Database Query Results : Magnetic Field Rotating, , Akt

MFrot, Magnetic Field Rotating: Click to Expand ⟱
Features:
Rotary Magnetic field can be generated by a spinning magnet or magnets. Or it can be implemented with 2 or more coils, power with a phase shift between them (90 deg for 2 coil implementation) (60deg for 3 coil implementation)
Targets affected are mostly the same as for Magnet fields
Main differences
- may enhance the EPR effect allowing targeting of drugs to cancer cells
- acts as wireless stirrer, especially on magnetic particles(inducing eddy currents in water media)
- research for use in nano surgery, and mechanical destruction of cancer cells
- continue to highlight ability to raise ROS in cancer cell and lower ROS in normal cells
- RMF may be responsible for Ca2+ distribution to pass across the plasma membrane(differental affected for cancer and normal cells)

Pathways:
- induce ROS production in cancer cells, while decreasing ROS in normal cells. Ca2+ is critical and the Ca2+ balance is increased in cancer cells while decreased in normal cells (example for wound healing)
- ROS↑ related: MMP↓(ΔΨm), Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : TNF-α↓, IL-6↓,
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, RhoA↓, NF-κB↓, TGF-β↓, ERK↓
- cause Cell cycle arrest : TumCCA↑,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, ERK↓,
- Others: PI3K↓, AKT↓, Wnt↓, AMPK, ERK↓, JNK,
- Synergies: < Others(review target notes), Neuroprotective, Cognitive,

- Selectivity: Cancer Cells vs Normal Cells


Akt, PKB-Protein kinase B: Click to Expand ⟱
Source: HalifaxProj(inhibit)
Type:
Akt1 is involved in cellular survival pathways, by inhibiting apoptotic processes; Akt2 is an important signaling molecule in the insulin signaling pathway. It is required to induce glucose transport.

Inhibitors:
-Curcumin: downregulate AKT phosphorylation and signaling.
-Resveratrol
-Quercetin: inhibit the PI3K/AKT pathway.
-Epigallocatechin Gallate (EGCG)
-Luteolin and Apigenin: inhibit AKT phosphorylation


Scientific Papers found: Click to Expand⟱
225- MFrot,  MF,    Extremely low frequency magnetic fields regulate differentiation of regulatory T cells: Potential role for ROS-mediated inhibition on AKT
- vitro+vivo, Lung, NA
MMP2↓,
MMP9↓,
FOXP3↓,
ROS↑,
p‑Akt↓,

3488- MFrot,  MF,    Rotating magnetic field improves cognitive and memory impairments in APP/PS1 mice by activating autophagy and inhibiting the PI3K/AKT/mTOR signaling pathway
- in-vivo, AD, NA
*cognitive↑, RMF treatment significantly ameliorated their cognitive and memory impairments, attenuated neuronal damage, and reduced amyloid deposition.
*memory↑,
*neuroP↑,
*Aβ↓,
*PI3K↓, RMF improves cognitive and memory dysfunction in APP/PS1 mice by activating autophagy and inhibiting the PI3K/AKT/mTOR signaling pathway, thus highlighting the potential of RMF as a clinical treatment for hereditary AD.
*Akt↓,
*mTOR↓,

3745- MFrot,  MF,    The neurobiological foundation of effective repetitive transcranial magnetic brain stimulation in Alzheimer's disease
- Review, AD, NA
*neuroP↑, neuroprotective actions aimed at mitigatingoxidative stress and inflammation, and intense stimulation of neu-rotrophic factors
*ROS↓,
*Inflam↓,
*5HT↑, increase in serotoninand its metabolites and a change in the properties of serotonergicreceptors.
*cFos↑, in rats, a single session of bothLF- (1 Hz) and HF-rTMS (10 Hz) enhanced c-Fos expression in all exam-ined cortical areas
*Aβ↓, rTMS enhances neuronal viability and counteracts oxidative stressors, such as Aβ and glutamate toxicity, in vitro
*memory↑, downregulation results in memory impairments
*BDNF↑, long-term change in synaptic proteinexpression due to BDNF-TrkB pathway activation following rTMSprotocols
*Ach↑, rTMSincreases ACh levels by modulating AChE activity.
*AChE↓,
*cognitive↑, HF-rTMS (20 Hz) and LF-rTMS (1 Hz)—in termsof neurotransmitter circuits and neurogenic signaling. 142 While bothprotocols improved cognition-related behaviors
*BDNF↑, Notably, rTMS could enhance BDNF and NGF expression irrespec-tive of frequency,
*NGF↑,
*β-catenin/ZEB1↑, both LF-rTMS (1 Hz) and HF-rTMS (10 Hz)protocols enhanced cognitive performance through the activation of β-catenin via the regulation of glycogen synthase kinase-3β (GSK-3β) andTau
*p‑Akt↓, 3 weeks, iTBS reducedinflammation and increased anti-inflammatory molecules, specificallylinked to reversing the downregulation of phosphorylated forms ofAkt and the mammalian target of rapamycin.
*mTOR↓,
*MMP1↓, 6 months, patients showed significant reductions in plasma levels of MMP1, MMP9, and MMP10, along with increases in TIMP1 and TIMP2
*MMP9↓,
*MMP-10↓,
*TIMP1↑,
*TIMP2↑,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 3

Results for Effect on Cancer/Diseased Cells:
p‑Akt↓,1,   FOXP3↓,1,   MMP2↓,1,   MMP9↓,1,   ROS↑,1,  
Total Targets: 5

Results for Effect on Normal Cells:
5HT↑,1,   Ach↑,1,   AChE↓,1,   Akt↓,1,   p‑Akt↓,1,   Aβ↓,2,   BDNF↑,2,   cFos↑,1,   cognitive↑,2,   Inflam↓,1,   memory↑,2,   MMP-10↓,1,   MMP1↓,1,   MMP9↓,1,   mTOR↓,2,   neuroP↑,2,   NGF↑,1,   PI3K↓,1,   ROS↓,1,   TIMP1↑,1,   TIMP2↑,1,   β-catenin/ZEB1↑,1,  
Total Targets: 22

Scientific Paper Hit Count for: Akt, PKB-Protein kinase B
3 Magnetic Field Rotating
3 Magnetic Fields
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:192  Target#:4  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page