1,   lysoMP↓,2,   lysoMP↑,2,   Macrophages↑,1,   miR-34a↑,1,   miR-486↑,1,   mitResp↓,1,   MMP?,1,   MMP↓,3,   MMP2↓,1,   MMP9↓,1,   MMPs↓,1,   MPT↑,2,   mtDam↑,1,   nucleolin↑,1,   OCR↓,1,   OS↑,9,   P53↑,1,   p62↑,1,   Pain↓,3,   PCK1↓,1,   PD-L1↑,1,   PleEff↓,1,   PLIN1↓,1,   PPARγ↑,1,   RANTES↓,1,   Rho↓,1,   ROS↑,9,   mt-ROS↑,1,   RPM↑,1,   SDH↓,2,   selectivity↑,6,   Sleep↑,1,   SMAD3↓,1,   SOD↓,1,   Strength↑,3,   T-Cell↑,1,   TCA?,1,   TfR1/CD71↓,1,   TGF-β↓,1,   THBS2↓,1,   Thiols↓,1,   TNF-α↓,1,   TumAuto↑,1,   TumCCA↑,1,   TumCD↑,7,   TumCG↓,7,   TumCI↓,2,   TumCMig↓,2,   TumCP↓,3,   tumCV↓,3,   TumMeta↓,1,   TumVol↓,6,   UCP1↓,1,   Weight↑,1,   γH2AX↑,1,  
Total Targets: 122

Results for Effect on Normal Cells:
5HT↓,1,   Akt↓,1,   ALDH↑,1,   ALP↑,1,   ALP∅,1,   AMPK↑,1,   angioG↑,1,   AntiAge↑,1,   antiOx↑,1,   ARG↑,1,   Aβ↓,2,   BMD↑,2,   Ca+2↓,1,   Ca+2↑,2,   Catalase↑,2,   CD4+↑,1,   cognitive↑,5,   COL1∅,1,   COL2A1↑,1,   COX2↓,1,   CXCc↓,1,   Diff↓,1,   Diff↑,2,   eff↓,1,   eff↑,2,   eff↝,2,   EGR4↑,1,   ER Stress↑,1,   ERK↓,1,   F-actin↑,1,   FABP4↓,1,   FAK↑,1,   FGF↑,1,   GM-CSF↑,1,   GPx↑,1,   GPx1↑,1,   GPx4↑,1,   IFN-γ↓,1,   IGF-1↑,1,   p‑IKKα↓,1,   IL1↓,1,   IL10↑,1,   IL17↓,1,   IL1β↑,1,   IL4↑,1,   IL6↓,1,   Inflam↓,4,   iNOS↓,1,   IP-10/CXCL-10↑,1,   p‑IκB↓,1,   p‑JNK↓,1,   p‑JNK↑,2,   MAPK↓,1,   MCP1↓,1,   MDA↓,1,   memory↑,4,   MIP‑1α↓,1,   MMP9↑,1,   motorD↑,2,   mPGES-1↓,1,   mTOR↓,1,   MyD88↓,1,   Netrins↑,1,   neuroP↑,3,   NF-kB↓,1,   NO↓,1,   NO↑,1,   NPY↑,1,   NSE↑,1,   OCN∅,1,   OS↑,1,   other?,1,   other↓,1,   other↑,2,   other↝,5,   p‑p38↓,1,   p‑p65↓,1,   PDGFR-BB↑,1,   PI3K↓,1,   PPARγ↓,1,   ROMO1↑,1,   ROS↓,7,   ROS↑,1,   ROS∅,1,   RUNX2∅,1,   selectivity↑,1,   SOD↑,2,   SOD1↑,1,   SOD2↑,1,   SOX9↑,1,   TAC↑,1,   TGF-β↑,1,   TGF-β1↑,1,   TLR4↓,1,   TNF-α↓,1,   toxicity∅,5,   Treg lymp↓,1,   TREM-1↓,1,   TumCG∅,1,   Wnt↑,1,   β-Amyloid↓,1,   β-Endo↑,1,  
Total Targets: 102

Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:192  Target#:%  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page