condition found
Features: |
Rotary Magnetic field can be generated by a spinning magnet or magnets. Or it can be implemented with 2 or more coils, power with a phase shift between them (90 deg for 2 coil implementation) (60deg for 3 coil implementation) Targets affected are mostly the same as for Magnet fields Main differences - may enhance the EPR effect allowing targeting of drugs to cancer cells - acts as wireless stirrer, especially on magnetic particles(inducing eddy currents in water media) - research for use in nano surgery, and mechanical destruction of cancer cells - continue to highlight ability to raise ROS in cancer cell and lower ROS in normal cells - RMF may be responsible for Ca2+ distribution to pass across the plasma membrane(differental affected for cancer and normal cells) Pathways: - induce ROS production in cancer cells, while decreasing ROS in normal cells. Ca2+ is critical and the Ca2+ balance is increased in cancer cells while decreased in normal cells (example for wound healing) - ROS↑ related: MMP↓(ΔΨm), Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx, - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : TNF-α↓, IL-6↓, - inhibit Growth/Metastases : TumMeta↓, TumCG↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, RhoA↓, NF-κB↓, TGF-β↓, ERK↓ - cause Cell cycle arrest : TumCCA↑, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, ERK↓, - Others: PI3K↓, AKT↓, Wnt↓, AMPK, ERK↓, JNK, - Synergies: < Others(review target notes), Neuroprotective, Cognitive, - Selectivity: Cancer Cells vs Normal Cells |
Source: |
Type: |
The selectivity of cancer products (such as chemotherapeutic agents, targeted therapies, immunotherapies, and novel cancer drugs) refers to their ability to affect cancer cells preferentially over normal, healthy cells. High selectivity is important because it can lead to better patient outcomes by reducing side effects and minimizing damage to normal tissues. Achieving high selectivity in cancer treatment is crucial for improving patient outcomes. It relies on pinpointing molecular differences between cancerous and normal cells, designing drugs or delivery systems that exploit these differences, and overcoming intrinsic challenges like tumor heterogeneity and resistance Factors that affect selectivity: 1. Ability of Cancer cells to preferentially absorb a product/drug -EPR-enhanced permeability and retention of cancer cells -nanoparticle formations/carriers may target cancer cells over normal cells -Liposomal formations. Also negatively/positively charged affects absorbtion 2. Product/drug effect may be different for normal vs cancer cells - hypoxia - transition metal content levels (iron/copper) change probability of fenton reaction. - pH levels - antiOxidant levels and defense levels 3. Bio-availability |
2258- | MFrot,  |   | EXTH-68. ONCOMAGNETIC TREATMENT SELECTIVELY KILLS GLIOMA CANCER CELLS BY INDUCING OXIDATIVE STRESS AND DNA DAMAGE |
- | in-vitro, | GBM, | GBM | - | in-vitro, | Nor, | SVGp12 |
2259- | MFrot,  |   | Method and apparatus for oncomagnetic treatment |
- | in-vitro, | GBM, | NA |
186- | MFrot,  |   | Selective induction of rapid cytotoxic effect in glioblastoma cells by oscillating magnetic fields |
- | in-vitro, | GBM, | GBM | - | in-vitro, | Lung, | NA |
187- | MFrot,  |   | Method for noninvasive whole-body stimulation with spinning oscillating magnetic fields and its safety in mice |
- | in-vivo, | GBM, | NA |
184- | MFrot,  |   | Rotating Magnetic Fields Inhibit Mitochondrial Respiration, Promote Oxidative Stress and Produce Loss of Mitochondrial Integrity in Cancer Cells |
- | in-vitro, | GBM, | GBM |
205- | MFrot,  |   | Intermittent F-actin Perturbations by Magnetic Fields Inhibit Breast Cancer Metastasis |
- | vitro+vivo, | BC, | MDA-MB-231 |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:192 Target#:1110 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid