condition found tbRes List
MFrot, Magnetic Field Rotating: Click to Expand ⟱
Features:
Rotary Magnetic field can be generated by a spinning magnet or magnets. Or it can be implemented with 2 or more coils, power with a phase shift between them (90 deg for 2 coil implementation) (60deg for 3 coil implementation)
Targets affected are mostly the same as for Magnet fields
Main differences
- may enhance the EPR effect allowing targeting of drugs to cancer cells
- acts as wireless stirrer, especially on magnetic particles(inducing eddy currents in water media)
- research for use in nano surgery, and mechanical destruction of cancer cells
- continue to highlight ability to raise ROS in cancer cell and lower ROS in normal cells
- RMF may be responsible for Ca2+ distribution to pass across the plasma membrane(differental affected for cancer and normal cells)

Pathways:
- induce ROS production in cancer cells, while decreasing ROS in normal cells. Ca2+ is critical and the Ca2+ balance is increased in cancer cells while decreased in normal cells (example for wound healing)
- ROS↑ related: MMP↓(ΔΨm), Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : TNF-α↓, IL-6↓,
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, RhoA↓, NF-κB↓, TGF-β↓, ERK↓
- cause Cell cycle arrest : TumCCA↑,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, ERK↓,
- Others: PI3K↓, AKT↓, Wnt↓, AMPK, ERK↓, JNK,
- Synergies: < Others(review target notes), Neuroprotective, Cognitive,

- Selectivity: Cancer Cells vs Normal Cells


JNK, c-Jun N-terminal kinase (JNK): Click to Expand ⟱
Source:
Type:
JNK acts synergistically with NF-κB, JAK/STAT, and other signaling molecules to exert a survival function. Janus signaling promotes cancer cell survival.
JNK, or c-Jun N-terminal kinase, is a member of the mitogen-activated protein kinase (MAPK) family. It plays a crucial role in various cellular processes, including cell proliferation, differentiation, and apoptosis (programmed cell death). JNK is activated in response to various stress signals, such as UV radiation, oxidative stress, and inflammatory cytokines.
JNK activation can promote apoptosis in cancer cells, acting as a tumor suppressor. However, in other contexts, it can promote cell survival and proliferation, contributing to tumor progression.

JNK is often unregulated in cancers, leading to increased cancer cell proliferation, survival, and resistance to apoptosis. This activation is typically associated with poor prognosis and aggressive tumor behavior.


Scientific Papers found: Click to Expand⟱
204- MFrot,    Rotating magnetic field improved cognitive and memory impairments in a sporadic ad model of mice by regulating microglial polarization
- in-vivo, AD, NA
*NF-kB↓, RMF improves memory and cognitive impairments in a sporadic AD model, potentially by promoting the M1 to M2 transition of microglial polarization through inhibition of the NF-кB/MAPK signaling pathway.
*MAPK↓,
*TLR4↓,
*memory↑,
*cognitive↑,
*TGF-β1↑, RMF treatment promoted the expression of anti-inflammatory cytokines (TGF-β1, Arg-1, IL-4, IL-10)
*ARG↑, Arg-1
*IL4↑,
*IL10↑,
*IL6↓,
*IL1↓, IL-1β
*TNF-α↓,
*iNOS↓,
*ROS↓, in mice brain
*NO↓, in serum
*MyD88↓,
*p‑IKKα↓, phosphorylated IKKα/β, IкBα, NF-кB p65, JNK, p38,
*p‑IκB↓, IкBα
*p‑p65↓,
*p‑JNK↓,
*p‑p38↓,
*ERK↓,
*neuroP↑, RMF treatment resulted in reduced aluminum deposition in the brains of AD mice.

218- MFrot,    Extremely low frequency magnetic fields inhibit adipogenesis of human mesenchymal stem cells
- in-vitro, Nor, NA
*PPARγ↓, PPARg2
*p‑JNK↑, p-JNK
*Wnt↑,
*ALP∅, ELF-MF had no effects on the expression of ALP, COL1a1, Runx2, and OCN
*COL1∅,
*RUNX2∅,
*OCN∅,
*FABP4↓, ELF-MF exposure for 15 days resulted in a decrease in PPARg2 and FABP4
*p‑JNK↑, p-JNK was increased after ELF-MF exposure
*Diff↓, adipogenic differentiation of MSCs could be inhibited by ELF-MF of 7.5 Hz, 0.4 T, suggesting the inhibitory effect of ELF-MF on obesity may be attributed to the inhibition of differentiation of MSCs into adipocytes.


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 2

Results for Effect on Cancer/Diseased Cells:

Total Targets: 0

Results for Effect on Normal Cells:
ALP∅,1,   ARG↑,1,   cognitive↑,1,   COL1∅,1,   Diff↓,1,   ERK↓,1,   FABP4↓,1,   p‑IKKα↓,1,   IL1↓,1,   IL10↑,1,   IL4↑,1,   IL6↓,1,   iNOS↓,1,   p‑IκB↓,1,   p‑JNK↓,1,   p‑JNK↑,2,   MAPK↓,1,   memory↑,1,   MyD88↓,1,   neuroP↑,1,   NF-kB↓,1,   NO↓,1,   OCN∅,1,   p‑p38↓,1,   p‑p65↓,1,   PPARγ↓,1,   ROS↓,1,   RUNX2∅,1,   TGF-β1↑,1,   TLR4↓,1,   TNF-α↓,1,   Wnt↑,1,  
Total Targets: 32

Scientific Paper Hit Count for: JNK, c-Jun N-terminal kinase (JNK)
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:192  Target#:168  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page