condition found tbRes List
MFrot, Magnetic Field Rotating: Click to Expand ⟱
Features:
Rotary Magnetic field can be generated by a spinning magnet or magnets. Or it can be implemented with 2 or more coils, power with a phase shift between them (90 deg for 2 coil implementation) (60deg for 3 coil implementation)
Targets affected are mostly the same as for Magnet fields
Main differences
- may enhance the EPR effect allowing targeting of drugs to cancer cells
- acts as wireless stirrer, especially on magnetic particles(inducing eddy currents in water media)
- research for use in nano surgery, and mechanical destruction of cancer cells
- continue to highlight ability to raise ROS in cancer cell and lower ROS in normal cells
- RMF may be responsible for Ca2+ distribution to pass across the plasma membrane(differental affected for cancer and normal cells)

Pathways:
- induce ROS production in cancer cells, while decreasing ROS in normal cells. Ca2+ is critical and the Ca2+ balance is increased in cancer cells while decreased in normal cells (example for wound healing)
- ROS↑ related: MMP↓(ΔΨm), Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : TNF-α↓, IL-6↓,
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, RhoA↓, NF-κB↓, TGF-β↓, ERK↓
- cause Cell cycle arrest : TumCCA↑,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, ERK↓,
- Others: PI3K↓, AKT↓, Wnt↓, AMPK, ERK↓, JNK,
- Synergies: < Others(review target notes), Neuroprotective, Cognitive,

- Selectivity: Cancer Cells vs Normal Cells


selectivity, selectivity: Click to Expand ⟱
Source:
Type:
The selectivity of cancer products (such as chemotherapeutic agents, targeted therapies, immunotherapies, and novel cancer drugs) refers to their ability to affect cancer cells preferentially over normal, healthy cells. High selectivity is important because it can lead to better patient outcomes by reducing side effects and minimizing damage to normal tissues.

Achieving high selectivity in cancer treatment is crucial for improving patient outcomes. It relies on pinpointing molecular differences between cancerous and normal cells, designing drugs or delivery systems that exploit these differences, and overcoming intrinsic challenges like tumor heterogeneity and resistance

Factors that affect selectivity:
1. Ability of Cancer cells to preferentially absorb a product/drug
-EPR-enhanced permeability and retention of cancer cells
-nanoparticle formations/carriers may target cancer cells over normal cells
-Liposomal formations. Also negatively/positively charged affects absorbtion

2. Product/drug effect may be different for normal vs cancer cells
- hypoxia
- transition metal content levels (iron/copper) change probability of fenton reaction.
- pH levels
- antiOxidant levels and defense levels

3. Bio-availability


Scientific Papers found: Click to Expand⟱
2258- MFrot,    EXTH-68. ONCOMAGNETIC TREATMENT SELECTIVELY KILLS GLIOMA CANCER CELLS BY INDUCING OXIDATIVE STRESS AND DNA DAMAGE
- in-vitro, GBM, GBM - in-vitro, Nor, SVGp12
TumVol↓, GBM patient reversed the progression of his recurrent tumor causing >30% reduction in its contrast-enhanced volume within 4 weeks of treatment
OS↑, Mice with implanted mouse glioma cells in their brains also showed marked reduction in tumor size, increased survival (p< 0.05, n = 10)
γH2AX↑, higher DNA damage (g-H2AX foci) after sOMF treatment with a whole-body stimulation method developed by us
DNAdam↑,
selectivity↑, Normal mice exposed to sOMF for 4 months had no adverse effects on the brain and other organs
ROS↑, sOMF markedly increased reactive oxygen species (ROS) levels in cancer cells leading to the selective death of these cells, while sparing normal neurons and astrocytes
TumCD↑,
eff↑, sOMF exposure for just 2 h resulted in >40% loss of surviving GBM and DIPG cell colonies detected by clonogenic cell survival assay, similar to that produced by 2 Gy radiation dose.
eff↓, This loss was rescued by the antioxidant Trolox

2259- MFrot,    Method and apparatus for oncomagnetic treatment
- in-vitro, GBM, NA
MMP↓, Oncomagnetic patent Fig 2
Bcl-2↓,
BAX↑,
Bak↑,
Cyt‑c↑,
Casp3↑, caspase staining rises progressively until after 30 min most of the cells fluoresce positive for caspase, revealing activation of this enzyme
Casp9↑,
DNAdam↑,
ROS↑, applying the oscillating magnetic field to the tissue increases the production of reactive oxygen species (ROS )
lactateProd↑,
Apoptosis↑,
MPT↑, opening of the mitochondrial membrane permeability transition pore
*selectivity↑, repetitive magnetic stimulation has shown decreased apoptosis in non -cancerous cells .
eff↑, oncomagnetic therapy may be performed in conjunction with other forms of therapy such as with chemotherapy, other forms of radiative therapy, with drugs and prescriptions, etc
MMP↓, OMF which in turn produces rapidly fluctuating or sustained depolarizations of the mitochondrial membrane potential (MMP) in the tissue .
selectivity↑, Because normal cells have a larger amount of mitochondria, have lower demand for ATP, and are not under stress, disruption of electron flow and small amount of ROS formation and MMP depolarization does not trigger apoptosis
TCA?, decrease in Krebs cycle metabolites
H2O2↑, increase in peroxide levels in GBM cells following stimulation by the system 100 using a rotating magnet
eff↑, combine the administration of BHB , or acetoacetate , or free fatty acid, or branched chain amino acid, or cryptochrome agonist , or MGMT inhibitor, or DNA alkylating agent, or DNA methylating agent, and OMF as a more effective treatment of cancer
*antiOx↑, upregulation of antioxidant mechanisms due to the application of OMFs further protects non -cancerous cells from any ROS -mediated apoptosis
H2O2↑, The experiments showed rapid increases in the levels of superoxide and H2O2 in GBM cells
eff↓, To test whether cell death is caused by the OMF - induced increase in ROS , a potent antioxidant Trolox was used to counteract it, while measuring the decrease in GBM cell count due to 4 h exposure to OMF.
GSH/GSSG↓, GSH/GSSG ratio almost exactly half that seen in control cells
*toxicity∅, No Cytotoxic Effect in Normal Cells
OS↑, OMF -Induced Prolongation of Survival in a Mouse Xenograft Model of GBM

186- MFrot,    Selective induction of rapid cytotoxic effect in glioblastoma cells by oscillating magnetic fields
- in-vitro, GBM, GBM - in-vitro, Lung, NA
mt-ROS↑,
Casp3↑,
selectivity↑, OMF induces highly selective cell death of patient derived GBM cells associated with activation of caspase 3, while leaving normal tissue cells undamaged
TumCD↑,

187- MFrot,    Method for noninvasive whole-body stimulation with spinning oscillating magnetic fields and its safety in mice
- in-vivo, GBM, NA
selectivity↑, Our in vitro experiments demonstrated selective cancer cell death while sparing normal cells by sOMF-induced increase in intracellular reactive oxygen species (ROS) levels due to magnetic perturbation of mitochondrial electron transport.
ROS↑,
*ROS∅,
*toxicity∅, no significant adverse effects of chronic or acute sOMF stimulation on the health, behavior, electrocardiographic and electroencephalographic activities, hematologic profile, and brain and other tissue and organ morphology of treated mice

184- MFrot,    Rotating Magnetic Fields Inhibit Mitochondrial Respiration, Promote Oxidative Stress and Produce Loss of Mitochondrial Integrity in Cancer Cells
- in-vitro, GBM, GBM
ROS↑, sOMF
mitResp↓, Inhibit Mitochondrial Respiration
mtDam↑, Produce Loss of Mitochondrial Integrity
Dose↝, Repeated intermittent sOMF was applied for 2 hours at a specific frequency, in the 200-300 Hz frequency range, with on-off epochs of 250 or 500 ms duration.
MMP?, ROS generation has been shown to be driven, in part, by elevated mitochondrial membrane chemiosmotic potential (ΔΨ) and ubiquinol (QH2)
OCR↓, Immediately after cessation of field rotation we observe a loss of mitochondrial integrity (labeled LMI), with a very rapid increase in O2 consumption
mt-H2O2↑, We have previously demonstrated that sOMF treatment of cells generates superoxide/hydrogen peroxide in the mitochondrial matrix
eff↓, we repeated the same experiment in the presence of Trolox, which protects thiols from ROS oxidation (47). sOMF treatment of RLM in State 3u pre-treated with Trolox (15 μM), show minimal inhibition,
SDH↓, SDH Inhibition by sOMF in State 3u RLM Is Caused by ROS Generation
Thiols↓, suggest that thiol oxidation in SDH may result from sOMF.
GSH↓, Glutathione in the mitochondrial matrix can provide some protection from ROS, but after solubilizing the mitochondria, this protection is lost and the SDH becomes more sensitive to sOMF.
TumCD↑, sOMF is highly effective at killing non-dividing GBM cell cultures,
Casp3↑, caspase-3 activation 1 h after sOMF
Casp7↑, rapid activation of caspase-3/7
MPT↑, OMF-treated cell that causes near simultaneous MPT, release of cytochrome c and other apoptosis-inducing factors, resulting in caspase-3/7 activation in these GBM cells.
Cyt‑c↑,
selectivity↑, differential sensitivity to sOMF of cancer cells over ‘normal’ cells becomes apparent. rapid increase in the reactive oxygen species (ROS) in the mitochondria to cytotoxic levels only in cancer cells, and not in normal human cortical neurons
GSH/GSSG↓, increasing GSSG/GSH ratio

205- MFrot,    Intermittent F-actin Perturbations by Magnetic Fields Inhibit Breast Cancer Metastasis
- vitro+vivo, BC, MDA-MB-231
OS↑, 31-46% prolonged survival
F-actin↓, decrease F-actin formation in vitro and in vivo
TumCI↓,
TumCMig↓, >4.5hrs
Rho↓,
selectivity↑, F-actin in noncancerous breast cells is much less sensitive than that in breast cancer cells, which indicate that the normal cells in our human bodies are less likely to be agitated by these magnetic fields.


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 6

Results for Effect on Cancer/Diseased Cells:
Apoptosis↑,1,   Bak↑,1,   BAX↑,1,   Bcl-2↓,1,   Casp3↑,3,   Casp7↑,1,   Casp9↑,1,   Cyt‑c↑,2,   DNAdam↑,2,   Dose↝,1,   eff↓,3,   eff↑,3,   F-actin↓,1,   GSH↓,1,   GSH/GSSG↓,2,   H2O2↑,2,   mt-H2O2↑,1,   lactateProd↑,1,   mitResp↓,1,   MMP?,1,   MMP↓,2,   MPT↑,2,   mtDam↑,1,   OCR↓,1,   OS↑,3,   Rho↓,1,   ROS↑,4,   mt-ROS↑,1,   SDH↓,1,   selectivity↑,6,   TCA?,1,   Thiols↓,1,   TumCD↑,3,   TumCI↓,1,   TumCMig↓,1,   TumVol↓,1,   γH2AX↑,1,  
Total Targets: 37

Results for Effect on Normal Cells:
antiOx↑,1,   ROS∅,1,   selectivity↑,1,   toxicity∅,2,  
Total Targets: 4

Scientific Paper Hit Count for: selectivity, selectivity
6 Magnetic Field Rotating
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:192  Target#:1110  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page